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Abstract

The motion of dislocations, as computed by dislocation dynamics simulations, depends on the
underlying energetic model casted within a continuum approach. This model is nevertheless still
debated due to the difficulty in capturing the behavior of the atoms in the core of dislocations.
Here, we investigate the influence of the corresponding material core parameters on the outcome
of dislocation dynamics simulations of the Orowan bypassing mechanism. A parametric study
first reveals a large dispersion of the critical Orowan stress. Within a semi empirical approach,
a new predictive equation is then motivated to encompass the core parameters, and extend the
original formula proposed by Bacon, Kocks and Scattergood. Emphasizing the need to carefully
selecting these parameters, we finally advocate the use of the Orowan mechanism to calibrate
dislocation dynamics simulations.
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1. Introduction

Dislocation Dynamics (DD) simulations rely inherently on a continuum description of dislo-
cations based on the linear elasticity (e.g. [1]), whose accuracy in capturing the strain and stress
fields around dislocations has been proven experimentally over the years (e.g. [2]). As such, this
simulation method nevertheless fails at describing the discrete atomic positions in the immediate
vicinity of a dislocation, and consequently its energy. As pointed out by Bulatov and Cai [3],
this remark holds even for non-singular elasticity models [4, 5, 6] where the stress field remains
finite in the core of the dislocation. Most DD simulations therefore partition the total energy of
a dislocation into an elastic and a core-energy contribution [7], the latter being added to account
for whatever is left by the former in the dislocation core. Despite noticeable efforts in feeding
atomistic information to these models [8, 9, 10], limited efforts have been made so far to identify
the relevant parameters on atomistic data, nor to assess their influence on classical dislocation
mechanisms such as the Orowan process. The objective of this study is therefore to address this
issue and provide guidelines to choose the corresponding parameters.
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Among the various approaches used in current DD codes ([7, 11, 12, 13, 14, 15]) to account
for dislocations total strain energy, the choice was made here to use the isotropic non-singular
elastic model of Cai et al. [6] in combination with a basic core energy model. In the absence of
a comprehensive atomistic data base, the latter is simply based on the orientation dependent line
tension approach [16]. The former offers many mathematical and computational advantages, and
is currently widely used. As we will discuss it latter, these choices restraint the relevant energy
parameters to two values. We therefore believe that this study should be of use and applicable to
almost all the DD codes.

The Orowan mechanism [17] was selected in this study as our reference case. This mecha-
nism, which is the bypassing of strong precipitates made by a dislocation line moving in a given
glide plane, was preferred to other elementary phenomena for the following reasons. First, it
has an important impact on plastic strain hardening [18, 19] and has been widely studied in the
literature at the mesoscopic scale using dislocation dynamics [20, 21, 22, 23, 24]. Secondly, it
does not rely on unphysical arbitrarily pinned dislocation ends by contrast with the Frank-Read
source [25] and can therefore be simultaneously investigated using molecular dynamics (MD)
[19, 26, 27]. Finally, the Orowan mechanism questions simultaneously the underlying disloca-
tion strain energy through its effective line tension and the stress required to bow out the side arms
of the dislocation, as well as its stress field and the corresponding elastic interaction between the
arms as the dislocation bypasses the precipitates [20]. Previous studies investigated the effect
of precipitate size and distribution on the mechanical properties, but to our knowledge no study
investigated in a systematic manner the influence of the dislocation strain energy parameters used
in DD simulations.

This paper is organized as follows. In the next section we present a brief overview of dis-
location elastic theory and parameters appearing in the dislocation strain energy definition used
in most DD simulations, as well as the standard model used to predict Orowan stress in the case
of impenetrable obstacles. In section (3), we describe the details of the parametric study per-
formed in this article. The corresponding results are presented in section (4). The last section is
dedicated to a discussion and concluding remarks.

2. Theoretical background

In linear theory of elasticity, it is convenient to split the total energy of a dislocation into two
separate terms, one for the long range elastic field and the other for the core energy [2].

Etotal = Eelastic + Ecore (1)

Most of the total energy of a dislocation comes from the elastic strain energy contribution,
while the core energy is reported to constitute a few percent of the total elastic strain energy
[28, 1]. Assuming isotropic elasticity, the self-energy per unit length of a dislocation stored in a
cylindrical ring of inner radius r0 (core radius) and outer radius R0 in the case of infinite straight
dislocations is

Ein f
elastic =

µb2

4π(1 − ν)
(1 − ν cos2 θ) ln(

R0

r0
) (2)

where µ is the isotropic shear modulus, b is the Burgers vector and ν is the Poisson’s ratio. The
dislocation character term θ is the angle between the Burgers vector and the tangent vector along
the dislocation line. From Equation (2), we simply see that the elastic energy of a dislocation
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depends on i) the dislocation core definition via r0, ii) the initial and boundary condition via the
definition of R0 and iii) the dislocation character (edge or screw) via the pre-logarithmic energy
constant [2, 1].

Because of the inability of the elastic theory to represent the core energy of a dislocation,
and in the absence of comprehensive atomistic information, the choice was made here to define
the core energy as being directly proportional to the elastic energy per unit length of an infinite
straight dislocation through a single parameter, αcore, such as:

Ecore = αcoreEin f
elastic (3)

This approach is consistent with several available atomistic studies (e.g. [29, 1]) in which
the core energy amounted to a few percent of the elastic energy. For convenience, we introduce
at this point a term called the core energy parameter ζcore. The latter constant quantity take the
form:

ζcore = αcore ln(
R0

r0
) (4)

The core energy can therefore be written as:

Ecore = ζcore
µb2

4π(1 − ν)
(1 − ν cos2 θ) (5)

The driving force controlling dislocation dynamics is mainly a function of the loading stress,
and internal stresses generated by each dislocation line. The calculation of the internal stress
field associated with an ensemble of curved dislocations needs integrating equation [2, 30, 6]:

σαβ =
µ

8π

∮
∂i∂p∂pR[bmεimαdx′β + bmεimβdx′α]

+
µ

4π(1 − ν)

∮
bmεimk(∂i∂α∂βR − δαβ∂i∂p∂pR)dx′k (6)

where R is the distance between points α and β on the dislocation line and εi jk is Levi-Civita
notation.

A major difficulty in calculating the stress field of dislocations is related to the fact that
Equation (6) is divergent when R approaches zero. Different solutions have been proposed to
eliminate such singularity as in [5, 6, 31]. Among those solutions, the one proposed by Cai et
al. [6] features some specifications which makes it convenient for DD simulations. In brief,
it modifies the singular stress field solution through a mathematical transformation where R in

Equation (6) is replaced by Ra =

√
R2 + a2

0. This transformation implies the definition of a new
regularization parameter a0 coined as the dislocation core width parameter.

Hence, the dislocation strain energy definition used in this study reduces to two major param-
eters: the dislocation core width parameter a0 and the core energy parameter ζcore. In order to
assess the impact of these parameters, we perform DD simulations on the Orowan mechanism.

In a seminal work, Bacon et al. [20] investigated the bypass of a periodic row of impenetra-
ble spherical obstacles by an infinite dislocation with the Orowan’s mechanism [17]. From an
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analysis of the influence of the obstacle size (D) and the inter-obstacle distance (L) on the flow
stress, they defined the following equation (hereinafter referred to the BKS model):

τ = A
µb
L

[lnD̄ + B] (7)

In Equation (7), A is a pre-logarithmic factor that depends on the character of the dislocation.
A = 1 and A = 1/(1 − ν) for edge and screw dislocations, respectively. B is a fitting parameter
evaluated to 0.7 in the BKS paper. This model equation is widely used in the literature as a
reference for Orowan-like interactions [23, 24].

3. Simulation technique

Simulations were carried out using NUMODIS [15, 32], a 3D nodal dislocation dynamics
(DD) code based on the isotropic elastic theory of dislocations. Dislocation lines are represented
by a set of nodes, interconnected by straight segments nodes, whose properties are their Burgers
vector and their glide plane.

This study is performed on a single crystal of BCC Iron at 300K. At this temperature, the
lattice parameter equals 0.2855 nm, b the Burgers vector of slip systems 1/2〈111〉(110̄) equal
0.2475 nm and the shear modulus µ equal 63 GPa. The x, y and z axes of the simulated volume
are oriented in the [111], [1̄1̄2] and [110̄] crystallographic directions, respectively. Periodic
boundary conditions are applied in the [111] and [1̄1̄2] directions, while no particular conditions
are applied to the boundary surfaces in the [110̄] direction since they are normal to the dislocation
glide direction.

Following a robust methodology previously used to simulate the Orowan process [24, 23, 33],
one 1/2〈111〉(110̄) edge or screw dislocation is introduced in the periodic volume in front of
an impenetrable spherical obstacle with diameter D and cut by the dislocation glide plane at its
center (Figure 1). This obstacle is considered as an incoherent inclusion, whose elastic properties
are equal to the surrounding crystal. No specific stress field is therefore associated with the
obstacle. The spacing L between periodic images of the obstacle is varied by changing the
size of the simulation box along the direction parallel to the dislocation line. The dimension of
the simulated volume in the glide direction is systematically adjusted to allow for Orowan loop
formation before the dislocation line reach the boundary of the periodic volume. The z-axis is
systematically adjusted to be three times the obstacle diameter.
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Figure 1: Illustration of the DD Simulation volume. The green surface represents the glide plane of the mobile dis-
location, while arrows at the top and bottom surfaces indicate the direction of the applied shear stress. The straight
dislocation represents the initial dislocation configuration while the curved one is the critical configuration observed
before the formation of the Orowan loop.

Pure shear stress is applied in the b direction to impose a constant strain rate which cor-
responds to a constant dislocation velocity in the glide plane close to 3m/s. For reasons of
simplicity and to allow for comparison with previous computations made in FCC materials, we
consider in the simulations a simple linear over-damped mobility law similar to [34], in the form:

vs =
τb
B

(8)

where τ is the effective resolved shear stress and B is a viscosity coefficient set to 8 ∗ 10−5

Pa.s. The latter quantity accounts for dissipating processes like dislocation-phonon interactions.
All simulations are done in a quasi-static condition and tests have been made to verify that the
viscosity coefficient value has no influence on the computed critical stress. Here, it must be
noted that although thermally activated bypassing mechanisms are reported in the literature in
case of small obstacles, for reasons of simplicity no thermally activated dislocation property
like, dislocation cross-slip or climb, are considered in the present simulations. All the material
parameters used in the DD simulations are consistent with prior molecular dynamics simulations
found in [35, 36, 37].

In order to investigate the influence of the two core parameters, a parametric study of the
Orowan mechanism was conducted. The range of the many combinations we tested are summa-
rized in Table (1).

4. Simulation results

The results of all the calculations of the Orowan critical stress we conducted are plotted in
Figure (2). For comparison with the BKS model, the Orowan stress is plotted as a function of
the harmonic mean of the inter-obstacle spacing and obstacle diameter, (L−1 + D−1)−1. A large
dispersion of the values is found when changing the parameters controlling the dislocation elastic
energy. In the edge dislocation case, and for different values of the harmonic mean, an increase
of 100% in the critical stress is observed. Such dispersion is found to be even more important
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Table 1: Energy and geometrical simulation parameters we explored to calculate the Orowan stress.

Parameter Symbol Range Unit

Regularization parameter a0 1.5, 2.5, 4.0, 5.0 Å

Core energy parameter ζcore 0.09, 0.43, 0.86, 1.28 -

Poisson ratio ν 0.0, 0.2, 0.33, 0.435, 0.495 -

Inter-obstacle distance L 100.0, 316.2, 1000.0 b

Obstacle size D 10.0, 31.62, 100, 316.2 b

in the case of screw dislocations, where the critical stress increases of approximately 280% for
different sets of parameters.

Figure 2: Result of the Orowan stress calculation with screw and edge dislocations in reduced units. Each mark is
a unique combination of the parameters reported in Table (1). Continuous lines are the prediction of the BKS model
(Equation 7).

To understand the effect of each parameter, our simulation results are now plotted separately
by fixing all but one of the energy parameters. In Figure (3), we show the effect of changing the
Poisson ratio while the other simulation parameters are L = 1000b (247 nm), D = 100b (24.7
nm), a0 = 0.4 nm and ζcore = 0.86.
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Figure 3: Variation of the Orowan stress as function of the Poisson ratio for screw and edge dislocations. Other simulation
parameters are L = 1000b (247 nm), D = 100b (24.7 nm), a0 = 0.4 nm and ζcore = 0.86.

The critical stress of an edge dislocation is observed to be quasi-independent of the Poisson
ratio ν, while a non-linear dependence of the form 1/(1−ν) is observed in the case of a screw dis-
location. This observation is in agreement with the line tension model proposed by De Wit [16]
that accounts for the effect of the dislocation character and the simulation results first reported
in [20]. Figure (3) as well shows that when ν equals zero, the Orowan stress is independent of
the dislocation character and the Orowan stress is independent of the dislocation line character
as expected.

The second analyzed simulation parameter is the core energy parameter ζcore. As shown in
Equation (3), αcore has a linear influence on the total strain energy of the dislocation and therefore
on dislocation line tension. Hence, if the ratio ln(R0/r0) is constant, a linear dependence is
observed on the Orowan stress as function of ζcore. The same tendency is observed on screw
and edge dislocations (see Figure 4). More precisely, increasing ζcore by a factor of 10 increases
the critical stress by about 33%. This reveals a fairly high dependence of DD simulations on
the definition of the dislocation core energy. This point has been probably been overlooked in
several existing studies.
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Figure 4: Variation of the Orowan stress as function of the core energy parameter ζcore. Other simulation parameters are
set to L = 100b (24.7 nm), D = 10b (2.47 nm), a0 = 0.15 nm and ν = 0.435.

With regard to the effect of a0, the regularization parameter, we see that the Orowan stress
has an inverse logarithmic dependence on this parameter. Such behavior is shown in Figure (5),
where other simulation parameters are L = 1000b (2470 Å), D = 100b (247Å), ζcore = 0.86 and
ν = 0.435.

Figure 5: Variation of the normalized Orowan stress as function of core width parameter a0. Other simulation parameters
are set to L = 1000b (2470 Å), D = 100b (247Å), ζcore = 0.86 and ν = 0.435.

The inversely logarithmic dependence observed in Figure (5) can be motivated by the dislo-
cation energy expression computed by Cai et al. [6] in the context of the non-singular theory.
Indeed, the core width parameter a0 appears in the denominator of the logarithmic term, as if r0
was replaced by a0 in equation (2). Consequently, the simulated Orowan stress is decreased by
approximately 18% and 16%, for screw and edge dislocations respectively, when increasing the
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regularization parameter a0 by a factor of 3. This result raises doubts about the relevance of DD
simulations, which use regulation parameters 10 to 100 times larger than the core radius of the
dislocations defined by atomic simulations for computational reasons.

Lastly, we show that in agreement with the BKS model for a given set of simulation param-
eters, the Orowan stress is logarithmically dependent on the harmonic mean of inter-obstacle
distance and obstacle size. Such result is presented in Figure (6) with a set of simulation pa-
rameters (a0 = 4.5 nm, ζcore = 0.86 and ν = 0.33) and is in good agreement with the solution
found in previous simulations. As discussed in [20], the evolution of the Orowan stress is here
well described with the help of a harmonic mean between the inter-obstacle distance L and the
obstacle diameter D. When L is much larger than D the average tends to L and the required
stress to overcome the precipitate decreases, since the line tension of a dislocation in inversely
proportional to its length, and vice versa.

Figure 6: Normalized Orowan stress vs the harmonic mean of inter-obstacle length and obstacle diameter. The simulation
parameters controlling the elastic energy are set to a0 = 4.5 nm, ζcore = 0.86 and ν = 0.33. The continuous lines are the
BKS model prediction with the fit parameter calculated in [20].

5. Discussion and concluding remarks

In this work, we studied in α-iron the interaction of infinite 1/2〈111〉(110̄) screw and edge
dislocations with a periodic array of impenetrable obstacles of different size and spacing. These
configurations are standard simulation problems previously used to study the Orowan mecha-
nism with MD and DD simulations. The reported results are in good agreement with previous
studies, but reveal a large dispersion of results when changing the simulation parameters used
to define the dislocation strain energy. More specifically, for the different solutions of simula-
tion parameters, the calculated Orowan stress can vary by 100% and 280% for edge and screw
dislocations, respectively.

In order to reveal the collective effect of the studied parameters to the Orowan stress, we
propose to combine them in a new equation. This equation represents the sum of two contribu-
tions. It reflects the strain energy decomposition into elastic and core energy contributions (see
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Equation 1). The first contribution is similar to the one defined in the BKS model, but includes
the contribution of the core-width parameter a0, as it modifies the elastic strain energy in the
framework of the non-singular dislocation theory. The second term accounts more specifically
for the contribution of the dislocation core energy via the parameter ζcore. Indeed, as revealed in
Figure (4), this contribution contributes significantly to the dislocation line tension and cannot
be neglected when modeling phenomena involving dislocations curvature like the Orowan pro-
cess. The following modified Orowan equation is the outcome of fits made with more than 1000
simulations run with different parameters.

τOrowan =
µb
L

A
2π

[1.23( ln
D̄
a0
− 0.18 )+ζcore

]
(9)

The harmonic mean term of L and D appears in the numerator in conformity with the BKS
model, while the core width parameter (a0) appears in the denominator since τOrowan has an
inverse dependence on this term. The additional right hand side term of the equation account
for the linear contribution of the core energy to the Orowan process. As illustrated in Figure (7),
prediction made with Equation (9) gives excellent results and a correlation factor better than 0.99
when considering all our simulation data.

Figure 7: Comparison between simulation results and Equation (9) prediction for the 1000 combinations of parameters
taken from Table (1) and tested in the present study.

It should be noted that Equation (9) is generic and can be used to interpolate any type of
results on the Orowan mechanism. Thus, it becomes possible to perform a reverse analysis
to identify the parameters of a DD simulation that can reproduce experimental data or other
simulation results. In the following, an example of such adjustment is given. Equation (9) is
used to define the parameters that are needed in our DD simulation to reproduce the results on
the Orowan stress obtained by Lehtinen et al. with MD simulations [38]. These results are
discussed and compared to the BKS model.

Lehtinen et al. studied the interaction between 1/2〈111〉(110̄) edge dislocation with non-
coherent cementite precipitate (Fe3C) of different spacing using molecular dynamics. These
calculations were produced using the interatomic potential H13 proposed by Henriksson et al.
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describing the FeCrC system [39]. Parameters that can be directly shared between MD and DD
simulations areµ = 75 GPa, ν = 0.379 at T = 750K, b = 0.2502nm and obstacle diameter
D = 2nm. Use is then made of Equation (9) to identify the missing parameters needed in the
DD simulations to correctly fix the dislocation strain energy and to be in agreement with the
prediction of the interatomic potential used in the MD simulations. Such adjustment gives for
the dislocation core width parameter a0 = 4.5nm and for the dislocation core energy parameter
ζcore = 0.51. Both parameters value are physically meaningful and allow running DD simulations
to either reproduce quantitatively the MD simulation results in a few seconds or to upscale the
MD simulation results. To illustrate this point, a comparison is made in Figure (8) between the
initial results of Lehtinen et al., the results we obtained with the adjusted DD simulation and the
BKS model predictions.

Figure 8: Comparison between critical Orowan stress as function of the inter-obstacle distance L for obstacle of D = 2
nm found using MD and BKS model and DD model in Equation (9). DD simulation parameters are a0 = 4.5 nm,
ζcore = 0.51.

The results of DD simulations when parametrized with the help of Equation (9) show an
excellent match with the Orowan stresses computed with MD simulations. More precisely, the
difference between the stress found in DD and MD simulations at different obstacles spacing is
on average less than 2.4%. It is worth noting also that this difference is 53% between the BKS
model and the MD simulation results. Such a difference could be interpreted as coming from the
existence of thermally activated phenomena in the MD simulations that cannot be reproduced
with any approach based only on the elastic theory. Our study, rather suggests that the dislocation
strain energy that controls the dislocation dynamics in the MD simulations is simply different
from the definition used initially in the BKS model.

To conclude, it should be noted that the parameterization of the dislocation strain energy in
the framework of the non-singular dislocation theory is governed by the idea that the total dis-
location energy should remain unchanged when changing the regularization amplitude. Hence,
when increasing the dislocation core width parameter in a DD simulation (to avoid using tiny
time steps), the dislocation core parameter is usually also increased to keep the total energy
constant. As illustrated by our study, such solution without a systematic investigation of the pa-
rameterization effect could be problematic. Indeed, we show that the dislocation dynamics are
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not affected in a simple manner by both parameters. For instance, some new DD simulations
to be published in a forthcoming paper have shown that when modeling the interaction between
a dislocation and radiation-induced loop defects, a drastic effect is observed on the dislocation
dynamics by changing a0 a few percent. Such parameterization change may even lead to the
modeling of very different contact reactions.

In summary, a large dispersion is observed in DD simulation results depending on the choice
of parameters used to control the dislocation strain energy. Such uncertainty has to be eliminated
so that DD simulation results can be compared with MD and DD simulations or even experiment.
A parametric study is proposed to incorporate the effect of essential simulation parameters in an
equation form useful to predict the Orowan stress. This model reveals the existing coherence
between the many simulations we performed and provides the means to calibrate rigorously
future DD simulations. The model was tested and validated by a direct comparison with MD
simulations. This work opens the door to more quantitative comparison between DD simulations
and other simulation technics.
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