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Abstract 

 

We combine density functional theory (DFT) formation energies and empirical potential calculations of 

vibrational free energies to calculate the free energies of formation of point defects and clusters of 

oxygen interstitials, and use a dilute defect model to calculate the concentrations of defects as a function 

of temperature and composition. We find that at high temperature oxygen interstitials are dominant, 

either in isolated form or in clusters depending on the deviation from stoichiometry. At temperatures 

lower than 1300 K we predict uranium vacancies to be dominant in the stoichiometric material. The 

disorder in UO2 therefore changes from Schottky  to Frenkel type with increasing temperature. Uranium 

vacancies remain dominant up to deviations form stoichiometry as large as 0.045 at 800 K. Moreover, 

the concentration of uranium vacancies proves to be non-monotonous as a function of composition. 

These results are consistent with some experimental data on the evolution with stoichiometry of lattice 

constant, diffusion coefficients of uranium, positron lifetime and dilatometry measurements.  

  



Introduction 

Uranium oxide is the most widely used nuclear fuel. As such it has been studied extensively both 

experimentally and numerically. This material exhibits a large domain of composition around its nominal 

(UO2) stoichiometry. Deviations from stoichiometry are accommodated by the inclusion of atomic scale 

defects in the crystalline fluorite structure. The historical defect model [1, 2], dealing only with point 

defects, assumes that the intrinsic disorder is of the oxygen Frenkel type, i.e. that isolated oxygen 

vacancies and interstitials are the dominant defects in hypo and hyper-stoichiometric material 

respectively. This picture was further complicated by the observation of clusters of oxygen interstitials in 

UO2+x [3]. However, there is a general consensus on the fact that deviations from stoichiometry in UO2 

are accommodated by oxygen defects. Uranium defects while predicted to exist in the material are 

considered to be minority defects. The main disorder is always explicitly[4, 5] or implicitly[6] assumed to 

be of oxygen Frenkel type. 

Many atomistic calculations of the formation energies of defects exist in literature. The earliest Density 

Functional Theory (DFT) values date back twenty years [7] with many more published since [8-20].  In 

general, the calculated formation energies appear consistent with experimentally observed defect 

concentrations. However, when these values are integrated into a dilute defect model  (for instance 

through a Brouwer diagram), they always predict that uranium vacancies are the most abundant defect 

in the hyperstoichiometric UO2 material[8, 21]. Calculations, therefore, point to the accommodation of 

hyperstoichiometry by uranium vacancies, which is direct contradiction of the dominance of oxygen 

interstitials in UO2+x. Atomic scale calculations, therefore, face what is widely referred to as the uranium 

vacancy problem. This shortcoming was observed in early DFT calculations of defect energetics in UO2 

and has resisted the many subsequent improvements of the calculations (increase of the box sizes, 

introduction of a DFT+U correction,  spin-orbit coupling, etc.). 

Studies on other materials have shown that the inclusion of vibrational entropy can deeply affect the 

relative stability of defects in a material[22-26]. Unfortunately in the UO2 case, such calculations are 

impractical at the DFT level because of the tremendous computational burden they represent.  

In a recent breakthrough Cooper et al [27] combined vibrational calculations performed with empirical 

potentials with DFT energies to estimate the free energies of formation of defects in UO2. They showed 

that because of differences in the vibrational entropies, the uranium vacancies are destabilized at high 

temperature (larger than about 1200 K) compared to isolated oxygen interstitial defects. Unfortunately, 



their study dealt only with point defects and did not consider clusters of oxygen interstitials that are 

known to prevail at large deviations from stoichiometry. Therefore they were unable to discuss large 

deviations from stoichiometry and the respective stability of oxygen clusters and uranium vacancies. In 

the present study, we use the same combination of ab initio energies and vibrational entropies 

calculated with an empirical potential that enables the description of such clusters. Integrating the free 

energies of formation of point defects and clusters in a dilute defect model, we are able to predict the 

concentration of all these defects as a function of stoichiometry. At high temperatures or large 

deviations from stoichiometry oxygen defects are shown to be dominant. We thus confirm that the 

uranium vacancy problem disappears when vibrational contributions are included in the calculation of 

the free energies of formation. More importantly our results point to a complex picture of the 

hyperstoichiometry in UO2+x. Isolated oxygen interstitials, clusters of these and uranium vacancies are 

shown to dominate in three different regimes of compositions and temperature. Moreover, the 

concentration of uranium vacancies proves to be non-monotonous as a function of composition. These 

unexpected results are proved to be consistent with some available experimental data.  

The next part of the paper presents the technicalities of our work, for the ab initio and the harmonic 

calculations and the dilute defect model used to derive the concentrations of defects. The results are 

then presented and discussed.  

Methodology  

DFT formation energies  

We use the formation energies given in our previous publication [21] to which the reader is referred for 

technical details. In summary, energies were calculated within the DFT theory using the VASP code[28] in 

the Projector Augmented Wave framework using a GGA+U functional [29] with a matrix control 

scheme[30, 31] to avoid the possible occurrence of local minima. All calculations were done in 2x2x2 

supercells of the conventional unit cell which contains 96 atoms in the perfect crystal.  

One obtains the formation energies of the defects from the energy of the simulation boxes with the 

following formula:  

 

ΔEf
m,n,q(μe)=E(U32+mO64+n, 𝑞)-

32+m

32
E(U32O64)-

n-2m

2
E(O2)+q(εVBM+μe)+ΔEMadelung (1.) 

 



In this formula, 𝐸(𝑈32𝑂64) is the energy of the perfect supercell and 𝐸(𝑈32+𝑚𝑂64+𝑛, 𝑞) is the energy of 

the box containing a defect with m uranium and n oxygen added or removed atoms and charge q. 𝜇𝑒 is 

the electron chemical potential and εVBM is the energy at the top of the valence band. Finally, 𝐸(𝑂2) is 

the energy of the oxygen molecule in its triplet ground state.  

We have considered the following defects : 

-oxygen vacancies 𝑉𝑂 , uranium vacancies 𝑉𝑈 , oxygen mono interstitials 𝐼𝑂 , and three types of oxygen 

interstitial clusters : 𝐼𝑋
2, 𝐼𝑋

4 and 𝐼𝐶
5 made built from 2, 4 and 5 oxygen interstitials respectively. For the last 

defect charge states were limited from 0 to -4 as higher charge states prove unstable. We also 

considered the hole and electron polarons explicitly by introducing a U5+ or U3+ ion in the supercell. The 

values of the energies obtained with equation (1) are given in appendix A of our previous paper[21].  

 

SMTB-Q vibrational free energies 

 

We calculate the vibrational entropies and the corresponding contributions to the free energies of the 

defects using the SMTB-Q (Second Moment Tight Binding with charge eQuilibration) empirical 

potential[32]. This potential includes a 2nd moment tight-binding formalism for the U-O bonding and a 

Buckingham term for the O-O bonding. The charges on the atoms are equilibrated with the 

Electronegativity Equalization Method (EEM) [33]. The parametrization of this potential is the same as in 

our study on dislocations and plasticity in UO2 [34]. The ability of the SMTB-Q potential to reproduce the 

properties of bulk UO2 is discussed in this previous work. The SMTB-Q potential reproduces accurately 

the reaction energies for intrinsic Frenkel and Schottky defect processes from experiment and DFT, see 

table 1. The binding energies of oxygen interstitial clusters are given per oxygen interstitial in the cluster 

to allow direct comparison of the relative stability of the various clusters. All the defects are taken in 

their neutral state for this comparison. The last column gives the energy gained when 2 isolated oxygen 

interstitials are changed into an additional elementary cell of UO2 containing a uranium vacancy. The 

binding energies of DFT and empirical potentials are rather close and point qualitatively to the same 

trends: energy is gained when isolated interstitials are clustered; 𝐼𝑋
2 are the least stable clusters; the 

maximum energy gain is obtained when forming a uranium vacancy at the expense of oxygen 

interstitials. One difference appears for the relative stability of 𝐼𝑋
4 and 𝐼𝐶

5 (i.e. cuboctahedral) clusters. 

SMTB-Q predicts 𝐼𝐶
5 to be the most stable cluster while DFT calculations predict the opposite consistently 

with former comparable DFT calculations [13]. Note, however, that the 𝐼𝑋
4 cluster has not been observed 



experimentally while the cuboctahedral cluster is the building block of the U4O9 crystalline structure. We 

believe there may be an issue in the DFT calculations possibly associated with the limited supercell size, 

as evidenced by Burr and Cooper [20] for the tri-vacancy defects in the same material.  

 

Table 1: Defect energies calculated with the SMTB-Q potential, comparison with experimental values, 

DFT, and CRG  results. 

 

 Reaction energies (eV) Migration energies (eV) 

Defect  FPO Schottky Trio  OI VO 

SMTB-Q 4.25 5.23  1.02 0.36 

CRG[35] 5.73 10.64    

Exp. [4, 5, 36-40] 3.0 – 4.6
 

6.0 – 7.0
  

0.67–1.3
 

0.38 – 0.6
 

DFT [12, 18, 41] 2.6 – 4.2 3.9 – 6.4  1.14 0.38 

      

 

Binding energies  Per oxygen (eV)  

 𝐼𝑋
2 𝐼𝑋

4 𝐼𝐶
5  𝑉𝑈   

DFT[21] -0.20 -0.83 -0.78 -0.97 
 

SMTB-Q 0.01 -0.63 -0.81 -1.64  

 

The vibrational contributions to entropy  (𝑆𝑣𝑖𝑏
𝑚,𝑛) and free energy (𝐹𝑣𝑖𝑏

𝑚,𝑛) are calculated in the harmonic 

approximation [42]. We make use of the PHONDY (PHONon DYynamics) code developed by Marinica et 

al. [24, 43]. The phonon frequencies of the system are obtained from the diagonalization of the 

dynamical matrix in 5×5×5 perfect or defective supercells. The phonon density of states (DOS) for perfect 

uranium oxide, calculated  in a 10×10×10 supercells, is shown in Figure 1. In this figure one also shows 

the neutron weighted phonons density of states which is compared to recent inelastic neutron scattering 

experiments. The calculated Neutron-Weighted density of states agree reasonably well with 

experiments, especially for the lowest frequencies which contribute the most to vibrational entropy. 

A variable charge potential, based on the EEM principles, cannot reproduce the insulating gap of solids 

and subsequently cannot distinguish between the different defect charge states. The same entropy is, 

therefore, attributed to all possible charges for a given defect. The SMTB-Q empirical potential is also 

unable to describe polaronic defects. We, therefore, neglect the vibrational entropy contribution to the 

free energy of the polarons. 



 

 

Figure 1 :Phonon density of states calculated with SMTB-Q (in red), neutron weighted phonon density of 

states calculated with SMTB-Q  (in blue) compared to experiments extracted from Pang et al[44].  

 

Dilute defect model 

From the formation energies (Eq 1.) and vibrational free energies of the defects one can calculate the 

formation free energy of a given defect by the following formula: 

ΔFf
m,n,q(μe)=ΔEf

m,n,q(μe)+ Δ𝐹𝑓−𝑣𝑖𝑏
𝑚,𝑛 -

n-2m

2
𝐹(O2)  (2.) 

In this formula Δ𝐹𝑓−𝑣𝑖𝑏
𝑚,𝑛  is the vibrational part of the free energy of formation calculated as : 

Δ𝐹𝑓−𝑣𝑖𝑏
𝑚,𝑛 = 𝐹𝑣𝑖𝑏

𝑚,𝑛-
32+m

32
𝐹𝑣𝑖𝑏(U32O64)  (3.) 

(one also defines Δ𝑆𝑓−𝑣𝑖𝑏
𝑚,𝑛 with an equivalent formula). 

𝐹(O2) is the free energy of the oxygen gas beyond its internal energy term calculated by DFT (see 

above). It contains a pressure term, and additional terms corresponding to rotational, translational and 

vibrational entropies. We use the formula by Kröger[45]. 

The concentration of defect 𝑋𝑞
𝑚,𝑛 expressed in number of defects per unit cell is then : 

[𝑋𝑞
𝑚,𝑛] = 𝑀𝑛,𝑝exp (−

ΔFf
m,n,q(μe)

𝑘𝐵𝑇
) (4.) 

𝑀𝑛,𝑝 is the multiplicity of the defect (m,n) per unit cell. This multiplicity gives the configurational entropy 

term and is the product of the number of sites in the unit cell and the number of equivalent ways to 



arrange the atoms to form the defect in each site. At this point the Fermi level remains to be specified. 

For a given pressure and temperature, it is deduced from the electro-neutrality condition which involves  

the concentrations of defects and the one of holes and electrons in the valence and conduction bands 

respectively. One finally obtains, as a function of the oxygen pressure and temperature, the 

concentration of each defect (including holes, electrons and polarons) and the deviation from 

stoichiometry x. In the next section we present the results obtained in the hyperstoichiometric regime at 

various temperatures. We focus on the concentration of the various defects. We also show the variation 

of the the macroscopic length (L/L) of a sample as a function of its stoichiometry which depends on the 

formation volumes of the defects as : 

δL

L
=

1

3
(∑ [Xq

m,n]X,q

𝑉
Xq

m,n
𝑟𝑒𝑙

𝑉𝑢.𝑐.
+ ∑ [VU,q]𝑉𝑈,𝑞

)   (5.) 

In this equations 𝑉𝑢.𝑐.is the volume of the unit cell of UO2 and the 𝑉Xq

𝑟𝑒𝑙 are the relaxation volumes of the 

defects, i.e. the variation of the supercell volume upon introduction of the defect. The calculation of 

these volumes is a non-trivial task as raw pressures obtained in ab initio calculations are meaningless for 

charged cells [46]. In equation (5) the first term of the right hand side if the variation of the unit cell of 

the material (a/a) and the second term corresponds to the variation of the number of unit cell induced 

by the creation of uranium vacancies. Indeed we consider equilibrium between UO2 and an oxygen gas, 

introducing a uranium vacancy requires the creation of an additional unit cell of UO2.  

Results 

The values of Δ𝐹𝑓−𝑣𝑖𝑏
𝑚,𝑛   for the point defects are given in Table 2 for various temperatures.  

 

Table 2 : Vibrational contribution to the free energy of formation of defects 𝛥𝐹𝑓−𝑣𝑖𝑏
𝑚,𝑛  (eV) calculated with 

the SMTB-Q potential (see Eq. 3).  

 𝑉𝑂  𝐼𝑂  𝐼𝑋
2 𝐼𝑋

4 𝐼𝐶
5 𝑉𝑈  

400 K -0.11 -0.14 -0.31 -0.60 -0.54 -0.08 

700 K -0.08 -0.35 -0.75 -1.47 -1.48 -0.02 

1000 K -0.02 -0.60 -1.26 -2.48 -2.59 0.08 

1300 K 0.07 -0.87 -1.81 -3.57 -3.81 0.19 

1600 K 0.17 -1.16 -2.40 -4.75 -5.14 0.32 

1900 K 0.29 -1.46 -3.02 -5.97 -6.51 0.47 

 



Figure 2  shows the formation entropy of hyperstoichiometric defects divided by the number of oxygen 

interstitials they amount to. One then observes that the formation entropy of the clusters of oxygen 

interstitials are close to each other while the entropy of uranium vacancies is about 4 kB per OI smaller at 

all temperatures. This indicates that oxygen interstitials will be favored over uranium vacancies, 

especially at high temperature where the contribution of entropy to the formation free energy is 

important.  

 

Figure 2 : Formation entropy of hyperstoichiometric defects from SMTB-Q calculations. The entropy 

𝛥𝑆𝑓−𝑣𝑖𝑏
𝑚,𝑛  are divided by the number of oxygen interstitials they contain or amount to. 

 

We now describe the results obtained with the dilute model for the concentrations of defects. In the 

hypostoichiometric regime (UO2-x, not shown), as expected, the deviation from stoichiometry is 

accommodated by oxygen vacancies. For the stoichiometric material (figure 3), at temperatures lower 

than 1300 K we predict uranium vacancies to be dominant. For larger temperatures, isolated interstitials 

take over and become dominant. In the hyperstoichiometric material, one can note that the nature of 

the dominant defect changes with temperature and stoichiometry (figure 3). At low temperatures (e.g. 

700 K), uranium vacancies are dominating at all deviations from stoichiometry. At these temperatures, 

entropy contributions are small and one finds the same results as in the calculations with DFT energies 

only [16, 21]. With increasing temperature, the uranium vacancies become destabilized relative to 



oxygen interstitials. Around 1000 K uranium vacancies still dominate at small x while interstitials clusters 

take over above x=0.02. At 1300 K oxygen mono-interstitials and uranium vacancies appear to coexist 

with comparable concentrations while clusters become rapidly dominant (at x larger than 0.01). Finally 

at 1600 K, the hyperstoichiometry is accommodated by mono interstitials and interstitial clusters. One 

can note the non-monotonous evolution of the concentration of uranium vacancies: except at 700 K 

where they always dominate, their concentration increase with x close to perfect stoichiometry then 

decreases with x at large hyperstoichiometry.  

 

 

Figure 3: Concentrations of defects as a function of x in UO2+x for different temperatures. Note that 

uranium vacancies (resp. oxygen interstitials) are dominant at low (resp. high) temperatures. For clarity, 

we only report the total concentration for each defect where all the possible charge states have been 

summed up.  



Discussion 

Our calculations confirm the results of Copper et al [47]. Dealing only with point defects, they have 

shown that including the vibrational free energies of defects stabilizes the oxygen mono-interstitials 

respective to the uranium vacancies. We obtain qualitatively close results when restricting our defect 

database of energy and entropy values to point defects only (Oi,VO, VU). It is interesting to note that 

uranium oxide has long been presented as the prototype of Frenkel disorder (with a majority of VO and 

OI) material. Our calculations contradict this too simple picture and suggest that the nature of the 

disorder in UO2 changes from Schottky (with a majority of VU and VO) to Frenkel type with increasing 

temperature. 

The inclusion of clusters of oxygen interstitials allows us to explore large deviations from stoichiometry. 

One then obtains that clusters become dominant at large deviations from stoichiometry for all 

temperatures. Our results on UO2+x can be summarized with a diagram indicating which defect is 

dominant as a function of temperature and stoichiometry (see Figure 4). In this figure, not all 

compositions are accessible. Indeed the domain of existence of UO2+x is limited at low temperatures: a 

miscibility gap appears between U4O9 and UO2+x at temperatures lower than 1400 K.  This phase limit 

cannot be obtained from our modeling which describes only UO2+x. We resorted to the thermodynamical 

Calphad modeling of Guenau et al. [48] to draw the miscibility gap indicated by a shaded area in 4.  For x 

and T in this area the thermodynamically stable material is a mixture of U4O9 and less 

hyperstoichiometric UO2.  

 

Figure 4: Dominant defect as a function of temperature and deviation from stoichiometry (x) in UO2+x ; 

The shaded area indicates the miscibility gap[48] between UO2 and U4O9  (inaccessible compositions). 



 

At high temperature, our results show that oxygen interstitials dominate in their isolated form at small 

hyperstoichiometries while clusters predominate far from perfect stoichiometry. The change from 

isolated to clustered interstitials takes place at increasing values of x with rising temperature. This is 

expected as high temperature favors isolated defects over clusters because of configurational entropy.  

Results at lower temperature are more surprising. They indicate a rather large domain of temperature 

and compositions where uranium vacancies dominate. Even if this domain is restricted by the limit of 

existence of the UO2+x phase, we predict uranium vacancies to be the majority defects at temperatures 

as high as 1300 K and for deviations from stoichiometry as large as 0.045 around 800 K. This prediction 

contradicts the widely accepted picture of the defect chemistry of UO2+x. It is indeed commonly thought 

that hyperstoichiometry is always accommodated by oxygen interstitials. The experimental facts 

underlying this assertion are the observed higher density of U4O9 compared to UO2 [49, 50] and the 

neutron observations of clusters of oxygen interstitials [51]. In the latter Willis compares the absolute 

Bragg intensities of U02 and U4O9 and states that “there is no evidence for the formation of uranium 

vacancies on oxidation. The uranium sublattice remains intact between UO2.00 and UO2.25, and oxidation 

proceeds by the incorporation of additional oxygen atoms at interstitial sites in the fluorite cell.” It is 

worth noting  however that these experiments were performed either in the two phase region of the 

phase diagram where one in fact has a mixture of UO2+x and U4O9 phases or at high temperature. They 

do not contradict our suggestion of the occurrence of a region at low temperature and small deviations 

from stoichiometry where uranium vacancies are the dominant defects. 

Moreover, there is at least one experiment clearly supporting the existence of uranium vacancies in 

UO2+x. Desgranges et al. [52] measured the expansion of a single crystal as a function of p(O2) at 1473 K 

by dilatometry experiments and found that UO2+x first expands at low oxygen pressure (low x) then 

contracts at large pressure (i.e. large hyperstoichiometry). A similar behavior is found at intermediate 

temperatures in our calculations. Figure 5 shows the elongation of UO2+x as a function of x at various 

temperatures obtained from Equation 5. This expansion then contraction is a clear sign of a large 

concentration of uranium vacancies in slightly hyperstoichiometric UO2. Unfortunately, Desgranges et al. 

results are difficult to compare quantitatively with our results as their samples contained a large amount 

of impurities thus blurring the p(O2)-x relationship in their experiments[53]. We believe it would be 

interesting to perform additional experiments of this kind to check our prediction about uranium 

vacancies being the dominant defect in UO2+x at low and intermediate temperatures (below 1200 K) and 

moderate deviations from stoichiometry. 



 

Figure 5: Elongation of UO2+x relative to stoichiometric UO2 as a function of x for different temperatures. 

 

Another unexpected result from our simulations appears in the high temperature regime when oxygen 

clusters are dominant. Far from stoichiometry one can observe that concentration of uranium vacancies 

is decreasing. Simple arguments would suggest that the larger the deviation from stoichiometry is, the 

larger the concentration of uranium vacancies should be. This is in fact not the case because of the 

charge of these vacancies and of the evolution of the Fermi level. Hyperstoichiometric defects, such as 

the dominant oxygen interstitials clusters have negative to neutral charges. As their concentrations 

increases, more and more hole polarons appear in the material to compensate their charge. This induces 

a decrease of the Fermi level which is shifted towards the valence band (more precisely towards the 

polaronic defect level in the gap). Charge transition levels of the uranium vacancies are such that they 

always have their formal charge (-4) whatever the position of the Fermi level in the gap. Decreasing the 

Fermi level thus induces an increase of their formation energy (see equation 1) which in turn leads to a 

decrease in their concentration. Some experimental observations tend to confirm this non-monotonous 

evolution of the uranium vacancy concentrations. 

First positron lifetime measurements carried out by Yue[54] for four well controlled compositions 

(x=0.002, 0.042, 0.16, 0.21) showed an increase then a decrease of the lifetime of positrons (167, 265, 

256, 171 ps) as a function of x. Positron lifetimes relate monotonously to the concentration of vacancies 

in a material. In UO2+x only uranium vacancies are significant, therefore, one can then deduce 

qualitatively from these experiments that the concentration of uranium vacancies increases then 

decreases with increasing hyperstoichiometry, as predicted in our calculations. Second, another hint of a 



possible decrease of the concentration of uranium vacancies at large x is given by the self-diffusion 

coefficients of uranium in hyperstoichiometric uranium oxide which is mediated by uranium vacancies. 

The measured diffusion coefficient scales as the product of the vacancy concentration by the jump 

frequency of each vacancy. Experimentally, one observes a general increase of the diffusion coefficient 

with the deviation from stoichiometry. However, at least one experiment by Hawkins et al [55] shows a 

final drop of the diffusion at the largest measured hyperstoichiometries for two temperatures. Assuming 

a constant jump frequency, such a reduction points to a final decrease of the concentrations of uranium 

vacancies in largely hyperstoichiometric oxide, in qualitative agreement with our calculations. 

Both these experiments are thus consistent with a decrease of the concentration of uranium vacancies at 

large deviations from stoichiometry. They point however to a larger value of x for the maximum amount 

of uranium vacancies, somewhere around x=0.1 when we predict a maximum for around 0.01. This 

difference may seem large, but it corresponds in the Brouwer diagram to a quite moderate change in the 

chemical potential of oxygen of only 0.3 eV or equivalently one order of magnitude in the oxygen 

pressure. 

Additional experimental confirmation of the non-monotonous evolution with stoichiometry of the 

concentration of uranium vacancies would validate our calculations as a whole and thus the prediction of 

a (temperature-stoichiometry) regime where uranium vacancies are dominant. 

Conclusions 

Our calculations exhibit a change in the nature of disorder in UO2 from Schottky  to Frenkel type with 

increasing temperature. They also point to a quite complex accommodation of hyperstoichiometry in 

UO2+x. At low deviations from stoichiometry isolated interstitials are the dominant defect. Conversely 

large deviations from stoichiometry are accommodated by clusters of oxygen interstitials. However,  

strikingly, at temperatures lower than 1300 K we predict uranium vacancies to be dominant up to 

deviations form stoichiometry as large as 0.045 at 800 K. The actual existence of such majority uranium 

vacancies may be hampered by the much slower diffusivity of uranium compared to oxygen so that the 

true thermodynamic equilibrium may be difficult to observe for kinetic reasons. However, some 

experimental observations indicate that uranium vacancies may be present in non-negligible 

concentrations in hyperstoichiometric UO2 and that the predicted non-monotonous evolution of their 

concentration may be observed experimentally. We hope this simulation work will stimulate further 



experiments, possibly dilatometry or diffusion measurements, to assess the actual concentration of 

uranium vacancies in moderately hyperstoichiometric uranium oxide at intermediate temperatures. 
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