

Mg²⁺ doping effect on ionic conductivity of Li_1,15Zr_1,85Y_0,15(PO_4)_3 Nasicon-type solid electrolyte for all-solid-state lithium ions batteries

Adriana Castillo, Saïd Yagoubi, Olivier Rapaud, Nicolas Pradeilles, Thibault Charpentier, Eddy Foy, Hicham Khodja

▶ To cite this version:

Adriana Castillo, Saïd Yagoubi, Olivier Rapaud, Nicolas Pradeilles, Thibault Charpentier, et al.. Mg^{2+} doping effect on ionic conductivity of Li_1,15Zr_1,85Y_0,15(PO_4)_3 Nasicon-type solid electrolyte for all-solid-state lithium ions batteries. 1rst International Symposium on Solid State Batteries, May 2018, Dübendorf, Switzerland. cea-02340786

HAL Id: cea-02340786 https://cea.hal.science/cea-02340786v1

Submitted on 31 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Mg²⁺ doping effect on ionic conductivity of Li_{1,15}Zr_{1,85}Y_{0,15}(PO₄)₃ Nasicon-type solid electrolyte for all-solidstate lithium ions batteries

Adriana Castillo¹, Saïd Yagoubi¹, Olivier Rapaud², Nicolas Pradeilles², Thibault Charpentier¹, Eddy Foy¹, Hicham Khodja¹

¹ NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif sur Yvette Cedex, France

² IRCER, UMR CNRS 7315, 12 rue Atlantis, 87068 Limoges Cedex, France

Solid electrolytes with Nasicon structure are already envisioned as promising Li⁺ conductive materials for all-solid-state batteries with good chemical stability in ambient atmosphere and wide electrochemical stability window [1] [2] . Li⁺ ionic conductivity of ~10⁻⁴ S/cm at room temperature was achieved for Li_{1,15}Zr_{1,85}Y_{0,15}(PO₄)₃ due to stabilization of better conductive rhombohedral phase (alpha) toward orthorhombic phase (beta) by Y³⁺ doping of Zr sites in the structure [2], [3]. Here we examine the impact of Mg doping and evaluate the potential Li⁺/Mg²⁺ conductivity in these structures for hybrid « Li⁺/Mg²⁺ » all-solid-state batteries, already demonstrated in conventional batteries with liquid electrolyte [4].

Several Mg²⁺ doped Nasicon samples were synthetized by modified Pechini route, and the gels were heated from 350°C to 1200°C under air with intermediate grindings. XRD was used to follow the synthesis and identify the formed phases depending on the doping level. ⁶Li and ³¹P MAS NMR will be used to evaluate the ions sites occupancy on the different samples. Ionic conductivity measurements were done by Electrochemical Impedance Spectroscopy on gold sputtered samples sintered by Spark Plasma Sintering method with high relative density (>95%).

We found that Mg^{2+} doping hinders the alpha phase formation, but at the same time both Li^+ and Mg^{2+} are suspected to contribute to the conductivity in this solid electrolyte material. Further analysis will be held to study the Li^+ and Mg^{2+} diffusions in these materials using post-mortem ion beam analysis on half-cells with Mg metal or Li metal anodes.

- N. K. Anuar, S. B. R. S. Adnan, and N. S. Mohamed, "Characterization of Mg0.5Zr2(PO4)3for potential use as electrolyte in solid state magnesium batteries," *Ceram. Int.*, vol. 40, no. 8 PART B, pp. 13719–13727, 2014.
- [2] H. Xu, S. Wang, H. Wilson, F. Zhao, and A. Manthiram, "Y-Doped NASICON-type LiZr2(PO4)3Solid Electrolytes for Lithium-Metal Batteries," *Chem. Mater.*, vol. 29, no. 17, pp. 7206–7212, 2017.

- [3] Y. Li, M. Liu, K. Liu, and C. A. Wang, "High Li+conduction in NASICON-type Li1+xYxZr2-x(PO4)3at room temperature," *J. Power Sources*, vol. 240, pp. 50–53, 2013.
- [4] Y. Cheng *et al.*, "Rechargeable Mg-Li hybrid batteries: Status and challenges," *J. Mater. Res.*, vol. 31, no. 20, pp. 3125–3141, 2016.

Presenting author:

Adriana Castillo, Email: adriana.castillo@cea.fr

- <u>2015-2018</u>: PhD candidate at NIMBE/ IRAMIS in CEA Saclay, Gif-sur-Yvette, France. Development and study of solid electrolyte materials for all-solid-state batteries.
- <u>2011-2015</u>: Master and bachelor, Grenoble Institute of technology, Grenoble, France.