

In Situ NMR Study of a Cu 3 P Lithium Battery

Alan Wong, Fabrizia Poli, Laure Monconduit, Michel Letellier

▶ To cite this version:

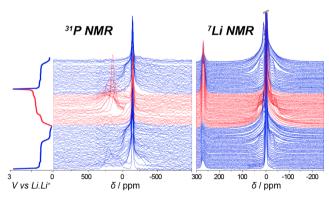
Alan Wong, Fabrizia Poli, Laure Monconduit, Michel Letellier. In Situ NMR Study of a Cu 3 P Lithium Battery. Zing Conference "Developments and Applications od Solid State NMR to Materials Science", May 2016, Varna, Bulgaria. cea-02345999

HAL Id: cea-02345999 https://cea.hal.science/cea-02345999

Submitted on 4 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

In Situ NMR Study of a Cu₃P Lithium Battery


Alan Wong^a*, Fabrizia Poli^b, Laure Monconduit^c, and Michel Letellier^d

a, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette, France

b, Centre de Recherche sur la Matière Divisée, FRE 3520 CNRS, 1b rue de la Férollerie, 45071 Orléans, France

c, Laboratoire des Agrégats Moléculaires et Matériaux Inorganiques, UMR 5072 CNRS, Institut Charles Gerard, Université Montpellier 2 Cedex 05, 34095 Montpellier, France

In a quest for high capacity electrodes for lithium-ion secondary batteries, copper phosphide (Cu₃P) has previously been investigated by in situ (real-time) XRD² as a possible negative electrode and demonstrated its good electrochemical performances.¹ However, the complete electrochemical mechanisms Cu₃P \Rightarrow Li₃P was not completely understood. For example, the expected final phase Li₃P was not detected by XRD. For this reason, different analytical techniques should be considered to obtain complementary information and deduce the mechanism of the electrochemical reaction of Cu₃P with lithium. Moreover, since Cu₃P is a conversion material and that therefore metastable Li_xCu_{3-x}P phases are formed during the potential cycling; consequently, *in situ* characterization is a preferable approach since the electrochemical reactions might evolve when the battery is stopped and dismantled for ex situ analyses.

This study reports a multinuclei in situ NMR spectroscopic characterization of the electrochemical reactions of a Cu₃P electrode towards lithium. Taking advantage of the different nuclear spin characteristics. we have obtained real-time ³¹P and ⁷Li NMR data for а comprehensive understanding of the

electrochemical mechanism during the discharge (Cu₃P→Li₃P) and charge (Li₃P→Cu₃P) processes. The large NMR chemical shift span of ³¹P facilitates the observation of the chemical evolutions of the different lithiated and delithated Li_xCu_{3-x}P phases; whereas the quadrupolar line features in ⁷Li enables the identification of the asymmetric Li sites. These combined NMR data offer an unambiguous identification of four distinct Li_xCu_{3-x}P phases – Li₃P, Li_{0.2}Cu_{2.8}P, Li₂CuP and Cu⁰-intercalated Li₂CuP – and the characterization of their involvements in the electrochemical reactions. The study suggests that the presence of Cu⁰-Li₂CuP in the charge reaction might be responsible for the poor capacity retention in Cu₃P lithium battery when cycles to a 'low' voltage potential.¹

References

1. Stan, MC. et al., Adv. Energy Mat. 2013, 3, 231.

2. Mauvernay, B. et al., J. Phys. Chem. Solids 2006, 67, 1252.