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Abstract

The response of an elastic perfectly plastic oscillator under zero mean Gaussian white noise excitation is studied in this paper. Considering
the works of previous studies, a closed form expression of the mean maximum of the plastic drift is given assuming that the plastic process is
equivalent to a Brownian motion. In order to better describe the plastic drift a probabilistic model is proposed for the yield increments which
occur in clumps. To estimate the input parameters of this model, three methods, based on numerical computations of some relevant integrals, are
presented. Alternatively, these parameters can be estimated, more conveniently, according to the results obtained more recently in the literature
with the Slepian model approach. The results of numerical simulations show a quite satisfactory agreement with theoretical predictions.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the major concerns of a seismic design is to estimate
the ductility demand of structures subject to earthquake
excitations. Thus, the question of the value of the mean
maximum of the nonlinear response under random excitation
arises. The purpose of this paper is to contribute to the answer
of this question by considering the study of the behaviour of
an elastic perfectly plastic single degree of freedom (SDOF)
system under zero mean Gaussian white noise excitation. This
is the simplest structural model exhibiting hysteretic behaviour
and many physical systems can be approximated in this way.
In consequence, some research effort has been devoted for
over forty years to this problem. Caughey [1] was the first to
obtain the stationary response statistics of this type of system
to Gaussian white noise excitation, by using an equivalent
linearization technique. The same technique has been utilised
in several works (e.g. [2–6]), but the major drawback of the
equivalent linearization technique is that, generally, it gives
satisfactory results on very limited quantities of the response
statistics such as the mean-square values. Therefore, alternative
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methods have been developed. A complete review of these
methods can be found in references [7–9].

The present paper is focused on the original model
introduced by Karnopp and Scharton [10] and developed by
Vanmarcke and Veneziano [11] and more recently by Ditlevsen
and Bognar [12]. The main idea proposed by Karnopp and
Scharton [10] was to study the plastic-part (or plastic process)
of the nonlinear response, knowing that between two plastic
excursions the nonlinear system has a linear behaviour. They
formulated the problem in terms of “idealized” yield increments
which are estimated by assuming that the excess energy beyond
the yield limit is completely dissipated by the yielding action.
On the same bases Vanmarcke and Veneziano [11] developed
an analytical model which gives the estimates of the first and
the second moment of the plastic process, in the case of “rare”
yielding events. More recently, based on the theory of Slepian
processes, which describes the transient behaviour of Gaussian
random processes, Ditlevsen and Bognar [12] proposed very
satisfactory approximations of the yield increment statistics.

On the basis of the analytical model of Vanmarcke and
Veneziano [11], and following an idea of Paparizos and
Iwan [13] and Borsoi and Labbe [14] according to which the
plastic process can be viewed as a Brownian motion, closed
form expressions of the probability density function (PDF) of
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Fig. 1. Nonlinear response versus ALS response.
the absolute maximum and of the mean maximum of the plastic
process are given. The corresponding mean displacement
ductility demand of the nonlinear response is then proposed.
These expressions require the knowledge of the variance of
the clumps of plastic jumps. A closed form expression of this
variance involving five parameters is then proposed by means of
a probabilistic model which describes the local behaviour of the
plastic excursions. Combining the previous studies found in the
literature, three methods, based on the numerical computations
of some relevant integrals, are briefly presented to estimate
the above parameters. Nevertheless, for practical purposes, it is
proposed to use the closed form results obtained by Ditlevsen
and Bognar [12] with the Slepian model approach. These results
are briefly summarised for completeness.

In comparison with the methods presented in the beginning,
the advantage of the proposed approach results in the usefulness
of the information given on the nonlinear response statistics, in
a seismic engineering point of view.

As already mentioned, a nonlinear SDOF system is
considered here. Its equation of motion, under zero mean
Gaussian white noise W (t), reads:

Ẍnl + 2βω0 Ẋnl + F(Xnl) = −W, (1)

where Xnl(t) is the displacement of the mass, β is the damping
ratio, ω0 = 2π f0 is the circular frequency and F(Xnl) is
the spring force which is bounded by F(Xnl) = ±ω2

0Y if
Y is the yield limit. If D(t) denotes the plastic process (or
plastic deformation) and X (t) the elastic-part of the nonlinear
response:

Xnl(t) = D(t) + X (t). (2)

The values of X (t) cannot exceed ±Y . As in the cases
discussed in the previous studies [10–12], this work is limited to
configurations for which plastic jumps are “rare” events (high
yield thresholds). Therefore, the consequences of yielding are
limited to a few cycles of the response, so that X (t) tends,
between two successive clumps, towards the response of an
associated linear system (ALS) whose equation of motion is:

¨̃X + 2βω0
˙̃X + ω2

0 X̃ = −W. (3)

2. Global characterization of the plastic process

2.1. Phenomenology

Fig. 1 illustrates the partitioning of the nonlinear response
into elastic- and plastic-parts. The response of the ALS is also
shown. It is generally observed that, for high yield thresholds,
each clump of plastic jumps is associated with a yield threshold
crossing by the ALS envelope with positive slope.

Thus, according to Vanmarcke and Veneziano [11], the
expected frequency of occurrence of the clumps can be
estimated by the mean frequency µY of the threshold crossings
by the ALS envelope. To study the statistical behaviour of
the plastic process the authors consider that each clump may
be replaced by the sum of its individual jumps and that the
duration of each clump is infinitely small. The plastic process
D(t) is then simplified in a sum of individual independent
idealized plastic jumps whose amplitudes di and number N (t)
are random variables during the time interval [0, t]:

D(t) =

N (t)∑
i

di . (4)

N (t) is assumed to have a Poisson distribution with a mean
value equal to µY t and di are zero mean random variables.
Moreover, if the number of plastic jumps is relatively important
(t � 1/µY ), it can be argued, by virtue of the central limit
theorem, that D(t) has a Gaussian distribution whose expected
value and variance are [11]:

E(D(t)) =

E[N (t)]=µY t∑
i

E(di ) = µY t E(di ) = 0 (5)

σ 2
D(t) =

E[N (t)]=µY t∑
i

V (di ) = µY t E(d2
i ). (6)
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Fig. 2. Micro-peaks (a) and micro-plastic jumps (b).
Remark. We notice that under stationary Gaussian excita-
tion, the average rate of peaks of a lightly damped linear os-
cillator (like the ALS) response increases without limit with
increasing the excitation bandwidth [15]. Crandall showed that
the peaks of the linear response occur in clusters of micro-
scopic peaks associated with each macroscopic peak, as shown
in Fig. 2(a). When the excitation bandwidth is such that the
fourth spectral moment of the linear response becomes infinite,
Crandall [15] and Ditlevsen and Bognar [12] showed that the
PDF of the peaks is Gaussian. The nonlinear counterpart of this
phenomenon is that each macro-plastic jump can be associated
with several micro-plastic jumps as shown in Fig. 2(b).

In this study the sum of the microscopic and macroscopic
plastic excursions is considered and the microscopic plastic
jumps are neglected. Therefore, the peaks of the ALS response
are assumed to have a Rayleigh distribution under Gaussian
white noise excitation.

2.2. Probability density function of the absolute maximum of
D(t)

The determination of the absolute maximum PDF of the
plastic process can be achieved through the reliability function
defined by:

W (b, T ) = P(|D(t)| < b) = P((D(t) < b) and

(D(t) > −b)), (7)

where W (b, T ) is the probability that the process |D(t)|
remains below a given threshold b throughout the time interval
[0, T ]. The mean maximum Dm of D(t) in [0, T ] reads:

Dm =

∫
+∞

0
b

∂W (b, T )

∂b︸ ︷︷ ︸
PDF of the absolute maximum in [0,T]

db. (8)

In order to determine W (b, T ), the statistics of the plastic
process are assumed to be the same as those of a Brownian
motion (see [13,14]). A complete study of this type of process
can be found, in particular, in [17]. Since the two events
Fig. 3. Example of equiprobable time-histories leading to failure.

(D(t) < b) and (D(t) > −b) are independent, W (b, T ) is
given by:

W (b, T ) = (1 − P f (b, T ))2. (9)

P f (b, T ) being the first crossing probability of level b. As
shown in Fig. 3, to evaluate P f (b, T ) we consider that each
time-history which has an absolute maximum greater than or
equal to the level b in the time interval [0, T ], leads to a
necessary threshold crossing before time T . Thus:

P f (b, T ) = P( max
0≤t≤T

D(t) ≥ b) (10)

is computed by using the “reflection principle” defined in [17].
Let us consider a sample function d(t) of the process D(t). If
τ designates the moment of the first crossing of level b another
sample function exists defined by (Fig. 3):

d ′(t) =

{
d(t) t ≤ τ

b − [d(t) − b] t > τ.
(11)

The “reflection principle” is based on the independence be-
tween past and future. It reflects the concept of equiprobability
of the two time-histories d(t) and d ′(t) which both reach the
level b at time τ , so that:

max
0≤t≤T

d(t) ≥ b and max
0≤t≤T

d ′(t) ≥ b. (12)
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The probability of first crossing of level b is then given by [17]:

P f (b, T ) = P( max
0≤t≤T

D(t) ≥ b) = 2P(D(T ) ≥ b) (13)

and the reliability function reads:

W (b, T ) = (1 − 2P(D(T ) ≥ b))2. (14)

As D(t) has a Gaussian distribution, for t � 1/µY , P(D(T ) ≥

b) is given by:

P(D(T ) ≥ b) = 1 − Φ
(

b

σD(T )

)
. (15)

Φ(x) being the Gaussian (0, 1) cumulative distribution
function and σD(T ) the standard deviation of D(t) at time T
(cf. Eq. (6)).

From Eq. (14), the expression of the PDF of the absolute
maximum in [0, T ] reads:

∂W (b, T )

∂b
=

8
σD(T )

ϕ

(
b

σD(T )

)[
Φ
(

b

σD(T )

)
−

1
2

]
(16)

with ϕ (x) = dΦ(x)/dx . Combining Eqs. (8), (16) and (6) the
mean maximum of the plastic process is given by:

Dm = 2

√
σ 2

D(T )

π
= 2

√
E(d2

i )µY T

π
. (17)

Consequently, if µ is the displacement ductility demand,
which is defined by the ratio of the maximum nonlinear
displacement to the yield level, its mean value can be estimated
by:

µ̄ = 1 +
Dm

Y
. (18)

3. Local characterization of the plastic process

Eq. (16) shows that the PDF of the absolute maximum in
[0, T ] can be determined if the variance of the idealized plastic
jumps is known. In the following, a model which enables an
estimate of this variance is presented. This model is based on a
detailed description of the clumps of plastic jumps.

3.1. Phenomenology

Once more, we point out that this study is limited to white
noise excitation and to the cases for which plastic jumps are
“rare” events (see Fig. 1). Consequently:

• the clumps of plastic jumps are independent,
• the displacement and the velocity at the onset of the first

plastic jump of a clump may be considered as being those of
the stationary ALS response,

• the amplitudes of the subsequent plastic jumps are not
correlated. They come from a transient phase whose
initial conditions are zero relative velocity and elastic-part
displacement equal to ±Y (see [10] and Fig. 1).
Thus, a clump can be considered as the sum of independent
plastic jumps with alternating sign and which have the same
probability of occurrence. Moreover, the PDF of the first plastic
jump in a clump is different from the one of the following
jumps.

3.2. Mathematical model of the clumps

A clump can be described by a random variable d which
is defined as the sum of Nc independent plastic jumps δi with
opposite signs, Nc being a random variable. Two auxiliary
random variables can be considered, d−

=
∑Nc

i=1(−1)iδi and

d+
=
∑Nc

i=1(−1)i+1δi , which have the same probability of
occurrence equal to 1/2. The variables d− and d+ have the
same absolute mean value but with opposite signs, so that d
is a zero mean random variable with the following variance (or
mean-square):

V (d) = E[d2
] =

1
2

E[d−2
] +

1
2

E[d+2
] = E[d−2

]. (19)

In the following, p is called the probability of occurrence of
a jump δi in a clump. By definition, the probability of the first
jump δ1 of a clump is equal to 1. Thus:

P(1 jump) = (1 − p)

P(2 jumps) = p(1 − p)

...

P(n jumps) = pn−1(1 − p).

(20)

The expected value of the clump size Nc is therefore given by:

E[Nc] = (1 − p)

∞∑
n=1

npn−1

= (1 − p)
1

(1 − p)2 =
1

(1 − p)
. (21)

In the following, we do not make any assumption about the
PDFs of the plastic jumps and:

• α1 and α2 are called the mean value and the mean-square of
the first jump δ1 respectively,

• β1 and β2 are called the mean value and the mean-square of
the following jumps δi respectively.

The mean-square of d− is defined by:

E[d−2
] = E

( Nc∑
i=1

(−1)iδi

)2


= E

[
Nc∑

i=1

δ2
i

]
+ 2E

[
Nc−1∑
i=1

Nc∑
j=i+1

(−1)i+ jδiδ j

]
. (22)

After some algebra, this mean-square is given by:

E[d−2
] = α2 +

p

(1 − p)
β2 − 2

p

(1 + p)
α1β1

− 2
p2

(1 − p2)
β2

1 (23)
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while the mean reads:

E[d−
] = −E[d+

] = E

[
Nc∑

i=1

(−1)iδi

]

= −α1 +
p

(1 + p)
β1. (24)

Remark. If the PDFs of the plastic jumps are exponential
(α2 = 2α2

1 and β2 = 2β2
1 ) Eq. (23) reads (see also [14]):

E[d−2
] = 2

(
α2

1 +
p

(1 − p2)
β2

1 −
p

(1 + p)
α1β1

)
. (25)

This probabilistic model shows that estimates of five
parameters are necessary to determine the mean displacement
ductility demand of the response of an elastic perfectly plastic
SDOF system under zero mean Gaussian white noise excitation.

4. Estimates of the parameters

Many approaches proposed in the literature are based on the
fact that between two plastic excursions, the nonlinear system
behaves like a linear oscillator, for which the mathematical
theory is well-established. Following these considerations, to
obtain a simple estimate of a plastic jump δi , Karnopp and
Scharton [10] assume that the kinetic energy at the threshold
crossing (ẋ2/2) is dissipated only by the yielding action into
the plastic work (ω2

0Y δi ), neglecting the work of the excitation
force and of the damping force. An estimate of δi is then given
by

δi =
ẋ2

2ω2
0Y

(26)

and an estimate of the distribution of δi can be obtained by
means of the distribution of the linear system velocity at the
threshold.

Alternatively, if e is a peak greater than the yield level, it can
be assumed that the excess of potential energy (ω2

0(e
2
− Y 2)/2)

is dissipated into the plastic work. Another estimate of δi is then
given by:

δi =
1

2Y

(
e2

− Y 2
)

(27)

and another estimate of the PDF of δi can be obtained by means
of the distribution of the peaks of the ALS response.

Four methods, inspired by the literature and proposed in
the following subsections exploit these two models for the
calculation of the parameters of Eq. (23).

4.1. Method M1

The method M1 can be used to obtain numerical estimates of
β1, β2 and p. As already mentioned, Karnopp and Scharton [10]
pointed out that, at the end of each plastic excursion, the system
is in a transient phase exhibiting an elastic behaviour. This
transient phase can be described by means of the joint PDF
pX Ẋ (x, ẋ, t/x0, ẋ0) of the elastic-part of the nonlinear response
(see Appendix A), the initial conditions (x0, ẋ0) being known
exactly since the velocity and the elastic-part are respectively
equal to zero and ±Y [10]. The probability of having only
one plastic jump in the time interval [0, T0 = 1/ f0] can be
computed classically by the first passage problem of the elastic-
part of the nonlinear response, assuming that a threshold
crossing corresponds to only one plastic jump within a cycle
of the elastic response. Hence, the probability of occurrence p
can be estimated by:

p =

∫ T0

0

∫
+∞

0
ẋ pX Ẋ (Y, ẋ, t/x0 = −Y, ẋ0 = 0) dẋdt. (28)

The joint PDF pX Ẋ (x, ẋ, t/x0, ẋ0) can also be used to
compute the crossing velocity PDF, which is defined in [0, T0]
by:

pẊ (ẋ) =
1
p

∫ T0

0
ẋ pX Ẋ (Y, ẋ, t f /x0 = −Y, ẋ0 = 0)dt f . (29)

Using Eq. (26), the PDF pδi of a plastic jump in a clump δi
results in:

pδi (δi ) =
pẊ (ẋ)

ẋ
ω2

0Y. (30)

4.2. Method M2

The method M2 can be used to obtain numerical estimates
of α1 and α2. As previously mentioned, the first jump of
a clump can be associated with the first threshold crossing
in stationary conditions (Fig. 1). In order to estimate the
PDF of the maximum after the first crossing, the joint PDF
pE (en−1, en, τ ) of the ALS response envelope E can be used
(see Appendix B). Indeed, pE (en−1, en, 1/2 f0) being the PDF
of two successive peaks of |X̃(t)|, the PDF of the peak en ≥ Y ,
since the previous one en−1 is below the yield level, can be
computed. Using Eq. (27), the first plastic jump PDF is then
given by:

pδ1(δ1) =
Y√

Y 2 + 2Y δ1
pE (en ≥ Y/en−1 < Y ) . (31)

4.3. Method M3

The method M3 can be used to obtain numerical estimates
of β1, β2 and p using also the joint PDF of the ALS response
envelope. In this case, we use an idea of Ditlevsen and
Bognar [12] according to which, initial conditions such as
x0 = ±Y and ẋ0 = 0, for the transient phase, are equivalent
to the condition that the peak en−1 is equal to the yield level. In
consequence, another estimate of the probability of occurrence
of a plastic jump in a clump is given by:

p = P (en ≥ Y/en−1 = Y ) =

∫
∞

Y pE (en, en−1 = Y ) den∫
∞

0 pE (en, en−1 = Y ) den
(32)

and another estimate of the PDF of a plastic jump δi is given
by:

pδi (δi ) =
Y√

Y 2 + 2Y δi

pE (en ≥ Y/en−1 = Y ) . (33)
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pUi (ui ) =
η

(1 − ν2)ϕ(γ η) +
√

1 − ν2νηΦ(−γ η)
ϕ

(√
η2 + 2ηui − νη

√
1 − ν2

)

E [Ui ] =
2γ

η(1 + γ 2)2

[(
4γ 2

+ (1 − γ 2)η2
)
ϕ(γ η) + γ (1 − γ 2)η(3 − η2)Φ(−γ η)

2γ ϕ(γ η) + (1 − γ 2)ηΦ(−γ η)

]
.

Box I.
4.4. The method of Ditlevsen and Bognar

The previous three methods are based on the numerical
computations of some integrals to estimate the five parameters
of Eq. (23). For practical purposes, the closed form results
obtained by Ditlevsen and Bognar [12], with the Slepian model
approach, can also be used. For completeness, we remind their
main results.

The closed form expression of p is given by:

p =
2γ ϕ(γ η) + (1 − γ 2)ηΦ(−γ η)

2γ ϕ
(

1−γ 2

2γ
η
)

+ (1 − γ 2)ηΦ
(

1−γ 2

2γ
η
) (34)

with γ = (1 − ν)/
√

1 − ν2, α = β/
√

(1 − β2) and ν =

exp[−απ ]. η = Y/σX̃ is the yielding displacement normalized
with respect to the standard deviation σX̃ of the ALS response
given by:

σ 2
X̃

=
S0

8βω3
0

, (35)

where S0 is the one-sided power spectral density of the white
noise defined in the frequency domain.

The PDF pU1(u1) of the first normalized plastic jump U1 =

δ1/σX̃ and the closed form expression of its mean value are
respectively given by [12]:

pU1(u1) =
η

1 − (1 + ν)Φ(−γ η)

×Φ

(
η − ν

√
η2 + 2ηu1

√
1 − ν2

)
exp[−ηu1] (36)

E [U1]

=
1
η

[
1 −

2γ (1 − γ 2)

(1 + γ 2)2

γ (1 − η2)Φ(−γ η) + ηϕ(γ η)

1 + γ 2 − 2Φ(−γ η)

]
.

(37)

The closed form expressions of the PDF and the mean value
of the subsequent normalized plastic jumps are respectively
given by the equations in Box I [12].

Closed form expressions for p, α1, β1 are given by this
method. The mean-squares α2 and β2 have to be computed
numerically using the closed form expressions of the PDFs of
the plastic jumps. In the following this method is noted method
DM1.

Alternatively, exponential PDFs can be assumed for the
plastic jumps to simply obtain closed form expressions of the
second moments. This variant is noted method DM2.
4.5. The expected frequency of occurrence of the clumps

As previously mentioned, the expected frequency of
occurrence of the clumps can simply be estimated by the
mean frequency µY of the threshold crossings by the ALS
envelope [11]:

µY = 2 f0 exp[−η2/2]

(
1 − exp

[
−
√

π/2 ηδ
])

, (38)

where δ is a spectral bandwidth measure which may be
approximated, in the case of lightly damped linear oscillator
(β < 0.1), by [16]:

δ ∼=

√
4β

π
. (39)

5. Numerical simulations

Combining Eqs. (6), (17), (18) and (23) an expression of
the mean displacement ductility demand is obtained for the
nonlinear response of an elastic perfectly plastic SDOF system
under zero mean Gaussian white noise:

µ̄ = 1 +
2

Y
√

π

[(
α2 +

p

(1 − p)
β2

− 2
p

(1 + p)
α1β1 − 2

p2

(1 − p2)
β2

1

)
µY t

]1/2

. (40)

This expression involves six parameters µY , α1, α2, β1, β2
and p. The first one is given by Eq. (38). The others can be
estimated by the different methods proposed in Section 4.

To assess the range of validity of the above methods,
comparisons with numerical simulations are proposed herein.
The damping ratio of the SDOF system considered is equal
to 2%. The statistical results are obtained from 500 sample
functions of the nonlinear response having a duration equivalent
to 80 cycles of the ALS response.

Fig. 4(a)–(h) show the ratio of theoretical to numerical
simulation results for the six relevant parameters. It can be
seen that all the methods give better results for high yield
thresholds (η ≥ 1.5). When η = 1, the expected displacement
ductility demand is globally underestimated by a factor close to
0.8. The variable exhibiting the more important discrepancy is
the mean time between successive clumps (τc = 1/µY ). The
method M3 gives better estimates than the method M1, except
for the probability of occurrence of a jump in a clump. The
method DM1 gives good estimates except for the probability
of occurrence p when η → 1. Consequently, the mean-square
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Fig. 4. Ratios of theoretical to numerical simulation results for β = 0.02 and various η: (a) α1; (b) α2; (c) β1; (d) β2; (e) p; (f) E[d2
]; (g) E[µ]; and

(h) τC = 1/µY .
of the clumps is overestimated when η → 1. The method
DM2 leads to an overestimation of α2 and β2. It follows
that the mean-square of the clumps is overestimated by more
than 30% for 1 ≤ η ≤ 2.5. This discrepancy decreases
on increasing η because, in this case, the exponential PDF
assumption is more satisfactory [12]. Nevertheless, the method
DM2 gives a satisfactory estimate of the mean displacement
ductility demand.

Fig. 5(a)–(d) show comparisons between the PDFs of the
normalized plastic jumps Ui obtained by the methods M2,
M3 and DM1 (solid lines) and by numerical simulations
(dashed lines) respectively. These statistical results show a
good agreement between the PDFs of the first jump determined
theoretically and numerically. Concerning the subsequent
plastic jumps of a clump, the method DM1 underestimates the
PDF close to zero, nevertheless the agreement is better for high
values of δi .

Comparisons done for β = 1% and β = 5% give quite
similar results.
6. Conclusions

In this work we extended the analytical model developed
by Vanmarcke and Veneziano [11], using the Brownian motion
assumption for the statistical behaviour of the plastic process.
We obtained closed form expressions of the PDF of the absolute
maximum of the plastic process, of the mean maximum and of
the ductility demand which involve five parameters (α1, α2, β1,
β2 and p). To estimate these parameters, three methods, which
combine previous studies found in the literature, are presented.
Because these methods are based on numerical computations
of some integrals, we propose, for practical purposes, to use
the results obtained by Ditlevsen and Bognar [12] with the
Slepian model approach, assuming that the plastic jumps have
exponential PDFs.

The agreement between theoretical predictions and simula-
tions shows that the main physical phenomena have been cap-
tured in this work. Giving similar probabilistic results as those
classically obtained in the linear case (mean maximum of the
response), this work is particularly interesting in seismic engi-
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Fig. 5. PDFs of the normalized plastic jumps for β = 0.02: (a) U1 for η = 1; (b) Ui for η = 1; (c) U1 for η = 2.25; and (d) Ui for η = 2.25.
neering since seismic design in practice is based on linear re-
sponse spectra, although its application is limited to the case of
high yield thresholds, for an elastic perfectly plastic oscillator
under zero mean Gaussian white noise. In order to take into ac-
count a more realistic frequency content of the input, a future
work should consider the case of a stationary broadband non-
white noise excitation. The main challenge would be to pro-
pose a new model for plastic clumps dealing with correlation
between plastic jumps which are no more uncorrelated.

Appendix A

The joint PDF pX Ẋ (x, ẋ, t/x0, ẋ0) of the elastic-part of the
nonlinear response is given by [10]:

pX Ẋ (x, ẋ, t/x0, ẋ0) =

(√
1 − ρ(t)2

)−1

2πσx (t)σẋ (t)

× exp

[
−

1

2(1 − ρ(t)2)

(
(x − µx (t))2

σ 2
x (t)

−
2ρ(t)(x − µx (t))(ẋ − µẋ (t))

σx (t)σẋ (t)
+

(ẋ − µẋ (t))2

σ 2
ẋ (t)

)]
, (41)

where x and ẋ are respectively the displacement and velocity
values at time t , (x0, ẋ0) are the initial conditions of
the transient phase, (µx (t), σ 2

x (t)) and (µẋ (t), σ 2
ẋ (t)) are
respectively the mean and the variance of X (t) and Ẋ(t). They
are defined by:

E [X, t/x0, ẋ0] = µX (t) = x0r(t) − ẋ0ṙ(t)/ω2
0 (42)

E
[
Ẋ , t/x0, ẋ0

]
= µẊ (t) = x0ṙ(t) − ẋ0r̈(t)/ω2

0 (43)

σ 2
x (t) = σ 2

X̃
(1 − A(t)) (44)

σ 2
ẋ (t) = σ 2

˜̇X
(1 − B(t)) = ω2

0σ
2
X̃
(1 − B(t)), (45)

where σ 2
X̃

is given by Eq. (35). ρ(t) is the correlation coefficient

between X (t) and Ẋ(t):

ρ(t) =
2βṙ2(t)/ω2

0

[(1 − A(t)) (1 − B(t))]1/2 . (46)

r(t) and ṙ(t) are respectively defined by:

r(t) = exp[−αω|t |] (α sin(ωt) + cos(ωt)) = R(t)/σ 2
X̃

(47)

ṙ(t) = −
ω2

0

ω
exp[−αω|t |] sin(ωt) = Ṙ(t)/σ 2

X̃
, (48)

where ω = ω0
√

(1 − β2), α = β/
√

(1 − β2) and

A(t) =
exp [−2βω0t]

ω2

×

(
ω2

0 − ω2
0β

2 cos(2ωt) + βω0ω sin(2ωt)
)

(49)
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B(t) =
exp [−2βω0t]

ω2

×

(
ω2

0 − ω2
0β

2 cos(2ωt) − βω0ω sin(2ωt)
)

. (50)

Appendix B

The joint PDF pE (en−1, en, τ ) of the ALS response
envelope E is defined by [18]:

pE (e1, e2, τ ) =
e1e2

B
I0

[
e1e2

B

(
µ2

13 + µ2
14

)1/2
]

× exp

[
−

σ 2
X̃

2B

(
e2

1 + e2
2

)]
(51)

where ei is an envelope value at time ti , τ = t2 − t1, B = σ 4
X̃

−

µ2
13 − µ2

14, µ13 = R(τ ), µ14 = −Ṙ(τ )/ω0 (see Appendix A)
and I0 is the Bessel function of order 0:

I0(x) =
1
π

∫ π

0
e−x cos(t)dt. (52)

When τ = 1/2 f0, Eq. (51) is the joint PDF of two successive

peaks of
∣∣∣X̃(t)

∣∣∣.
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