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Insight of the metal-ligand interaction in f elements complexes by 

paramagnetic NMR spectroscopy 

Matthieu Autillo,[a] Laetitia Guerin,[a] Thomas Dumas,[a] Mikhail S. Grigoriev,[d] Alexandre M. 

Fedoseev,[d] Sebastiano Cammelli,[c] Pier Lorenzo Solari,[c] Dominique Guillaumont,[a] Philippe 

Guilbaud,[a] Philippe Moisy,[a] Hélène Bolvin,*[b] and Claude Berthon*[a] 

 

Abstract: The magnetic properties of Ln(III) and An(III) complexes 

formed with dipicolinate ligands have been studied by NMR 

spectroscopy. To know precisely the geometry of these complexes, 

a crystallographic study by single-crystal X-Ray Diffraction (XRD) 

and by Extended X-Ray Absorption Fine Structure (EXAFS) in 

solution was performed. Several separation methods of 

paramagnetic shifts observed on the NMR spectra were applied to 

these complexes. Methods using several nuclei of the dipicolinate 

ligands revealed an abrupt change in the geometry of the complexes 

and a metal-ligand interaction in the middle of the lanthanide series. 

The study of paramagnetic shifts with temperature demonstrated 

that higher order terms in the dipolar and contact contributions are 

required especially for the lightest Ln(III) cations and almost all 

studied An(III). The Bleaney’s parameters <Sz>a and   
  related to 

the contact and dipolar terms respectively were deduced from 

experimental data and compared to ab-initio calculations. A quite 

good agreement is found for <Sz>a and   
  temperature 

dependences. However   
  values obtained from cation magnetic 

anisotropy calculations lead to some differences with Bleaney 

equations defined for Ln(III). Other parameters such the crystal field 

parameter and the hyperfine constants Fi obtained from 

experimental data with [An(ethyl-DPA)3]
3-
 complexes are at odds 

with assumptions underlying Bleaney’s theory.  

1. Introduction 

The chemistry of actinide elements in solution has been the 

subject of many studies, particularly in order to understand the 

behavior difference between actinides and lanthanide elements 

in oxidation state +III (noted An(III) and Ln(III) respectively). 

These researches, carried out as part of nuclear fuel recycling, 

have led to attribute this difference to a higher covalent 

character in the actinide complex formation.[1] Despite numerous 

efforts to prove and quantify this phenomenon, it remains difficult 

to clearly interpret the chemical properties of these elements in 

solution. The study of the actinides paramagnetic behavior can 

be a "simple" method to analyze their electronic properties and 

to obtain information on the ligand-actinide interaction. 

The paramagnetic properties of Ln(III) cations have been 

extensively studied by NMR spectroscopy.[2] The presence of a 

paramagnetic ion in a coordination complex induces an 

additional chemical shifts and line broadening. This feature 

depends both on the nature of the paramagnetic element and on 

the observed nucleus by NMR. The induced chemical shift is 

exploited to perform structural analysis of Ln(III) complexes so 

that the paramagnetic element is also known as paramagnetic 

probe.[2b, 3] The experimental chemical shift (Δtot)i,a for the 

observed nucleus i of a ligand in a complex with a lanthanide a 

arises from three independent contributions: i) a contribution 

related to the sample magnetic susceptibility (δbulk)a, ii) a 

diamagnetic contribution (δdia)i,a and iii) a paramagnetic 

contribution (δpara)i,a and therefore it can be written as: 

(Δ        (        (         (          

The contribution due to the sample magnetic susceptibility 

(δbulk)a affects all nuclei in an identical manner and is usually 

overcome by introducing an internal reference in the medium for 

which the characteristic signal undergoes a similar shift to the 

studied complex. 

The diamagnetic contribution (δdia)i,a arises from the 

redistribution of the electron density within the ligand after the 

complexation with Ln(III) ion. It is generally low compared to the 

paramagnetic shifts and can be considered negligible in many 

cases with the exception of close or directly linked nuclei to the 

Ln(III) ion.[4] However, this component can be easily estimated 

by measuring the experimental chemical shift of a nucleus i for 

an isostructural diamagnetic complex. In the case of lanthanide 

complexes, analogs compounds of La(III) or Lu(III) will be used 

assuming that this term is identical for all the other lanthanides. 

This assumption seems reasonable because the chemical shifts 

induced by lanthanum (lightest) and lutetium (heaviest) are 

generally very similar.[5] For the An(III) cations, isostructural 

compounds of La(III) and Lu(III) will be also used to overcome 

the unfeasibility to analyze Ac(III) complexes.  

The paramagnetic contribution (δpara)i,a is due to the 

interaction between the electronic magnetic moment of the metal 

center a and the nuclear spins i of the ligand. It is the sum of two 

components: 
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- a contact component (δc)I,a related to the delocalization of 

the spin density of the paramagnetic cation a towards the 

nucleus i through the chemical bond; 

- a dipolar or pseudocontact component (δpc)i,a associated 

with the through-space dipolar interaction between the electronic 

and the nuclear magnetic moments of the paramagnetic center a 

and the nucleus i.  

After subtracting the diamagnetic contribution and the 

contribution due to the sample magnetic susceptibility, the 

paramagnetic chemical shift (δpara)i,a for a nucleus i and a 

lanthanide a can be expressed as:  

          
 (         (        (          

       
   

         
 (       

Then, components (δc)i,a and (δpc)i,a may be expressed as the 

product of several terms related to the lanthanide ion a and the 

nucleus i according to the equation: 

          
     

       
           

where   
      is the axial ligand field parameter of 2nd order, 

  
  is a magnetic constant at a given temperature (also called 

dipolar coupling) which measures the axial magnetic anisotropy 

of a paramagnetic ion (a) (calculated by Bleaney for Ln3+),[6]    is 

proportional to the electron-nucleus hyperfine coupling constant 
 

         (expressed in MHz) and       is the thermal 

average of the electron spin magnetization along the external 

magnetic field (calculated for Ln3+).[7] Finally,    is the geometric 

factor of the nucleus of interest containing complex structural 

information. In the case of a cylindrical symmetry, it can be 

defined by the following equation: 

   
         

  
   

where ri is the Ln-nucleus i distance and θi is the angle between 

the Ln-nucleus i vector and the main axis of the magnetic 

susceptibility tensor.  

Eq. (4) is based upon a series of assumptions made by Bleaney 

that have been scrutinized up until recently.[8] Within this 

approach, the magnetic moment of the unpaired electrons is 

approximated by a point dipole at the metal position, the 

magnetic anisotropy axis aligns along the main molecular Cn 

axis, the ligand field splitting is much less than kT (200 cm-1 at 

room temperature) and the contribution of ligand field at higher 

order terms are ignored. From these two latter assumptions, it 

comes out the total angular momentum of the cation J is 

implicitly supposed to be a good quantum number so that the 

Bleaney’s constant    
  only depends on the cation a and not on 

the ligand. Since its application over more than 40 years, it is still 

difficult to find out why NMR studies with some lanthanides 

complexes are consistent with these simplifications[9] while 

others not[10] [11]. Albeit Bleaney’s theory effectiveness could 

appear lower than recent quantum mechanical treatments[12] we 

have undertaken to evaluate to what extent the ligand field could 

skew the Bleaney’s theory using An(III) instead of Ln(III) with 

2,6-dipicolinic acid (DPA). Due to the larger radial extent of 5f 

orbitals than 4f ones, a larger covalence and ligand field effects 

are expected so that the applicability or validity of Bleaney’s 

equation may be questioned. It also could be an opportunity to 

get a better insight on covalent behavior of An/Ln cations 

through Bleaney’s parameters. 

In order to determine the covalent part in the coordination bonds 

and to characterize three-dimensional structure of actinide 

complexes in solution, the major difficulty is to separate the two 

contributions (δc)i,a and (δpc)i,a of the paramagnetic chemical shift 

(δpara)i,a. Various separation techniques have been evaluated by 

Reilley[3f] in 1976 for Ln(III) cations. Several methods consider 

either a pure dipolar or a pure contact[13] chemical shift while 

other ones exploit their temperature dependence.[3c, 3f] A more 

stringent method is to evaluate data for different Ln(III) across 

an isostructural series by using the tabulated lanthanide 

constants       and   
 .[3d, 3g, 3h, 5, 14] Unfortunately these 

constants do not exist for the An(III) series and it would be of 

interest to evaluate them. By comparing with those of the Ln 

series these parameters could be relevant as a covalency scale, 

assuming the Bleaney’s theory still applicable. 

In this work, several methods are applied to the study of Ln(III) 

and An(III) complexes with ethyl-DPA ligand (Scheme 1). This 

ligand provides more 13C and 1H NMR signals far from the 

paramagnetic center than the commercial DPA. However the 

ethyl group is flexible, so structural information gained from XRD 

at solid state would not be representative from NMR 

conformations in liquid state. For this reason XRD studies were 

performed on Ln(III) and An(III) DPA ligand. 

N

OH

OO

OH

CH3

 

Scheme 1. Ethyl-DPA ligand (4-ethyl-2,6-dipicolinic acid). 

Like the Ln(III), An(III) ions form stable 1:3 complexes with the 

DPA ligand leading to rigid structures in solution. Thus, these 

An(III) compounds can be isolated and their structure 

determined by XRD in solid state and EXAFS in solution. This 

ensures the structural information from solid state is proper for 

NMR analysis in solution. A complete crystallographic study has 

been first performed and we have secondly checked the 

structure is kept the same along the series. Then, based on 

several separation methods of experimental data and the 

contribution of quantum chemical calculations, terms only 

depending on the An(III) cations in the Eq. (4) have been 

determined and discussed. 

2. Results and Discussion 

2.1. Structural study 

In solid state, the compounds Ln/An(DPA)3(C3H5N2)3•3H2O (Ln 

= La - Lu and An = Pu, Am) are isostructural along the series  

and crystallize in a triclinic space group     (refer to SI and cif 

files). The coordination sphere contains three DPA ligands 

forming a tricapped trigonal distorted prism. Each ligand is 

tridentate and coordinated to the Ln(III) / An(III) cation by the 

nitrogen atom of the pyridine cycle (capped position) and the two 
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(3) 

(4) 
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oxygen atoms of the carboxylate groups (prism position). The 

charge compensation of the anionic complexes is provided by 

three imidazolium cations and three water molecules are 

included into the structure (crystallographic data and structure 

determination details are given in Table S8). 

 

Since the Ln(III) and An(III) complexes are isostructural with a 

coordination number of 9, one may analyze the influence of the 

4f/5f orbitals in the bonding between the metal ion and the 

ligands. First, Ln/An - O and Ln/An - N bond lengths decrease 

along the lanthanide and actinide series accordingly to the 

decrease in ionic radius (Figure 1). It is noteworthy that 

Am(III) - N and Am(III) - O distances found in literature for DPA 

compounds are in agreement with our X-ray results.[15] While the 

curves for An(III) - O and Ln(III) - O place on the top of each 

other the curve for An(III) - N lies below than for Ln(III) - N. 

Hence nitrogenous bonds are more sensitive to An/Ln 

differences than the carboxylate group. For a given ionic radius, 

the shorter the distance the more covalent character the bond is. 

This has already been observed in other series of isostructural 

complexes.[16] This observation is often attributed to a larger 

degree of covalence for the actinide cations and related to ligand 

selectivity. 

 

 

Figure 1: Bond length M – O and M – N of the coordinating atoms in 

M(DPA)3(C3H5N2)3•3H2O versus the ionic radius for M=Pu(III), Am(III) from this 

work and from Cary et al. 
[15]

 for Cm(III). The ionic radii have been determined 

by D’Angelo et al. for Ln(III) cations
[17]

 and by David et al. for An(III) cations.
[18]

 

EXAFS spectra were recorded at the LIII edge of Pr(III), Dy(III) 

and Yb(III) to ensure the crystallographic structure conservation 

(stoichiometry and bond length in the coordination sphere) along 

the series of the dipicolinate complexes in solution (DMSO). The 

spectra and the corresponding Fourier transforms are presented 

in Supporting Information (SI hereafter). The diffusion paths 

have been calculated with the FEFF program[19] from the 

crystallographic data of Ln(DPA)3(C3H5N2)3•3H2O compounds. 

The parameters of the experimental spectra adjustment 

procedure, described in experimental section are presented in 

SI. The Fourier transform shows a dominant peak from the 

contribution of oxygen (OI) and nitrogen (N) of the first 

coordination sphere followed by three peaks of lower amplitude 

corresponding to successively carbon atoms of carboxylate 

group (CI), pyridine ring (CII) and the second oxygen atom of the 

carboxylate group (OII) (Figure 2). By comparing the results 

obtained by monocrystal XRD and EXAFS fitting, we confirm 

that the structure of Ln(III) complexes is stable in DMSO 

solution. Based on these results, it can be considered that the 

crystallographic structure of the An(ethyl-DPA)3
3- complexes is 

maintained in solution. To confirm this hypothesis, this study 

was extended to the actinide elements. However, for 

plutonium(III), a rapid oxidation occurs under X-ray 

measurements. The acquisition of statistically satisfactory 

EXAFS data has therefore been carried out on Am(III) complex. 

The EXAFS spectrum obtained at LIII edge of americium and the 

corresponding Fourier transform are shown in Figure 2. The 

simple and scattering paths have been calculated on the basis 

of the crystallographic data of Am(DPA)3(C3H5N2)3•3H2O 

compound and parameters of the spectra adjustment procedure 

are summarized in SI with comparison to XRD metric 

parameters. 

The agreement between the X-ray crystallographic and EXAFS 

results in DMSO solution validates the use of the 

crystallographic structure of Ln(III) and An(III) complexes to 

calculate the structural parameters.  

 

 

 

Figure 2. EXAFS experimental (solid line) spectra of [Am(ethyl-DPA)3]
3-

 in 

solution (a) and the corresponding Fourier transform (b). The best fit is 

represented with red circles. 

No crystal structures are available for [Ln/An(ethyl-DPA)3]
3- 

complexes and structural information on the ethyl chain nuclei of 

the ligand are not available. As mentioned above, the ethyl chain 

is highly moveable in solution and the crystalline organization of 

a solid compound would not be representative of these 

movements. To approach an average position of the ligand in 

solution, a sampling of ethyl chain positions was performed by 

Molecular Dynamics (MD) calculations based on the crystal 

structures of Ln/An(DPA)3(C3H5N2)3•3H2O: The Ln(III) and An(III) 

cations surrounded by the DPA ligand were kept motionless all 

along the simulation in agreement with the XRD and EXAFS first 

shell structure. Only the ethyl chain was considered mobile in 

order to extract structural information ( and r, see Eq (5)) 
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averaged over 5000 snapshots from MD trajectories. Regarding 

Cm(III) and Cf(III) complexes of ethyl-DPA, MD calculations 

were performed from published An(HDPA)3•H2O XRD data[15].  

and  enantiomers lead to very similar structural parameters 

(see Table S5). As Cary et al. mentioned we observed that co-

crystallized water molecules induce distortions for one of the 

three DPA into the enantiomers. Strained DPA were excluded 

from Gi calculations.  

 

2.2. 1H and 13C paramagnetic shift study 

1H and 13C NMR spectra of [Ln/An(ethyl-DPA)3]
3- were obtained 

in DMSO-d6 solution. The paramagnetic induced shift of Ln(III) 

and An(III) cations were deduced using the complex [La(ethyl-

DPA)3]
3- as diamagnetic reference. A summary of the chemical 

shift values are given in SI (Table S2) at room temperature. The 
13C signals of the Cm(III) complex were not observed due to the 

important line broadening induced by this cation associated with 

the low radioactive element concentration. 

The different methods commonly used with Ln(III) complexes to 

separate the contact and dipolar contributions have been 

applied to An(III) compounds. Isostructurality, field ligand and 

hyperfine coupling constancy along Ln(III) and An(III) cation 

series are valuable information that can be deduced. Bleaney’s 

constants       and   
  will be deduced hereafter from 

temperature experiments. 

Paramagnetic shift vs. geometric term: 

For the 1H NMR spectra of organic molecules, shifts induced by 

paramagnetic lanthanides are generally assigned to the dipolar 

interaction with the exception of aromatic systems.[2a] For this 

reason, contact contributions are expected in the proton 

chemical shifts of the ethyl-DPA owing to the pyridine cycle. 

Nevertheless, protons of the ethyl group branched on the 

pyridine are far away from the paramagnetic center (5 bonds 

away) and then are assumed to have a negligible contact 

contribution. In this case, the 2nd term of Eq. (4) disappears and 

the ratio between the shifts of two 1H nuclei (i and j) in the 

sample complex simplifies to the ratio of the geometrical factors: 

       
   

       
   

 
    

       
 

    
       

  
  

  
      

Table 1 compares these ratio     deduced from chemical shifts 

and from geometrical parameters for Ln(III) and An(III) ethyl-

DPA complexes. Geometrical factors       are deduced from 

crystallographic data and molecular dynamic calculations while 

paramagnetic chemical shifts            
          

  are obtained at 

298K in DMSO-d6. 

Table 1. Ratios of Eq. (6) between geometric factors deduced from structural 

data (H3) and molecular dynamic calculations (H5 and H6) for La, Ce, ,Pr, Nd, 

Dy, Er, Yb, Pu and Am complexes), and between proton paramagnetic shifts at 

298K of [Ln/An(ethyl-DPA)3]
3- complexes. Ratios are given for two pairs of 

protons H3-H6 and H5-H6 as labelled Scheme 1. 

    
   

           
         

     
   

           
         

  

Ce 

2.16 
±0.01 

2.4 

1.27 ±0.01 

1.0 
Pr 2.5 0.9 
Nd 3.8 -0.1 
Sm 1.9 1.7 
Eu 4.1 0.1 
Tb 2.0 1.5 
Dy 2.0 1.5 
Ho 2.1 1.5 
Er 2.5 1.1 
Tm 2.3 1.3 
Yb 2.3 1.3 

Pu 
2.11 

±0.03 

18.0 

1.27 ±0.01 

26.7 
Am -5.2 -13.3 
Cm

 
2.2 1.5 

Cf
 

-4.2 -9.3 

The results obtained for the Ln(III) complexes are different along 

the series. First, for the first half of the series (from Ce(III) to 

Eu(III)), a significant difference between the geometric factors 

ratios and the chemical shifts ratios is observed. This suggests 

that a contact term appears up to six bonds from the 

paramagnetic center or that Eq. (4) does not properly describe 

the dipolar contribution. Conversely, a better agreement is found 

for the cations of the second part (from Tb(III) to Yb(III)) 

suggesting a low contact contribution. We can imagine that 

either a slight conformational change occurs in the middle of the 

Ln(III) series or that the increasing J (total angular momentum 

quantum number) value toward the end of the series makes the 

dipolar contribution greater and then less sensitive to the contact 

contribution. 

Regarding An(III) cations, higher modifications are found 

between the calculated geometric and the experimental 

chemical shifts ratios. These deviations seem to show that a 

significant contact contribution is extended up to 6 bonds from 

the paramagnetic center for An(III) cations with An = Pu, Am and 

Cf. This can be related to a larger covalence which was 

otherwise observed through 15N NMR experiments[20]. On the 

contrary, the experimental chemical shifts ratios are close to the 

theoretical ratios for Cm(III) pointing out the observed 

paramagnetic chemical shifts are mainly dipolar for this cation. 

Conversely to the Ln(III) series it can be noted that the 

paramagnetic shifts induced by the actinide cations do not 

monotonically vary with the cation-proton distance. For example, 

the largest chemical shift appears on the H3 protons for Cm(III) 

while it appears on H5 protons for the Pu(III), Am(III) and Cf(III) 

complexes (See Table S2). 

To check whether observed deviations are not due to a 

geometric variation of the complexes in solution. an analysis 

method using the paramagnetic shifts of two nuclei i and k within 

the same metallic complex a  has been proposed.[14b] 

       
   

     
 (             

       
   

     
         

This equation assumes the ligand field parameter constant along 

the cation series. Rik , the ratio between Gi and Gk of nuclei i and 

k as defined in Eq. (6), can be obtained from the plot of (δpara)i,a 

/<Sz>a versus (δpara)k,a /<Sz>a within the cation series i . So, every 

deviation from linearity along the series can be attributed to a 

structural change affecting Gi or variations in the ligand field. 

(6) 

(7) 

https://en.wikipedia.org/wiki/Total_angular_momentum_quantum_number
https://en.wikipedia.org/wiki/Total_angular_momentum_quantum_number
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Because <Sz>a values for actinide cations are not known this 

study is performed only with the complexes formed with the 

Ln(III) cations (Figure 3). The plots for two pairs of protons 

H3/H5 and H5/H6 show linear variations excluding any drastic 

change of the geometric ratios     along the Ln series. This 

could be explained by the division of the experimental 

paramagnetic shifts by <Sz>a smoothing the variation of the 

geometric factor ratio previously obtained in Table 1. One 

deduces from the intercepts that the hyperfine coupling 

constants    do not change along the Ln series for the protons. 

However Eq. (7) plotted for carbons and proton H6 pairs exhibit 

two kinds of straight lines along the Ln series (Figure S10). The 

slopes for the lightest Ln (Ce to Eu) and the heaviest ones (Tb to 

Yb) are parallel, except for carbons C2 and C6 where the plots 

show a poor correlation for the lightest Ln(III). It can be 

concluded that the    values depend on light or heavy Ln(III) 

while the geometric factor Gi does not change along the Ln 

series. 

Separation of contact and dipolar shifts, one nucleus 

method: 

Separation methods[3f], using the chemical shifts induced by the 

lanthanide cations for a group of complexes are based on 

rearrangements of Eq. (4) in two equations: 
       

   

     
        

     
  

 

     
  

       
   

  
    

     

  
      

       

Based on the following assumptions: 1- Fi and Gi are 

independent of the Ln(III) ion a; 2- the crystal field parameter is 

invariant along the series; 3- theoretical values of <Sz>a and Ca
D 

are known, the graphic representation of Eqs. (8) and (9) for a 

given nucleus i and varying the Ln center a are linear and the 

slopes provide the dipolar and contact terms respectively. 

It has been shown that the use of Eq. (8) provides better 

accuracy for the determination of the crystal field parameter 

  
      while Eq. (9) is more appropriate to determine   

[21]. 

Both equations are applied hereafter to the [Ln(ethyl-DPA)3]
3- 

series. 

 

 

 

Figure 3. Plot of  Eq. (7) for [Ln(ethyl-DPA)3]
3-

 in DMSO-d6 (at 298K). (a) H3 

vs H6 and (b) H5 vs H6. 

Determination of A2
0<r2> parameter: 

The plot of Eq. (8), presented in SI (Figure S2), shows an 

excellent linearity (R > 0.99) except for Sm(III) and Ce(III) 

cations particularly for proton H5. As expected the ratio of H3 and 

H5 slopes divided by the H6 one leads to 

   
   

  = 2.20 and    
   

  =1.37 which are in good agreement 

with the     values of Table 1. This validates the hypothesis that 

the crystal field parameter   
      is almost invariant along 

the lanthanide series in the ethyl-DPA. The crystal field 

parameter  deduced from the slope and the geometrical factor    

defined in Eq. (5) for each proton are given in Table 2 ; This 

constancy observed along the series (Ce – Yb) contrasts 

somewhat with some studies including macrocyclic ligands 

(DOTP).[14c] Indeed, the study of heavy lanthanides (Tb – Yb) 

revealed a   
      parameter different for each cation. 

However, the crystal field induced by this highly complexing 

ligand was found about 50 times higher than in our study. It can 

therefore be considered that a lower crystalline field can lead to 

smooth the modifications observed in the study of [Ln(DOTP)]5- 

complexes. Moreover,   
      parameters were calculated by 

these authors, considering that the chemical shifts of 1H nuclei 

were only dipolar which is not fully established. This assumption 

can be at the origin of the observed variations which are not 

linear along the series. 
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The plots of Eq. (8) for 13C C1-C6 are presented in Figure S3. 

Unlike 1H nuclei, there is no clear linear trend for the whole 

series (Ce – Yb) but one finds a good linear regression for the 

six heaviest cations (from Tb to Yb) and a different one for three 

of the lightest ones (Pr, Nd and Sm), Ce and Eu being for most 

plots out of these lines. This can mean a change in the crystal 

field parameter A2
0<r2> or a variation of geometric term Gi 

between the beginning and end of series. However, the first 

elements are described by only three cations and changes seem 

to occur for Ce(III) and Eu(III)  which can lead to uncertainties in 

determining the crystal field parameter. Therefore, the crystal 

field parameter was calculated only with results achieved on the 

heaviest cations (from Tb to Yb). The crystal field values (Table 

2) reveal a good agreement with the 1H NMR study that confirms 

the value of this parameter for the Ln(III) cations. It may be 

noted that the 13C spectral width is greater than that of the 1H, 

therefore enhancing differences that could have appeared 

negligible in the 1H study. 

Table 2. A2
0
<r

2
> crystal field coefficient (in cm

-1
) of [Ln(ethyl-DPA)3]

3-
 

complexes deduced from the slopes Figure S2 and S3 and     for a given 

nucleus (4th column) and averaged for all 
1
H and all 

13
C (last column).  

   A2
0
<r

2
> 

Ln
3+

 
1
H 

H3 51.6 
52 (±1) H5 52.5 

H6 49.0 

Tb
3+

 – Yb
3+

 
13

C
 

C3 44.6 

51 (±4) 
C4 55.4 
C5 49.8 
C6 54.2 

 

Determination of Fi parameters: 

(δpara)i,a/Ca
D versus <Sz>a/Ca

D is plotted in Figure S4 for 1H nuclei 

and in Figure S5 for 13C nuclei for the whole lanthanide series. 

According to Eq. (9), these plots should be linear and the slope 

gives the value of Fi for the nucleus of interest. The points for the 
1H in Ce(III) and Eu(III) cations lie out and were not considered 

to determine the Fi terms. In all cases, two straight lines are 

obtained, one for the 1st part (Pr – Sm) and another one for the 

2nd part (Tb – Yb) of the series. Better correlations are found for 
13C than for 1H data due to higher Fi parameters for carbon 

nuclei. Fi deduced from these plots are tabulated in Table 3. 

The break of slope in the middle of the series is often observed 

and usually assigned to a change in Fi and A2
0<r2> parameters 

induced by structural changes.[2b] However we deduced from the 

previous section that the crystal field parameter A2
0<r2> may be 

considered invariant along the series. Moreover the 

crystallographic study by single-crystal XRD shows that 

[Ln(ethyl-DPA)3]
3- complexes are isostructural along the series. 

The small decrease observed on bonds length Ln - O and Ln - N 

along the series leads to a geometric parameter variation almost 

invisible which cannot explain this drastic change. In 2002, Ouali 

et al. have tried to explain this slope break for lanthanide 

complexes with dipicolinic acid by a rapid oscillation of the 

pyridine cycle at the NMR time scale.[5a] However, the 

agreement between the results obtained by MD simulations and 

the chemical shifts analysis do not show such flexibility of our 

complexes and therefore do not confirm the impact of this 

phenomenon.[5b, 14a, 14b] Furthermore, this break occurs always in 

the middle of the series (Eu – Tb).[5, 14a, 14b, 22] It can thus be 

considered that a change in the electronic structure could lead to 

a variation in the hyperfine coupling constant in the [Ln(ethyl-

DPA)3]
3- complex.[5b]  

Table 3. Fi parameters (dimensionless) obtained from the (δpara)i,a/Ca
D
 versus 

<Sz>a/Ca
D plots of 

1
H and 

13
C paramagnetic shift for [Ln(ethyl-DPA)3]

3-
.  

  Tb – Yb Ce – Eu 

1
H 

H3 0.035 -0.016 
H5 0.094 0.210 
H6 0.038 0.055 

13
C 

C1 -1.303 2.447 
C2 -0.192 0.360 
C3 -2.728 -4.384 
C4 1.303 1.642 
C5 -0.187 -0.422 
C6 0.192 0.450 

Separation of contact and dipolar shifts, three nuclei 

method: 

In 2001, Geraldes et al. proposed an analysis method of 

paramagnetic shift independent of <Sz>a and Ca
D theoretical 

values.[14a, 23] This method is particularly interesting in this case 

because the constancy of Fi and Gi parameters can be checked 

along a series of cations without a prior knowledge of theoretical 

<Sz>a and Ca
D values (unknown for the actinides) and 

independently of the crystal field parameter A2
0<r2>. It is based 

on the exploitation of experimental data obtained on three nuclei 

i, j and k of the same metallic complex by the following 

equations: 

       
 

       
 

  
       

 

       
 

    

  
(        

(        
          

(              

(        
  

    
  

  
         defined in Eq. (6). 

Study of 1H nuclei: 

The plot of Eq. (10) for 1H nuclei shows a slight difference 

between the light and heavy lanthanides as shown in Figure 4. 

This variation can be assigned to the Fi change along the 

lanthanide series like previously observed.  

Regarding An(III) cations, it can be noted that a straight line 

(Figure 4) fits nicely the 1H paramagnetic shifts. This feature 

indicates that a single set of parameters Gi and Fi allows to 

describe the properties of these cations. Since the An(ethylDPA) 

series is isostructural to the  Ln(III) one (        and     

   ), the strong difference between these two cation series is 

due to Fi values: they are different from the Ln(III) one and are 

constant along the series (at least from Pu to Cf). Unfortunately 

this method does not provide quantitative values of Fi. 

 

(10) 
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Figure 4. Plots of (δpara)H5 / (δpara)H6 vs. (δpara)H3 / (δpara)H6 for [Ln(ethyl-

DPA)3]
3-

 (up) and [An(ethyl-DPA)3]
3-

 (down) in DMSO (at 298K). Eu(III) is 

excluded from the linear regression calculation of light Ln(III).  

Study of 13C nuclei: 

The study of 13C chemical shifts by this method reveals a much 

more marked difference between heavy and light Ln(III) cations 

(Figure S6). The values of α and β terms determined by this 

method and summarized in Table 4 are in quite good agreement 

with the values calculated from Eq. (10) with Fi and Gi 

parameters terms determined previously (See Table S5 for Gi 

values). Main differences occur for α values with the lightest Ln 

and β values of C1 nucleus. The first remark could be related by 

a defect in Bleaney’s approach of the dipolar contribution in the 

lightest Ln(III) series as we mentioned previously while the 

second could be due to a structural change close to the metal 

center since we already have taken into account the Fi change.  

Regarding the 13C paramagnetic shifts of An(III) complexe, only 

three cations (Pu, Am and Cf) have been studied because the 

Cm(III) induces animportant line broadening preventing analysis. 

It can be noted that straight lines describe pretty well the 

chemical shift evolutions although a slight deviation appears on 

C3 and C4 nuclei (Figure S6). 

To support the structural change assumption, a sampling of the 

structure of [Dy(ethyl-DPA)3]
3- complex was performed by MD 

calculations. The distance Dy(III)-nitrogen of the pyridine ring 

and the angle formed between this direction and the axis of 

highest symmetry Z were kept constant all along the calculation 

(Z axis is taken perpendicularly to the plan formed by the three 

nitrogens of the complex). The structures having the best 

agreement with the geometric terms ratios show a slight 

variation in the position of the pyridine ring compared to the 

central cation and the main axis of magnetic susceptibility (Z) as 

shown in Figure 5. This configuration leads to oxygen atoms 

away from each other in the tricapped trigonal prism which 

minimizes the interatomic repulsion. This could explain that 

atoms close to the paramagnetic center, especially the carbon 

atom of the carbonyl group (C1) for which the geometric term 

(Gi) is strongly influenced by the angle θi may be sensitive to 

small radii contractions along a series. 

Table 4. α and β parameters obtained from the plots (δpara)Ci / (δpara)C6 vs. 

(δpara)C5 / (δpara)C6 (Figure S6) of 
13

C paramagnetic shift for [Ln(ethyl-DPA)3]
3-

. 
[a]

 α and β calculations from Eq. (10) using Fi from Table 3 and geometrical 

factors from structural data with i the corresponding 
13

C, j=C6 and k=C5.  

  α α 
[a]

 β β 
[a]

 

Tb – Yb 

C1 3.29 2.92 -0.33 -3.94 
C2 4.20 4.13 4.42 3.025 
C3 7.47 7.56 -6.65 -6.85 
C4 -1.59

 
-1.63 5.08 5.20 

Ce – Eu 

C1 0.68
 

-2.12 7.15
 

3.45 

C2 2.73 3.31 3.60 3.90 

C3 4.58 5.74 -5.28 -4.36 

C4 0.57 -0.32 4.23 3.35 

 

 

Figure 5. Movement of the pyridine ring along the main axis of magnetic 

susceptibility Z.  

From room temperature experiments and within Bleaney’s 

theory we conclude that the Gi parameters are almost constant 

along the series while Fi depends on the Ln(III) since two sets of 

values are determined, the crystal field parameter is constant 

along the Ln series (about 51 cm-1) and the contact term is the 

main contribution in the An paramagnetic shifts even far from the 

metallic center. 

2.3. Temperature variation of 1H and 13C chemical shifts 

Temperature effects on the induced paramagnetic shifts provide 

further information on Bleaney’s parameters,       and   
  since 

they are temperature dependent. 

 Ln(III): 

1H and 13C paramagnetic shifts of [Ln(ethyl-DPA)3]
3- complexes 

were recorded over temperature range 20 - 70°C every 5°C. 

[La(ethyl-DPA)3]
3- complex was used as diamagnetic reference. 

The separation of contact and dipolar contributions may be 

obtained assuming a 1/T dependence for the former and a 1/T2 

dependence for the latter as proposed by Bleaney.[6a] The 

experimental results are shown as         
 

 
    (     on 

Figure 6 for Yb(III) complex (see Figure S7 for other 
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lanthanides); within the previous assumptions, the slope  and 

the intercept  provide the dipolar and contact contributions 

respectively (reported Tables S6 and S7). In all cases a nice 

linear correlation is observed. Except for C5 of Ce(III) complex all 
1H contact contributions are much smaller (in absolute values) 

than those of the 13C; As expected, the farthest protons from the 

paramagnetic center (H5 and H6) present the smallest contact 

contributions except for the Sm(III) case for which H3 contact 

term is surprisingly smaller. Actually all contact Sm(III) values 

significantly deviate from the other Ln(III) cations.  

 

 

Figure 6. Product of the temperature T with 
1
H (top) and 

13
C (bottom) 

paramagnetic shifts versus 1/T for [Yb(ethyl-DPA)3]
3-

 complexes. 

For [Yb(ethyl-DPA)3]
3- complex, extrapolations to T-1=0 of all 

analyzed protons lead to the smallest  values (close to 0) as 

observed in previous studies on [Ln(DPA)3]
3- complexes in 

aqueous solution.[3c] This suggests that the paramagnetic shift of 

protons is mainly dipolar. Regarding the 13C, contact 

contributions of C1 to C3 cannot be neglected since  at room 

temp and  get closer. Regardless the Yb(III) case, it comes 

from Eq. (4) that  should be equal to 298<Sz>aFi. A plot of  

values vs <Sz>a tabulated by Pinkerton et al.
[7] at 298K for all 

Ln(III) and nuclei confirms the good correlation except for C6, H5 

and H6. These nuclei far from the paramagnetic center 

experience a low contact interaction that could account for this 

low correlation coefficient. Surprisingly the C1 nucleus supposed 

to have significant contact contribution exhibits a poor 

correlation with <Sz>a. Tables S6 and S7 summarize the Fi 

values calculated by this way (calculated as /298<Sz>). For 

most of them they are of the same order of magnitude as those 

of Table 3 but vary in the series, both in value and sign for 

values close to zero. The discrepancy between both ways of 

calculation is about 150%. 

According to Eq. (4) and assuming that the crystal field 

parameter is constant in the series, the ratio of the slopes ia/ib 

for a given nucleus i should be equal to the ratio of Bleaney’s 

parameters[6a]   
  (normalized to    

 =-100) but this is not 

confirmed by results given in Table 5 despite values are of the 

same magnitude order for the heaviest Ln(III). 

These observations arising from both contributions (contact and 

dipolar) seem to reveal that the paramagnetic shifts, induced by 

the Ln(III) cations, are not accurately described by considering a 

variation of the dipolar and contact contributions with T-2 and T-1 

respectively. To explain these differences, it can be considered 

that a part of this contribution can vary with T-n (n > 2). In fact, 

the pseudocontact term was treated by Bleaney[6] as a series of 

T-n terms assuming that the first nonzero term in T-2 is 

predominant. Nevertheless, significant deviations between 

theory and experimental data have appeared. In 1970, Kurland 

and McGarvey showed more complex behavior deriving the 

general formula of the dipolar contribution in terms of magnetic 

susceptibility.[24] Later, McGarvey performed a theoretical study 

to determine the amplitude of T-n terms for several lanthanide 

ions[25]. It has been established that although the temperature 

dependence is not exactly T-2, an accuracy of about 10 - 20% 

can be obtained at room temperature. 

Table 5. Slope ia of the          (     plot for H6; ratios normalized at 

-100 for Dy(III) and Ca
D
 calculated by Bleaney

[6a]
. 

M(ethyl-DPA)3
3-

 6a  -100ia/iDy  Ca
D  

 

Ce 27551 -2.8 -6.3 
Pr 77706 -7.9 -11 
Nd -29691 3.0 -4.2 
Sm -19769 2.0 -0.7 
Eu -99737 10.1 4 
Tb 1129070 -114.5 -86 
Dy 986106 -100.0 -100 
Ho 595106 -60.3 -39 
Er -274775 27.9 33 
Tm -463358 46.9 53 
Yb -181393 18.4 22 

 

This discrepancy may be overcome by adding a T-3 term to the 

dipolar term. LaMar et al.[26] showed a detailed expression of the 

contact term by computing the components of the magnetic 

susceptibility tensor through the Van Vleck equation.[26] 

Substituting these terms in the contact contribution expression 

leads to the appearance of two terms varying as T-1 and T-2 (    

and      respectively in Eq. (11)) although the latter is not 

predominant. It can be considered that this term may be 

involved in our lanthanide complexes. 

In order to check the applicability of these two assumptions, an 

adjustment of the 1H and 13C experimental results was 

performed according to the following equation:  

          
 

  

 
   

  

 
     

  

    
        

  

 
     

This supposes that       
   

 
 

    

   with the ratio    
    

   
      

and   
  

   

   
    

   with the ratio    
    

   
     .    ,   ,      and 

   are considered independent on nucleus i ;  their values were 

optimized for  each Ln(III)  with an Excel solver using the 

experimental data for three 1H (H3, H5 and H6) and six 13C (C1, 

C2, C3, C4, C5 and C6) nuclei and the geometric parameters    

defined by MD calculations and are summarized in Tables S9 

and S6.    
  and <Sz>Gd are respectively set to -100 and 31.5 

respectively. The results of the adjustment procedure (Excel 

solver) are shown in Table 6. All experimental values and 
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calculated parameters are detailed in Tables S8, S9 and drawn 

in Figure S11.  

Table 6. Parameters of 
1
H and 

13
C paramagnetic shifts adjustment for 

[Ln(ethyl-DPA)3]
3-

. 1 and 2 are defined in Eq. (11). They represent 

temperature deviations of the contact and dipolar contributions respectively in 

Bleaney’s equation at T = 300K. 

 
Contact 

  

 
 

Dipolar  
  

 
 

Deviation calc./exp. 

1
H 

13
C 

Ce 0.45 0.68 3.2% 5.0% 
Pr 0.11 0.26 1.8% 13% 
Nd 0.87 0.11 17% 3.1% 
Sm 0.89 0.56 5.1% 22% 
Eu 0.33 0.14 21% 3.0% 
Tb -0.03 0.47 0.4% 2.1% 
Dy 0 0.20 0.5% 5.8% 
Ho -0.04 0.51 1.1% 3.2% 
Er -0.01 -0.13 0.6% 1.1% 
Tm 0.09 0.00 0.6% 1.2% 
Yb 0 -0.18 0.5% 1.0% 

The results of this adjustment procedure clearly show that    (T
-2  

contact term) is negligible for Tb(III) to Yb(III) cations while T-2  

contact and T-3 dipolar terms are both required for all the lightest 

Ln(III). For the heaviest Ln(III), it may be noted that the influence 

of    (T
-3 dipolar term) is different for the latter since there is no 

contribution for Tm(III) and negative ones for Er(III) and Yb(III). 

The greater T-3 contributions belong to the formers with up to 

32% for Tb(III) and Ho(III). This is in agreement with recent 

results of Hiller et al. mentioning that the magnetic 

anisotropy  
  

 (which is another description of the dipolar 

contribution, see Quantum chemistry calculations section) of 

Ho(III) complexes deviates from a T-2 behavior.[27]. The greatest 

   and    values are observed for the lightest cations (from Ce to 

Eu) with a significant contact T-2 term up to 47% for Sm(III) and 

Nd(III) and a large T-3 dipolar contribution up to 40% for Ce(III). 

Large deviation between experimental and fitted data (22% for 
13C and 21% for 1H) are also observed for the light Ln. This is 

explained by the smallness of paramagnetic chemical shift 

variations collected in Sm(III) and Nd(III) cases. 

The fit reveals almost constant Fi   parameters within 51 and 26% 

deviation (average of the relative differences between Fi and 

<Fi> along the Ln(III) series) for light and heavy Ln respectively. 

A broader Fi distribution (variation over 100%) is however 

observed for H3, C1 and C2 nuclei whatever the Ln(III) set. 

Except for these cases, Fi values along the Ln(III) series are 

found similar with those collected Table 3 and this confirms that 

light and heavy Ln(III) have different set of Fi values. The use of 

Fi values with geometric parameters Gi leads to α and β values 

which are in good agreement (average of 20% excluding data 

from C1) with the slopes (α) and intercepts (β) deduced from dpara 

ratios Eq. (10). 

Regarding the crystal field parameter A2
0<r2>, an average of 

51.1 and 52.5 cm-1 within a 2% deviation is obtained for light and 

heavy Ln(III) respectively which is consistent with the results of 

Table 2. <Sz>a and Ca
D parameters issued from this fit are the 

same than those of Pinkerton[7] and Bleaney[6a] at 300K except 

for Sm(III) for which <Sz>a is found to be 0.26, 19% larger than 

the Pinkerton’s values (See Table S9). 

An(III): 

1H and 13C paramagnetic shifts of [An(ethyl-DPA)3]
3- complexes 

were studied in the range 20 - 80°C using [La(ethyl-DPA)3]
3- as 

diamagnetic reference. As for Ln(III) complexes, a linear 

variation of paramagnetic shifts versus 1/T was observed for 

each nucleus of the ligand (Figure 7 for the Cf(III) example and 

Figure S8 for all other An(III) cations).  

 

 

Figure 7. Product of the temperature by the 
1
H and 

13
C paramagnetic shift 

versus 1/T for the  [Cf(ethyl-DPA)3]
3-

 complex.  

It is surprising to observe that the intercepts for protons (H3, H5, 

H6) of the [Pu(ethyl-DPA)3]
3- complex exhibit values close to 0 

(-22; -27 and 1 for H3, H5 and H6 respectively). This suggests a 

vanishing contact term which is clearly inconsistent with 1H 

paramagnetic shift ratios of Table 1 suggesting a large contact 

contribution. Conversely, the nonzero intercept (116 and 335 

respectively) for H3 and H5 protons of Am(III) are more 

consistent with results of Table 1 showing a contact contribution. 

Regarding Cm(III), a very high intercept for all protons of ethyl-

DPA ligand, including the CH3 group (H6) which displays  usually 

only a dipolar contribution (4555; 5306 and 3240 for H3; H5 and 

H6 respectively) in contradiction with Table 1 suggesting (maybe 

fortuitously) a predominant dipolar contribution for all protons. 

Finally, the analysis of the 1H signals of [Cf(ethyl-DPA)3]
3- 

complex reveals a behavior similar to that of Am(III) with a 

nonzero intercept for H2 and H5 protons but close to 0 for the 

CH3 group. To overcome these discrepancies, T-2 and T-3 

contact and dipolar contributions respectively have to be taken 

into account, like for Ln(III) complexes.    

A fit of the An(III) experimental data was performed using Eq. 

(11) with the same procedure as for the Ln(III) series. Results 

are collected in Table 8. A significant T-3 dipolar term is 

observed for all studied An(III) except for Cm(III) (about 38 to 

86% of the total dipolar contribution). Unlike the Ln(III) series all 

the      contributions are negative. The contact T-2 term is 

important for Am(III) and more significantly for Pu(III) since they 

account for about 29% and up to 46% of the total contact 

contribution respectively. On the contrary Cm(III) and Cf(III) 

present negligible T-2 contact contributions. The absence of 
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extra T-2 contact and T-3 dipolar terms for Cm(III) coincides with 

the purely T-2 dipolar contribution found in Table 1. However we 

have to keep in mind that only 3 nuclei (only protons, no carbon 

at all) have been analyzed instead of 9 unlike the other An(III) 

cations. A low number of experimental data leads to a fit with a 

lower deviation. 

Similarly to the Ln(III) series, deviations from T-1 contact (S’’a) 

and T-2 dipolar (C’’a) are observed for the lighter An(III) (with 

Pu(III) and Am(III)) while there is only T-2 dipolar deviation for the 

heavier An(III) (Cf(III)).  

Table 8. Parameters of 
1
H and 

13
C paramagnetic shifts adjustment for 

[An(ethyl-DPA)3]
3-

. 1 and 2 are defined Eq. (11). They represent temperature 

deviations of the contact and dipolar contributions respectively in Bleaney’s 

equation at T=300K. 
#
geometrical parameters used from ref 

[15]
 . 

An(III) 

(isoelectronic 4f) 

Contact 
  

 
 

Dipolar 
  

 
 

Deviation calc./exp. 

1
H 

13
C 

Pu  (Sm) 0.85 -0.86 3.5% 2.7% 
Am  (Eu) -0.31 -0.53 3.5% 2.7% 

Am
#
 -0.40 -0.58 4.0% 2.1% 

Cm
#
  (Gd) 0.01 0 0.54% / 

Cf
#
  (Dy) -0.06 -0.38 2.04% 3.0% 

The use of two different crystallographic sources (our XRD 

results and Cary et al. study) lead to slight differences in 

calculated geometric parameters of the Am(ethyl-DPA)3
3- 

complex especially for C1, C3 and H3 nuclei (25, 3 and 7% 

respectively; see Table S5). Owing to these geometrical 

variations and their use in Eq. (11), the optimization procedure 

led to deviations of 13 and 5% for    and    respectively (Table 

8) but does not affect the <Sz>a and   
  values (Table 9). It is 

noteworthy that <Sz>a and   
  deduced at 300K are not 

sensitively different than those of the isoelectronic Ln(III) 

configurations (Table 9; for more details see Table S11). 

Surprisingly the An(III) crystal field parameter   
      

obtained from these adjustments is found close to the Ln(III) 

cation value:    
     =52±1 cm-1. 

Table 9. <Sa> and Ca
D
 values determined for An(III) cations at T=300K and 

compared to literature 
[6b, 7]

 for a same 4f electronic configuration. 
#
geometrical 

parameters used from ref 
[15]

 . 

An(ethyl-DPA)3
3-

 <Sz>a <Sz>a 
[7] 

Ca
D
 Ca

D
 
 [6b]

 

Pu 0.45 0.22 (Sm) -0.6 -0.7 (Sm) 
Am 10.93 7.57 (Eu) 3.8 4 (Eu) 
Am

#
 10.76  3.8  

Cm
#
 31.52 31.5 (Gd) 0 0 (Gd) 

Cf
#
 28.56 28.57 (Dy) -99.0 -100 (Dy) 

Regarding Fi values, only one data set has been considered to 

study the An(III) conversely to the Ln(III) series. Maybe as a 

result it has been difficult to find constant Fi values since 

deviations are all greater than 100% (average of the relative 

differences between Fi and <Fi> along the An(III) series)). The 

maximum deviation is reached for H6 with 420% (Table S11). 

Calculations of α and β parameters from these Fi values and 

geometric parameters Gi lead to values that are not in good 

agreement (160% for 13C and 55% for 1H in average) with the 

slopes (α) and intercepts (β) deduced from dpara ratios Eq. (10). 

Based on the Eq (10) assumptions, this feature emphasizes the 

non constancy of the Fi values along the An(III) series and 

consequently, the difficulty to separate the paramagnetic 

contributions in Bleaney’s equation for the An(III). When looking 

at paramagnetic shifts vs 1/T plots (Figures S12) it comes out 

that to go further more data are required especially from 

temperature experiments. An organic diluent in liquid state over 

a larger temperature range would be required to get an 

optimization processing more accurate. 

 

2.4. Quantum chemistry calculations 

Since <Sz>a and   
  values are not available for the actinide 

series, they were determined by quantum chemistry calculations 

first within the Ln(III) series in order to check and validate the 

methods. First principle calculations with SO-CASSCF and SO-

CASPT2 have been performed in the Ln/An(DPA)3 series using 

the crystallographic data except for U(III) and Np(III) complexes 

were the geometries were optimized by  DFT calculations. z axis 

is taken along the pseudo C3 axis perpendicular to the plan 

formed by the three nitrogens. The average of the electron spin 

magnetization <S>a has been evaluated along three directions 

and averaged to <Sm>a (see Tables 10 and 11 for Ln(III) and 

An(III) respectively).   
  describes the anisotropy of the magnetic 

susceptibility   
 =  //-  and has been deduced from SO-

CASPT2 magnetic susceptibility calculations along x, y, z axes 

according to   
   =  z-( x+ y)/2 [28] and are collected in Tables 

12 and 13 for Ln(III) and An(III) respectively.   

Electron spin magnetization <S>a calculations 

Ln(III): 

As expected for a spin contribution, the <S>a anisotropy is 

relatively small, comprised between 19% for Ce(III) and 34% for 

Sm(III). Consequently we will discuss hereafter the average of 

calculated <S>a in all directions (<Sm>a) as representative of 

experimental <Sz>a values. 
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Table 10. SO-CASSCF <S>a values for [Ln(DPA)3]
3-

 complexes in three 

directions of space, averaged and from literature. The last column gives the 

relative difference between <Sm>a  and <Sz>a  from Golding et al.
[29]

 and 

Pinkerton et al. 
[7]

 at 300K. All values are scaled to 31.50 for Gd(III). 

 <Sx>a <Sy>a <Sz>a <Sm>a
 <Sz>a 

[29]  
<Sz>a 

[7]
 

Diff 

Ce (f
1
) -0.78 -0.65 -1.08 -0.84 -0.98 -0.97 15.5% 

Pr (f
2
) -2.83 -2.59 -3.00 -2.8 -2.97 -2.96 5.7% 

Nd (f
3
) -4.12 -3.97 -4.45 -4.18 -4.49 -4.45 6.5% 

Sm (f
5
) 0.39 0.22 0.62 0.41 -0.06 0.22 46.3% 

Eu (f
6
) 11.12 11.59 10.11 10.94 10.7 7.57 30.8% 

Gd (f
7
) 31.50 31.50 31.50 31.50 31.50 31.50 0.0% 

Tb (f
8
) 30.38 27.86 37.69 31.98 31.82 31.85 0.4% 

Dy (f
9
) 27.93 26.24 31.65 28.61 28.55 28.57 0.1% 

Ho (f
10

) 22.36 21.80 23.53 22.56 22.63 22.64 0.4% 
Er (f

11
) 15.56 15.89 14.68 15.37 15.38 15.38 0.1% 

Tm (f
12

) 8.49 9.51 6.54 8.21 8.21 8.21 0.0% 
Yb (f

13
) 2.66 2.89 2.15 2.57 2.59 2.59 0.8% 

The calculated <Sm>a values are roughly in good agreement with 

the published ones. The agreement is better for the 2nd part of 

the series; the ground term of the free ion corresponds to a large 

J value, the J-1 excited state is relatively high in energy due to 

Landé rule. The theoretical value <Sz>a calculated  by 

Pinkerton[7] within the  ground J term manifold is suitable. For 

the 1st part of the series, the discrepancy is larger since the low 

lying J+1 manifold plays a key role.   

The values determined by Pinkerton et al. given in Table 10 

were evaluated according to Golding’s approach[29] (taking into 

account bonding effects, spin-orbit coupling and mixing of 

excited states into the ground state) for the whole series but 

using relativistic Hartree-Fock method and reconsidering the 

spin-orbit coupling which is a sensitive feature particularly for 

light ions. However for Sm(III) and Eu(III), they found reasonable 

estimation of <S>a values in agreement with their 1H and 31P 

experiments by making adjustment or using particular value of 

spin-orbit coupling constant   or Landé factor  gJ. Conversely to 

Pinkerton’s approach, our ab initio <Sm>a approach does neither 

consider any experimental data along the Ln(III) series nor make 

any assumption about <Sm>a dependence with temperature. In 

such frame of mind, first of all at 300K, it is noteworthy to 

observe that for Sm(III), our calculated value of <Sm>a is close to 

the one proposed by Pinkerton[7] while for Eu(III), the value is 

close to the one proposed by Golding[29]. The comparison of our 

experimental <Sz>a and calculated <Sm>a values exhibit a good 

agreement with the heavy Ln(III) but some deviations are 

observed with Ce(III) (11%) and especially with Sm(III) and 

Eu(III) (56 and 44% respectively).  

The behavior of <Sm>a with temperature in the 250-350 K range 

depends strongly on the Ln(III) ion (see Figures S13 and values 

in Table S12). They were fitted using two model functions. First, 

a function with T-1 and T-2 terms as described in Eq. (11) 

(T<Sz>a=f(T-1) plots) and Pinkerton’s et al. approximation 

(<Sz>a=a+bT)[7]. Without surprise this last assumption leads to 

the poorest correlation coefficients.      (T=300K) values 

deduced from the first function are found negligible (<<1) for 

Gd(III) to Yb(III) as observed experimentally expressing thereby 

the lack of T-2 term in the contact contribution as predicted in 

Bleaney’s theory. However for Ce(III), Pr(III) and Nd(III)      

values are also found negligible which contrasts to experimental 

results. Interestingly, the calculated values of      (T=300K) for 

Sm(III) and Eu(III) are -0.80 and -0.21 respectively which are 

close in absolute values to the experimental ones (0.89 and 0.33 

in Table 6).  

An(III): 

<S>a values at 300 K for the An(III) series (U(III) to Cf(III)) 

calculated with SO-CASPT2 are summarized in Table 11. They 

are normalized to <Sz>a=31.5 for Gd(III). U(III) and Np(III) 

complexes have been added for the sake of completeness even 

if DPA has not been investigated experimentally ; indeed the 

oxidation state III of these actinides is difficult to stabilize in 

solution with a DPA ligand. At 300 K <Sm>a values are 

somewhat different from the Ln(III) counterparts mainly for the 

lighter An(III) cations (comparison of <Sm>a values Tables 10 

and 11). The anisotropy of <S>a calculated as <Sz>-

(<Sx>+<Sy>)/2 is larger than for the isoelectronic Ln(III). 

For Pu(III), <Sm>a is quite far from its lanthanide analog Sm(III) 

(0.41 Table 10) and the model value (<Sz>a = 0.45 in Table 9). 

We have recently shown[30] that the magnetic susceptibility of 

Pu(III), both experimental and calculated, is larger than the one 

expected within the LS scheme, mostly due to a Zeeman 

interaction with the first excited state 6H7/2. 

 

Eu(III) and Am(III) have a non-magnetic ground state. As shown 

by Golding, <Sm>a is determined in Eu(III) by the population of 

the first excited 7F1 term which lies 200 cm-1 above the ground 

state, according to our calculations. Since the spin-orbit coupling 

is larger in Am(III), this state lies at 1100 cm-1 and is not 

populated at room temperature and the magnetization arises 

only from Zeeman interaction with the ground state. It is why 

<Sm>a is considerably smaller in Am(III) than in Eu(III).  

The Cm(III complex is expected to have a smaller <Sm>a value 

than Gd(III): The zero-field splitting of the 8S0 term due to spin-

orbit coupling with excited states is negligible for Gd(III) (less 

than 1 cm-1) while 80 cm-1 with Cm(III). Consequently, this 

decreases slightly the magnetization. 

<S>a  in Cf(III) is anisotropic and the average values is smaller to 

its lanthanide analog Dy(III) ; in this case zero-field splitting of 

the ground term 6H15/2  is due to the interaction with the ligands 

and is expected to be larger in actinides than in lanthanides. In 

Dy(III), this splitting is of 260 cm-1 and all the states are thermally 

populated while it is more than 1600 cm-1 in Cf(III) leading to a 

decrease of the magnetization since not all the states are 

populated at room temperature. 

The temperature dependence of <Sm>a is represented and fitted 

in the 250 – 350 K range with the same models as for Ln(III) 

(Table S13 and Figures S14). The best correlations are 

obtained with a T<Sz>a = f(T-1) behavior except for Pu(III). 

Calculated      (T=300K) are found negligible for Cm(III) and 

Cf(III) as observed experimentally. For both cations the 

temperature dependence of the contact contribution is 

consequently in agreement with Bleaney’s theory. Conversely 

Table 11. SO-CASPT2 <Su>a values for [An(DPA)3]
3-

 complexes at 300 K 

scaled to the Gd(III) value (31.5). 

 <Sx>a <Sy>a <Sz>a <Sm>a 

 U  (5f
3
) -3.56 -3.02 -2.18 -2.92 

 Np  (5f
4
) -2.01 -2.79 -4.18 -2.99 

 Pu  (5f
5
) -0.54 -0.24 -1.19 -0.66 

 Am  (5f
6
) 3.26 3.96 3.05 3.42 

 Cm  (5f
7
) 29.5 29.5 31.5 30.2 

 Cf  (5f
9
) 26.1 30.1 21.0 25.7 
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U(III), Np(III) and Am(III) require a T-2 term since      values are 

-0.14, -0.14 and -0.48 respectively. Regarding Am(III) it is 

interesting to note that this      value is similar to the 

experimental one (Table 8). However the <Sm>a temperature 

dependence of Pu(III) which is closer to a linear f(T)  than a f(T-1) 

law emphasizes that Bleaney’s approach is not adapted to 

describe properly An(III). 

Dipolar coupling CD
a calculations 

Ln(III): 

  
  values calculated with SO-CASPT2 at 300 K are given in 

Table 12 and compared to Bleaney’s ones and those deduced 

previously from experimental data. While all are of the same 

order of magnitude significant disparities (from 40 to 100%) are 

observed for Tm(III), Ce(III), Pr(III) and Tb(III) between the 

calculated and the other ones. Discrepancies between magnetic 

susceptibility anisotropy from experiments and Bleaney’s theory 

have already been mentioned and assigned to crystal field 

effects: changes within the series and field splitting of Ln(III) 

ground state larger than kT ( 200 cm-1) [31]. In our case it would 

be clearly the first assumption since the crystal field is found 

constant and lower than kT (A2
0
<r

2
>=52 cm-1) (Table 2). As 

depicted recently by Mason et al[32], crystal field changes can be 

rather related to differences in the orientation than the degree of 

anisotropy of the magnetic susceptibility tensor[32]. The use of a 

ligand[33] leading to a tricapped trigonal prismatic more axially 

dissymmetric than our DPA ligand, allowed Vonci et al. to show 

that a few degree changes in the polar angles of the O donor 

due to ionic radii variations or solvent effects lead to minimal 

variations of the coordination geometry but different orientation of 

the major component of the magnetic susceptibility tensor. None of 

these features are taken into account neither in Bleaney’s 

approach nor in our calculations since we used coordinates from 

crystallographic data (although validated by EXAFS results) 

along the series for our ab-initio calculations. 

Table 12. SO-CASPT2 magnetic susceptibilities   (in 10
-8

 mol.m
-3

) along 

x,y,z axis at 300K and values of   
 , ab-initio, experimental (Table S9) 

and calculated by Bleaney et al.
[6b]

 for [Ln(DPA)3]
3-

 complexes.   
  are 

normalized at -100 for the Dy(III). The last column gives the relative 

difference between calculated and Bleaney’s   
  values. 

  x  y  z 

Ca
D 

calc
 

Ca
D 

exp 
Ca

D [6b]
 Diff 

Ce 2.64 2.31 3.46 -10.73 -6.5 -6.3 70% 
Pr 6.20 5.81 6.70 -2.29 -11 -11 79% 
Nd 6.32 6.13 6.73 -4.94 -4.0 -4.2 18% 
Sm 1.51 1.43 1.64 -0.91 -0.7 -0.7 30% 
Eu 6.91 7.08 6.60 3.05 4.0 4.0 24% 
Gd 32.9 32.9 32.8 5.27 - 0 - 
Tb 46.7 42.7 58.7 -172.7 -86.4 -86 101% 
Dy 57.5 53.9 65.6 -100 -100.0 -100 0% 
Ho 57.6 56.0 60.8 -36.0 -38.4 -39 8% 
Er 48.1 49.1 45.3 37.8 32.7 33 15% 
Tm 30.6 34.3 23.4 75.9 52.5 53 43% 
Yb 11.0 11.9 8.83 26.3 21.1 22 20% 

 

Ca
D temperature dependence from 250 to 350 K reveals two 

different behaviors along the Ln(III) series: One in agreement 

with a    
 =f(T-1) law for the lightest Ln(III) (from Ce(III) to Gd(III) 

excluding Pr(III) for which a better correlation coefficient is 

obtained with a     
   = f(T-1) law) and a     

 =f(T-1) law for the 

heaviest cations. Calculations clearly show that the second half 

of the An(III) series requires an additional     term for the 

dipolar contribution as suggested in Eq. (11) with the 

experimental values. However      values at T = 300 K deduced 

from the slope and intercept ratios (Figures S15) differs from 

the experimental one (see Table 6): 0.22, -0.27, -0.33, -0.35, -

0.20 and -0.30 from Tb(III) to Yb(III) respectively. 

An(III): 

Calculated   
  values for An(III) (Table 13) are quite different 

from the corresponding Ln(III) ones as mentioned previously but 

also from the experimental An(III)  results.  

Table 13. SO-CASPT2 magnetic susceptibilities   (in 10
-8

 mol.m
-3

) along 

x,y,z axis at 300K and values of   
 , ab-initio, experimental (Table S11) 

and calculated by Bleaney et al.
[6b]

 (for 4f isoelectronic configuration) for 

[An(DPA)3]
3-

 complexes at 300K.   
  are normalized at -100 for Dy(III) and 

  are in 10
-8

 mol.m
3
 unit. 

  x  y  z 
Ca

D  

calc 

Ca
D  

exp
 Ca

D
 
 [6a]

 

U 4.08 3.71 3.22 26.8 -   -4.2  (Nd) 
Np 1.81 2.12 3.40 -41.4 -     2  (Pm) 
Pu 0.73 0.76 0.69 0.24 -0.6    -0.7  (Sm) 
Am 1.75 2.12 1.66 -5.94 3.8     4.0   (Eu) 
Cm 31.1 31.2 33.3 -49.2 0      0   (Gd) 
Cf 56.3 65.1 45.2 50.3 -99 -100  (Dy) 

 

However calculations are in agreement with the experimental 

results in the sense that they predict an increasing anisotropy 

from Pu(III) to Cf(III) except for the Cm(III) appearing as the 

most isotropic cation according to the experimental results. 

Except for  z value of Cm(III) and  y value of Cf(III) calculated 

An(III) magnetic susceptibilities are smaller than the 

corresponding Ln(III) values. This was experimentally observed 

by Cary et al.[15] comparing magnetic susceptibilities of 

Cf(DPA)3.H2O and Dy(DPA)3.H2O complexes and explained by a 

large ground state 6H15/2 splitting of the Cf(III) compared to the 

Dy(III). They calculated a ligand-field strength for Cf(DPA)3.H2O  

of 1632 cm-1 considering a spin-orbit coupling constant of 3536 

cm-1. This is clearly out of the Bleaney’s assumptions since the 

crystal-field interaction is supposed to be lower than kT. 

The magnetic susceptibility anisotropies reflected in the 

particularly high Ca
D term for U(III), Np(III) and Cm(III) would 

suggest variations of the crystal field parameter induced by the 

ethyl-DPA ligand along the An(III) series. This contrasts with the 

constant and low value of An(III) crystal field (  
     = 52 ± 1 

cm-1) deduced from temperature experiments and make 

inconsistent the use of Bleaney’s equation to An(III) cations. 

The temperature dependence of   
  has been calculated in the 

250 – 350 K range and decomposed according to T-2 and T-3. 

From the     
   = f(T-1) and     

  = f(T-1) plots (Figures S16) 

Np(III) and Cf(III) present clearly a good   
  correlation with a T-3 

law while for all the other An(III) SO-CASPT2 calculations exhibit 

a better agreements with a T-2 law. Nevertheless, considering a 

    
 =f(T-1) behavior for all studied An(III),      values (Table 14) 

deduced from slope (   
  ) and intercept (   

 ) ratios present 

negative values which are consistent with the experimental ones 

(Table 8) for Pu(III), Am(III), Cm(III) and Cf(III). The small      

value for the Cm(III) seems to confirm the only T-2 temperature 

dependence of the dipolar contribution as assumed in Bleaney’s 

equation. 
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Table 14.      parameter (T=300K) calculated for [An(DPA)3]
3-

 complexes 

depicting the temperature deviations of the T
-2

 dipolar contributions in 

Bleaney’s equation. 

 U(III) Np(III) Pu(III) Am(III) Cm(III) Cf(III) 

 0.30 -0.29 -0.81 -0.63 0.01 -0.67 

Conclusions 

The study of paramagnetic shifts in [Ln/An(ethyl-DPA)3]
3- 

complexes pointed out the difficulties of achieving a good 

separation of the different contributions in the framework of 

Bleaney’s equation. Nevertheless, the association of different 

analysis methods permitted to check the isostructurality of the 

complexes and the constancy of parameters Fi and A2
0<r2> 

along the series. The structures of the complexes were resolved 

by XRD and EXAFS. 

The separation methods using one or three nuclei have been 

applied to the lanthanide complexes in order to determine the Fi 

and   
      parameters. A geometry variation of these 

complexes was detected for the heavy lanthanide cations by the 
13C paramagnetic shift study (13C nuclei being more sensitive 

than 1H to environment change due to the p orbitals). This 

variation identified as a twisting of the pyridine ring relative to the 

main axis of the magnetic susceptibility, contrasts to a previous 

interpretation suggesting a quick flip-flop of the cycle.[5a] 

However twisting moves are fast at NMR timescale in solution 

leading to geometric information averaged into the paramagnetic 

chemical shift (δpara)i,a that evolves along the Ln(III) series. This 

might be an explanation to the break in the Fi value observed 

between Eu(III) and Tb(III). But on the other hand, Fi can be 

determined independently from geometry as the <Sz>a/Ca
D ratio 

and the break cannot be explained by Bleaney’s theory.  

The temperature dependence of <Sz>a and Ca
D determined 

experimentally and from quantum chemical calculations are in 

agreement. They are well fitted by T-3, T-2 and T-2, T-1 

contributions for the dipolar and contact terms respectively. 

These extra contributions bring a better description of the Ln(III) 

induced paramagnetic shifts and are particularly required for the 

first half of the Ln(III) series. However there are some deviations 

between the experimental and theoretical for Ca
D: it might be due 

to the simplification by Bleaney of the   anisotropy to only one 

crystal field parameter, namely   
     . 

At first sight, 1H paramagnetic chemical shifts of [An(ethyl-

DPA)3]
3- complexes, An(III) (from Pu(III) to Cf(III)) exhibit larger 

contact contributions than Ln(III) and the three nuclei method is 

in favor of one single set of Fi parameters for the whole actinide 

series, conversely to Ln(III). Similarly to Ln(III), the temperature 

behavior of the contact and dipolar contributions exhibit 

deviations from T-1 and T-2 with T-2 and T-3 extra terms required 

for the light An(III). However for some An(III) these extra terms 

deviate from temperature dependences of <Sz>a and Ca
D 

obtained by SO-CASPT2 calculations. Surprisingly the crystal 

field parameter   
      is found as weak as for the Ln(III) 

while the 5f orbitals of An are expected to interact more with 

their environment than the 4f of the Ln. Contrary to the 

statements of Bleaney’s equation, Fi parameters are not 

constant along the An(III) series. For the first time <Sz>a and   
  

have been calculated for An(III) cations by quantum chemistry 

calculations and normalized to Gd(III) and Dy(III) respectively. 

Experimental <Sz>a and Ca
D values account for experimental 

temperature dependences but the Ca
D values differ from 

theoretical values deduced from ab-initio calculations even more 

than the for Ln(III). 

It was anticipated that the application of Bleaney’s theory to 5f 

elements would encounter some difficulties in the description of 

the paramagnetic chemical shifts (δpara)i,a because of the larger 

interaction of the 5f orbitals with the ligands. This experimental 

and theoretical study shows that Fi values are not constant along 

the series and that the An(III) crystal field parameter is the same 

as the Ln(III) one while the splitting of the J ground term of the 

free ion is about three times larger in An(III) than in Ln(III) (see 

Tables S16 and S17). Consequently it appears that Bleaney’s 

parameters are hardly applicable to An(III) complexes and 

consequently <Sz>a and Ca
D parameters cannot be 

representative and used as covalence scale between Ln(III) and 

An(III).  

Experimental Section 

Caution! 
239

Pu, 
241

Am, 
244

Cm and 
249

Cf are highly radioactive isotopes and 

have to be handled in dedicated facilities with appropriate equipment for 

radioactive materials. Isotopy details of the actinide ions used for NMR and 

EXAFS analysis are U (99,29% 238; 0,71% 235), Np (mainly 237), Pu 

(0,082% 238; 81,498% 239; 17,296% 240; 0,747% 241 and 0,377% 242), Am 

(98,7% 241 and 1,3% 243), Cm (0,90% 243; 72,17% 244; 12,68% 245; 

13,09% 246; 0,59% 247 and 0,57% 248) and Cf (mainly 249).  
Synthesis of solids precursors and ligand: 

The hexachloride compounds of actinide and lanthanide(III) (Cs2NaMCl6) 

were prepared according to a protocol described by Morss et al. in 

1970.[34] Ethyl-DPA ligand was synthesized in the lab according to the 

protocol described by Shelkov. [35] Ethyl-DPA purity was checked by 1H 

NMR.  
1H NMR (400 MHz, DMSO-d6) : δ (ppm) 7.76 (s, 2H, H3), 2.65 (q, J = 7.58 Hz, 2H, 

H5), 1.18 (t, J = 7.58 Hz, 3H, H6). 

 

Preparation of AnIII/LnIII(DPA)3
3- solid compounds: 

The solution of ligand was prepared by dissolving corresponding 

amounts of 2,6-pyridine dicarboxylic acid (H2PDA) and imidazole (Im) 

with molar ratio H2PDA:Im 1:2 in water, so that concentration of 

(Him)2PDA being about 0.5 M.. Aqueous solutions of metal (M) nitrates 

concentration (0.05M<[M]<1.0M) were used with the exception of Pu 

complex. Storage at ambient temperature of aqueous solution prepared 

by addition of aqueous solution of metal nitrates into 0.5 M (HIm)2PDA 

solution up to molar ratio M:(Him)2PDA of about 1:4 leads to formation of 

large elongated prismatic crystals which colors meet the color of aqueous 

solution of corresponding metal nitrate, with the exception of Ce(III) 

complex which is bright yellow. In the case of Pu(III) the ~1 ml of Pu 

amalgam with Pu content of about 20-30 mg was placed in ~0.2 ml of 

aqueous solution of 0.1 M (Him)2PDA and sealed in glass ampoule. Very 

quickly large dark almost black crystals become to growth at ambient 

temperature. Once the crystals were removed from solution, they remain 

stable as dry solid at air storage. 

XRD 

X-ray diffraction experiments were carried out on a Bruker KAPPA APEX 

II autodiffractometer (MoKα radiation, graphite monochromator) at 100 K. 

The crystals were sealed in glass capillaries. For Am compound, first 20 

frames were remeasured at the end of the experiment to check for 

possible self-radiolysis. Average loss of diffraction intensities was less 

than 2%. Data reduction was made using SAINT-Plus program. 

Absorption correction was made using SADABS program. The structures 

were solved by direct method (SHELXS97) and refined on F2 with the 

full-matrix least-squares procedure (SHELXL97) using all reflections. The 
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H-atoms of PDA2- anions and imidazolium cations were placed in 

geometrically calculated positions. The H atoms of crystallization water 

molecules were located from difference Fourier maps and refined with 

restrained O-H distances and H-O-H angles. All the compounds are 

isostructural and crystallize in triclinic space group P-1. 

 

Preparation of An/Ln(ethyl-DPA)3
3- complexes: 

All preparation and experiments were carried out under air except for 

Pu(III) for which preparation and analysis was performed under argon 

using  standard vacuum-line techniques. 

The lanthanide and actinide complexes were synthesized from a 1:8 

mixture of solid precursor (Cs2NaMCl6) and ethyl-DPA respectively in 

DMSO. The mixture was stirred for 15 min at room temperature and the 

dipicolinate and CsCl excess was removed by centrifugation. 

NMR 
1H NMR spectra were recorded using 400 MHz Fourier transform 

spectrometers, Agilent DD2, set up for the study of radioactive samples. 

BMS were collected at every 5°C step in several temperature ranges. 

EXAFS 

The EXAFS measurements were carried out on the MARS beamline of 

the SOLEIL synchrotron facility. The optics consists essentially of a 

double-crystal monochromator which is used to select the incident 

energy of the X-ray beam. Horizontal and vertical focalization is also 

provided by a monochromator and by two reflecting mirrors which are 

used to eliminate the harmonic energy. All experiments were performed 

at room temperature (≈25°C) and the spectra were collected in 

transmission mode. In the EXAFS region, data were collected at a 

constant step (0.05 Å-1). Energy calibration was carried out by using K-

edge of yttrium to 17038 eV. EXAFS oscillations were extracted after 

normalization with the Athena software.[36] A square function was applied 

to the Fourier transform to obtain the pseudo-radial distribution function. 

The EXAFS data were then adjusted with the Artemis software[36] using 

the theoretical functions of phase and amplitude calculated with the 

FEFF8.4 code[19] from the single crystal XRD data. Adjustments have 

been performed on ΔE0, Amp, σ2, ΔR parameters corresponding to the 

offset to k = 0, the amplitude of the oscillations, the Debye - Waller 

parameter and the distance variations respectively. The coordination 

number N has been fixed with respect to crystallographic data.  

 
Quantum chemical calculations 

Complexes [Ln(DPA)3]
3- and [An(DPA)3]

3- have been described by SO-

CASSCF and SO-CASPT2 methods respectively using MOLCAS8.0 

suite of program.[37] using the crystallographic geometry for all complexes 

except for Cm(III) and Cf(III) complexes where optimized geometries. In 

the case of Am(III) and Pu(III), calculations with optimized geometries 

were compared to the crystallographic ones and  were found to be in 

very good agreement. All atoms are described with all electron basis sets 

ANO-RCC.[38] Ln and An  atoms with QZP and other atoms with TZP. In 

the case of Cf, ANO-DK3 augmented to TZP were used [37] The active 

space consists of n electrons in the 7 f orbitals for an atom of 

configuration 4/5fn. First, a multi-state CASSCF (Complete Active Space 

Self Consistent Field) calculation is performed.[39] For An(III) complexes, 

dynamical correlation is calculated using MS-CASPT2 method.[40] Spin-

orbit coupling is evaluated as a state interaction between CASSCF or 

MS-CASPT2 wave functions by the RASSI (Restricted Active Space 

State Interaction) method.[41] Spin-orbit integrals are evaluated within  

AMFI approximation.[42] For Ln(III) complexes, all the states with the 

largest spin were taken into account. For Am(III), 7 septets and 31 

quintets , for Pu(III), 21 sextets, 48 quartets and 31 doublets, for Cm(III), 

1 octet, 37 sextets and 16 quartets, and for Cf(III), 21 sextets and 63 

quartets are taken into account in the state interaction The calculation of 

all the properties is implemented in a local program. Magnetic 

susceptibility is calculated according to S. Vancoillie et al. [43] and <Sz> 

along the same scheme switching off the orbital contribution. 
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