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Abstract

In this paper we propose a new non-linear technique for accelerat-
ing source iterations for the discrete-ordinates transport equation. The
method, called Spatially Variant Rebalancing Method (SVRM), is based
on the computation of the zero and first order spatial variation of the
neutron balance equation. The non-linear acceleration is applied to the
method of characteristics (MOC) with a step-approximation of the source.
The new acceleration is meant to catch high-order variation of the neutron
flux within the spatial mesh. The paper proposes a numerical analysis of
the technique based on the explicit computation of the Jacobian. The
latter is analyzed with both spectral and Fourier analysis. Also, a com-
parison of the new method with CMFD, DSA, and BPA has been done
for a parametrized heterogeneous problem that allows the study of the
performances of the method in different transport regimes.

1 Introduction

The time to solution of large-scale deterministic neutron transport codes are
often based on the synergy of the source iteration operator (SI operator, also
referred to as the transport operator) and the acceleration operator. While the
transport operator defines the accuracy of the results, the acceleration operator
speeds up the convergence of the SI. This acceleration is typically achieved by
converging the scattering and of the fission source. The SI operator alone con-
verges in a reasonable time only when the problem is dominated by absorption
and high rates of leakage. Contrarily, for the simulation of a nuclear reactor,
the SI shows poor performances since the transport regime is dominated by
scattering [1]. Various forms of coarse-mesh rebalancing methods (CMR) were
proposed in the early days of transport simulations as an acceleration method-
ology [2]. These non-linear methods were improved by the coarse-mesh finite
differences method (CMFD) that was developed independently later on [3].
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The CMFD method has proved effective in various successful numerical im-
plementations, especially in synergy with the method of characteristics (MOC)
SI operator [3]. The non-linear nature of the acceleration has allowed it to ef-
fectively reduce the number of transport iterations while reducing the memory
footprint. However, despite these beneficial attributes, CMFD can lead to un-
stable or divergent iteration behaviour for some critical spatial configurations.
Cho and Park have shown that the CMFD is effective when the coarse cell op-
tical thickness does not exceed 1 mean free path (mfp), but CMFD becomes
rapidly unstable for cells with large optical thicknesses [4]. One of the aspects
of CMFD that causes this instability is it’s representation of the spatial vari-
ation of flux not conforming to that of transport. For example, in the case of
MOC, even though the source has a step approximation, the angular flux and,
thus, the scalar flux have an exponential variation within the cell. However,
The spatial distribution of the flux within the cell is not commonly provided
by the transport operator. In the case of the standard step approximation of
the MOC, only the average scalar flux (or, more generally the average angular
moments) is computed/provided, for the purpose of preserving consistency of
the source. But the contribution of the high order variation of the flux is im-
plicitly contained by the flux on the boundary of the cell thanks to the ’exact’
propagation equation. Moreover, in the case that a coarse model of the trans-
port mesh is used by CMFD, the variation of the flux within the coarse cell is
not taken into account do to the lack of available degrees of freedom. Thus,
taking advantage of the high order flux variation contained within the interface
flux and increasing the number of spatial degrees of freedom are the principal
motivations behind the nonlinear rebalancing method presented in this article.

In this paper, a spatially variant rebalancing method (SVRM) is proposed.
This method takes into account the linear spatial variation of the flux within
the cell and has been designed to offer better stability and performance than
the currently available acceleration methods. It is meant to accomplish this by
using a higher order set of equations to represent the scalar flux and surface cur-
rent relationship within a spatial region. This is particularly necessary when the
neutron flux is convective within the cell. While, when the neutron flux is dif-
fusive, the method reduces to a CMR method. In this paper we will discuss the
derivation of the SVRM method and analyze the results of it’s spectral radius,
Fourier stability analysis, and numeric benchmarking in 1D. The 1D transport
equation is solved by means of the MOC equations with a step approximation.

The SVRM method is based on two balance equations, both obtained by
the original transport equation. The first is the classical zero-order balance
equation which is utilized by the most common rebalancing methods such as
CMR or CMFD, while the second is the first order balance equation that takes
into account the linear variation of the flux. This second equation is obtained
by typical projection technique of the particle balance equation onto the lin-
ear space. In particular, the weight functions are Legendre polynomials up to
the first order while the trial function is parabolic. The SVRM balance equa-
tions are completed by four closures equations relating the average flux, the
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interface flux and the average current to the interface current. Compared to
CMFD, SVRM has an additional balance equation that doubles the number of
degrees of freedom. In the formulation that we propose, instead of solving for
the flux, as is done by CMFD and CMR, SVRM solves for the partial outgoing
currents. This choice has been made to allow for the correction of the surface
interface-flux, speeding up the convergence of the incoming angular flux. This
correction is particularly effective when the transport operator is solved using a
Block-Jacobi iteration scheme, as is commonly done for parallel schemes based
on domain decomposition.

The SVRM method has been particularly addressed to speed up the conver-
gence of parallel computing. In this paper, the Gauss-Jacobi transport iteration
will be analyzed with particular attention. In this particular iteration scheme,
each region is potentially solved independently from the others. Moreover, all
the problems we propose deals with homogeneous boundary conditions. Also in
this case, the upgrade of the boundary angular flux is done by a Gauss-Jacobi
iteration (instead of a direct elimination.) As we will see in the spectral analysis,
the boundary conditions upgrade particularly affects the convergence of opti-
cally thin problems, when the convergence of the boundary flux is dominant
with respect to the iterior flux.

The rest of paper is organized as follows: Section 2 explains the SVRM in
terms of balances equations, closure relations and consistency, Section 3 shows
the transport operator and matrix formalism that we adopted for the numerical
analysis out of convenience. Then, Section 4 is dedicated to the computation of
the Jacobian and to the spectral and Fourier analysis, Section 6 depicts some
numerical results and Section 7 is dedicated to the conclusions and further
remarks.

2 Spatially Variant Rebalance Method

The first equation of SVRM is simply the neutron balance equation defined by
Eq. (1) below for a discrete portion of space x ∈ [−∆/2,∆/2].

J(∆/2)− J(−∆/2) +

∫ ∆/2

−∆/2

Σr(x)φ(x) dx =

∫ ∆/2

−∆/2

q(x) dx (1)

where φ(x) = 1
2

∫ 1

−1
ψ(x, µ)dµ is the scalar flux and J(x) = 1

2

∫ 1

−1
µψ(x, µ)dµ

is the current, i.e. the zero and the first angular moments respectively, while
Σr(x) = Σt(x) − Σs0(x) is the removal cross section while xR and xL are the
right and left coordinates of the slab.

To obtain the second equation that characterizes the acceleration method, we
introduce a first order spatial projection of the balance equation. After angular
integration, we project the neutron balance equation on the linear subspace, by
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applying the integration
∫∆/2

−∆/2
x dx over the balance equation, obtaining

J(xR) + J(xL)

2
∆−

∫ xR

xL

J(x) dx+

∫ ∆/2

−∆/2

Σr(x)φ(x) xdx =

∫ ∆/2

−∆/2

q(x) xdx. (2)

Eq. (2) represents the ”balance” for the first-order spatial variation. The equa-
tions (1) and (2) are discretized to make the system numerically solvable. The
effectiveness of the acceleration method is tied to how accurately the acceler-
ation solution basis represents that of transport. In the classical rebalancing

methods Eq. (2) reduces to the identity 1
(xR−xL)

∫ xR
xL

J(x) dx = J(xR)+J(xL)
2 ,

i.e. the average net current within the slab [xL, xR] is equal to the linear average
of the values of the current to the left and to the right, because the spatial rep-
resentation of the flux and of the source is step constant. In order to solve the
first order expansion, knowledge of the spatial distribution of the scalar flux and
fixed source within a region is required. For example, in the step approximation
of the source, the first order moment of the scalar flux in an homogeneous slab
∆ can be explicitly computed by∫ −∆/2

−∆/2

dx xφ(x) =

∫ ∆/2

−∆/2

dx x

∫ 1

0

dµ [ψL(µ)− Σs0φ+ q

Σ
](1− e−Σ(x+∆/2)/|µ|) (3)

+

∫ ∆/2

−∆/2

dx x

∫ 1

0

dµ [ψR(−µ)− Σs0φ+ q

Σ
](1− e−Σ(∆/2−x)/|µ|)

Where ψL(µ) and ψR(−µ) are the left and right boundary angular fluxes, re-
spectively, while q is the constant source. Such spatial moment equation is not
provided by the standard MOC, which is based on the step approximation of
the source. Because of such lack of knowledge of the spatial moments, the Eq.
(2) must be artificially satisfied. Moreover, Eq. (2) becomes non-trivial when
the flux and the source have a spatial variation within the discrete region. One
of the goals of SVRM is to use a more accurate spatial representation by taking
profit of valuable information contained in the interface quantities.

2.1 Flux, source and current spatial representation

Letting the function f(x) represents the scalar flux or the current, the MOC
provides in x ∈ [−∆/2,∆/2] three values (f, fL, fR), which are the average of
f(x), and the point-wise values on the left and right boundaries, respectively. In
this work, a parabolic trial function is used to represent the spatial distribution
of f(x) within each region. The generic function f(x) is approximated by the

parabolic function f̃(x), as depicted in Fig. 2.1,

f̃(x) = f + (fR − fL)
x

∆
+ 4(

fR + fL
2

− f)(3
x2

∆2
− 1). (4)

The expansion (4) is constructed such that the following three conditions
are met,
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f̃(−∆/2) = fL, (5)∫ ∆/2

−∆/2

f̃(x)dx = ∆f,

f̃(∆/2) = fR.

Figure 1: shows the spatial distribution of the scalar flux and fixed source within
each spatial region, assumed by SVRM

Rewriting equations (1) and (2) using the parabolic trial function in the flux
and current integrals, we obtain

JR − JL + τrφ̄ = q̄∆ (6)

for Eq. (1) and

∆(
JR + JL

2
− J̄) + δ̃τr(φR − φL) = ∆δ̃(qR − qL) (7)

for Eq. (2). Here, the symbols are

• φL/R and φ̄ indicating respectively the interface scalar on the left/right
side and the average scalar flux,

• JL/R and J indicating respectively the interface current on the left/right
side and the average current,

• qR/R and φ̄ indicating respectively the interface scalar on the left/right
side and the average scalar flux,

τi,R = (Σt − Σs0)∆ indicating the removal optical thickness, and
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• δ̃ is the modified spatial parameter that takes into account the first order
variation, in particular

δ̃ =
∆

12
(8)

The parameter δ̃ plays a key role to discriminate the trial expansion basis’. By
introducing a partition of the slab with the region index i = 1, . . . , I, where I is
the number of regions, and specializing Eqs. (6) and (7) in each spatial mesh,
the acceleration method has 6 unknowns per mesh cell i,

[φi,L, φi,R, φ̄i, Ji,L, Ji,R, J̄i], (9)

and three given values for the source, i.e. [qi,L, qi,R, q̄i]. It is important to
notice the transport equation constrains the scalar flux and the current to be
continuous at each surface, thus, due to our notation, we add the continuity
relations

φi,L = φi−1,R and φi,R = φi+1,L,

Ji,L = Ji−1,R and Ji,R = Ji+1,L.

Note that the source is not constrained to be continuous at the region interfaces.
Next, we use the relation

Ji,R = J+
i,R − J

+
i+1,L, and

Ji,L = J+
i−1,R − J

+
i,L,

to express the acceleration equations (1) and (2) in terms of the partial currents,

i.e. J+
i,R = 1

2

∫ 1

0
µψ(∆

2 , µ)dµ and J+
i,L = 1

2

∫ 0

−1
|µ|ψ(−∆

2 , µ)dµ. Thus, Eq. (1)
and Eq. (2) become

−J+
i+1,L + (J+

i,R + J+
i,L)− J+

i−1,R + τi,Rφ̄i = q̄i∆i, (10)

∆i(
J+
i,R − J

+
i,L + J+

i−1,R − J
+
i+1,L

2
− J̄i) + δ̃iτi,r(φi,R − φi,L) = ∆iδ̃i(qi,R − qi,L).(11)

2.2 Closure equations

After discretizing the acceleration equations (10) and (11), the method has more
unknowns than constraints. Thus, we introduce closure relations to constrain
our additional unknowns.

First, we assume the surface flux proportional to the sum of the partial
surface current, as is commonly the case for pCMR type accelerations, thus

φi,R = β̂i,R(J+
i,R + J+

i+1,L), (12)

φi,L = β̂i,L(J+
i,L + J+

i−1,R). (13)

Here, the coefficients β̂i,L/R are the transport computed parameters and repre-
sent the inverse of the albedo coefficients. The underlying assumption for Eq.
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(12) is that the distribution of the angular flux within each partial current is
fixed at interface. This assumption, in general, is fairly accurate when we have
isotropic (or mildly anisotropic) scattering since then the scalar flux will uni-
formly contributes to all directions of the angular flux, and the contribution of
the incoming angular flux distribution to the outgoing angular flux distribution
has already been accurately solved for by the transport operator. In the case
that we have a P1 distribution of the angular flux, β̂i,R/L would be equal to 1
and Eq. (12) would be accurate. Finally, using Eq. 14 we assume that φ̄i is
proportional to the sum of the outgoing partial current, as

φ̄i = β̂i(J
+
i,R + J+

i,L). (14)

The closure relation (14) uses the same underlying assumption made by Eq.
(12 ) except that we are now applying it over the entire volume of the region.
Finally, we link the average current of the region to the boundary spatial current
as follows

J̄i = α̂i,RJ
+
i,R − α̂i,LJ

+
i,L. (15)

Eq. (15) assumes a linear relation between J̄i, Ji,L, and Ji,R. Note if J̄i ∼ 0
then α̂i,R = α̂i,L = 1.

Note that all nonlinear coefficients β̂i,R, β̂i,L, and β̂i are set by the inversion
of the equations that introduce them, while α̂i,R and α̂i,L are yet to be specified.

2.2.1 The average current closure relation

The α̂i,R and α̂i,L coefficients in Eq. (15) are derived by an explicit use of the
transport transmission equation. Since the source is constant within the cell,
the current depends only from the contribution of incoming angular flux, thus

J̄i =

∫ 1

0

dµ µ[ψR(µ)− ψL(µ)](1− e−τi/|µ|). (16)

Relation (16) is modified as

J̄i =

∫ 1

0

dµ µ[ψR(−µ)
J+
i,R

J+
i,R

− ψL(µ)
J+
i,L

J+
i,L

](1− e−τi/|µ|), (17)

and by comparing Eq. (17) we obtain the definition for the coefficients α̂i,R and
α̂i,L, as

α̂i,R =

∫ 1

0
dµ µ(1− e−τi/|µ|)ψR(−µ)

J+
i,R

, and (18)

α̂i,L =

∫ 1

0
dµ µ(1− e−τi/|µ|)ψL(µ)

J+
i,L

,

where the integrals are performed with the SN quadrature formula.
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2.2.2 Consistency with the transport and reduction of the spatial
order of the acceleration

If the transport numerical scheme is conservative, the first equation, i.e. Eq.
(1) is satisfied since it is the balance equation enforced by the transport. How-
ever, because the parabolic representation of the flux and of the current is an
artifact, the second equation is not necessarily satisfied by the transport so-
lution. Therefore we need to use a nonlinear parameter η̂ to ensure that the
second equation is satisfied by the converged solution. Additionally, the current
or surface flux terms in the second equation, could go to zero when the flux
and currents are flat. Thus, we need to ensure that the relation we choose to
represent the parameter η̂ will not result in an undefined value for these cases.
From these requirements, we write Eq. (2) in terms of partial currents

∆i(
(J+
i,R − J

+
i,L) + (J+

i−1,R − J
+
i+1,L)

2
− α̂i,RJ+

i,R + α̂i,LJ
+
i,L) + (19)

δ̃iτi,r[β̂i,R(J+
i,R + J+

i+1,L)− β̂i,L(J+
i,L + J+

i−1,R)]

= ∆iδ̃i(qi,R − qi,L),

and, since the non-linear coefficients together with the partial currents are all
positive quantities, we can rearrange Eq. (19) into positive-signed terms Pi and
negative-signed terms Ni, obtaining

Pi = Ni

where

Pi = (
∆i

2
+ δ̃iτi,rβ̂i,R)J+

i,R +
∆i

2
J+
i−1,R + α̂i,LJ

+
i,L + δ̃iτi,rβ̂i,RJ

+
i+1,L + ∆iδ̃iqi,L

(20)
and

Ni = (
∆i

2
+ δ̃iτi,rβ̂i,L)J+

i,L +
∆i

2
J+
i+1,L + α̂i,RJ

+
i,R + δ̃iτi,rβ̂i,LJ

+
i−1,R + ∆iδ̃iqi,R.

(21)
We introduce a parameter η̂ such that the transport satisfies the equation

η̂iPi = (1− η̂i)Ni

where η̂ is computed by transport-computed terms (20) and (21) as

η̂i =
Ni

Pi +Ni
(22)

8



Thus Eq. (19) is rewritten as

[η̂i(
∆i

2
+ δ̃iτi,rβ̂i,R)− (1− η̂i)α̂i,R]J+

i,R + (23)

[η̂i
∆i

2
− (1− η̂i)δ̃iτi,rβ̂i,L]J+

i−1,R +

[η̂iα̂i,L − (1− η̂i)(
∆i

2
+ δ̃iτi,rβ̂i,L)]J+

i,L +

[η̂iδ̃iτi,rβ̂i,R − (1− η̂i)
∆i

2
]J+
i+1,L

= η̂i∆iδ̃iqi,R − (1− η̂i)∆iδ̃iqi,L

In the case that the current is almost zero and the flux is slowly varying,
the SVRM reduces the spatial order. This is done specifically by modifying
the imposed relationship between the current and the scalar flux. The second
equation of the SVRM is substituted with the following closure relation,

J+
i,R = r̂iJ

+
i,L. (24)

Using Eq. (24) into Eq. (10), and solving Eq. (10) for the flux, it is easy to
show that the SVRM method reduces to the CMR method defined by equation
25.

ĝi,Rφ̄i − ĝi+1,Lφ̄i+1 − ĝi−1,Rφ̄i−1 + ĝi,Lφ̄i + (1− ci)τiφ̄i = q̄i∆i (25)

where ĝi,R = r̂i
β̂i(r̂i+1)

and ĝi,L = 1
β̂i(r̂i+1)

. The new relationship between the

current and the scalar flux will be accurate in cases when the outgoing partial
current is primarily dependent on the scalar flux. This is often the case in
optically thick materials.

2.3 Boundary conditions

The last constraints are the boundary conditions. Since the transport operator
does not invert the boundary solution with each iteration, until the final solu-
tion is reached, there is an erroneous current on the boundary surfaces. Since
the final transport solution has to satisfy the boundary conditions, the SVRM
method makes use of the ”true” boundary conditions instead of using a non-
linear albedo coefficient as is commonly done in the CMR and CMFD. This
is a way of achieving additional acceleration on the boundary. The boundary
conditions can be expressed in a general form by Eqs. (26) and (27) for the left
and right sides respectively,

J
+,(n+1)
0,R = vL←LJ

+,(n+1)
1,L + vL←RJ

+,(n+1)
I,R for i = 1, (26)

J
+,(n+1)
I+1,L = vR←LJ

+,(n+1)
1,L + vR←RJ

+,(n+1)
I,R for i = I. (27)
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Here, the currents J
+,(n+1)
0,R and J

+,(n+1)
I+1,L indicate the incoming boundary cur-

rent on the left and on the right sides respectively. The albedo coefficients vL←L,
vL←R, vR←L, and vR←R are defined by Table (28).

Reflective Periodic Vacuum Fourier periodic
vL←L = 1 0 0 0

vL←R = 0 1 0 e−j
2πζ
∆1

(x1−∆1
2 )

vR←L = 0 1 0 e
−j 2πζ

∆I
(xI+

∆I
2 )

vR←R = 1 0 0 0

(28)

2.4 Matrix form of SVRM

The SVRM equations (10) and (11) can be cast in a matrix form of the type

(Â+ B̂) J = QAc, (29)

where Â counts for internal contribution from regions while B̂ counts for bound-
ary condition and QAc for the source. More specifically, for a node i the equa-
tions take a 2x2 matrix form of the type

Âi,i−1 Ji−1 + Âi,i Ji + Âi,i+1 Ji+1 = QAc,i when i 6= 1 and i 6= I (30)

where

Ji =

[
J+
i,L

J+
i,R

]
and QAc,i =

[
∆iq̄i

∆iδ̃i(η̂qi,R − (1− η̂)qi,L)

]
.

By substituting in the closure relations, Eqs. (15)-(14), into Eq.(6) and using
Eq. (23), we get an expression for the 2x2 matrices Âi,i−1, Âi,i and Âi,i+1 for
i = 1, . . . , I,

Âi,i−1 =

[
0 −1

0 η̂i
∆i

2 − (1− η̂i)δ̃iτi,rβ̂i,L

]
, (31)

Âi,i =

[
1 + β̂iτi,R 1 + β̂iτi,R

[η̂iα̂i,L − (1− η̂i)(∆i

2 + δ̃iτi,rβ̂i,L)] [η̂i(
∆i

2 + δ̃iτi,rβ̂i,R)− (1− η̂i)α̂i,R]

]
,

(32)

Âi,i+1 =

[
−1 0

η̂iδ̃iτi,rβ̂i,R − (1− η̂i)∆i

2 0

]
, (33)

and finally for Â,

Â =



Â1,1 Â1,2 0 . . . 0
. . .

. . .
. . .

. . .
...

0 Âi,i−1 Âi,i Âi,i+1 0
...

. . .
. . .

. . .
. . .

0 . . . 0 ÂI,I−1 ÂI,I

 (34)
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The matrix B̂ of the boundary conditions is obtained by applying Eq. (26) and
(26) to Eq. (30) written for the cells i = 1 and i = I, that holds

B̂ =


Â1,0B̂L,1 0 . . . 0 Â1,0B̂L,I

0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0

ÂI,I+1B̂R,1 0 . . . 0 ÂI,I+1B̂R,I

 (35)

where

B̂L,1 =

[
0 0

vL←L 0

]
, (36)

B̂L,I =

[
0 0
0 vL←R

]
, (37)

B̂R,1 =

[
vR←L 0

0 0

]
, (38)

B̂R,I =

[
0 vR←R
0 0

]
. (39)

(40)

3 Defining the Transport Operator

For the sake of the simplicity we will consider an S2-like formalism considering
the index for the angular direction as 1 for directions with µ > 0 and 2 for
directions with µ < 0. Because of the linearity of the transport operator, the
interior scalar flux and the outgoing surface fluxes can be expressed like a linear
combination of the sources, from scattering and external fixed sources, and the
incoming fluxes. In the case of

ψi,R,1 = aiψi−1,R,1 +
bi
2
φi +

b′i
2
qi, (41)

ψi,L,2 = aiψi+1,L,2 +
bi
2
φi +

b′i
2
qi, (42)

φi = ki(ψi,L,1 + ψi,R,2) + diφi + d′iqi (43)

• ψi,L,1/2 is the incoming flux over the left side of the mesh and for directions
of the first/second quadrant,

• ψi,R,1/2 is the incoming flux over the left side of the mesh and for directions
of the first/second quadrant,

• φi is the average scalar flux,

• qi is the average fixed source in the region i, and
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• (ai, bi, b
′
i, ki, di, d

′
i) are the numerical transport coefficients of the region

i that depends on |µ| . In particular, ai, bi and ki are coefficients if we
use an S2 quadrature formula, while they diagonal matrices of dimension
N
2 for an arbitrary SN with N > 2. For the sake of simplicity we will
use an S2 formalism. For the notation being used we have to enforce the
continuity relation for the incoming angular flux, i.e. ψi,L,1 = ψi−1,R,1 and
ψi,R,2 = ψi+1,L,2.

If we consider the Ψi as the vector containing the unknown for region i, i.e.
the scalar flux plus the outgoing angular fluxes, we get

Ψi =

ψi,L,2ψi,R,1
φ̄i


and we can express Eqs. (41)-(43) as

Ψi = Ti,i−1 Ψi−1 + Ti,i Ψi + Ti,i+1 Ψi+1 +Q′i (44)

where

Ti,i =

0 0 bi/2
0 0 bi/2
0 0 di

 , (45)

Ti,i−1 =

0 0 0
0 ai 0
0 ki 0

 ,
Ti,i+1 =

ai 0 0
0 0 0
ki 0 0


are the transport matrices for the region i, and Q′i

Q′i =

b′i q2b′i
q
2

d′iq


is the contribution from the fixed source. We can distinguish two iterative
schemes, i.e. the Gauss-Jacobi (G-J) and Gauss-Seidel (G-S) respectively, by
simply specialize Eq. (44) as

Ψ
(n+1/2)
i = Ti,i−1 Ψ

(n)
i−1 + Ti,i Ψ

(n)
i + Ti,i+1 Ψ

(n)
i+1 +Q′i, (46)

for the pure G-J scheme, and

− Ti,i−1 Ψ
(n+1/2)
i−1 + Ψ

(n+1/2)
i − Ti,i+1 Ψ

(n+1/2)
i+1 = Ti,iΨ

(n)
i +Q′i, (47)

for the G-S scheme. More, we can define the global transport matrix for the
G-J scheme as

T |GJ = Tl + Td + Tu, (48)
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where the Td is the block-diagonal matrix composed by the matrices Ti,i, while
Tl and Tu are respectively the lower and the upper triangular matrix composed
by the block Ti,i−1 and Ti,i+1, respectively. Thus the transport matrix for the
G-S is

T |GS = (I − Tl − Tu)−1Td (49)

As a consequence, the source vector for the GS will be Q′|GS = (I − Tl −
Tu)−1 Q′. As mentioned in the introduction, the spatial transport discretization
is the method of characteristics (MOC) with step approximation of the source.

By defining ci =
Σs,i
Σt,i

as the scattering ratio and τi = Σt,i∆i as the optical

thickness, the transport coefficients (ai, bi, b
′
i, ki, di, d

′
i) for the MOC are

ai = e−
τi
|µ| , (50)

bi = ci(1− ai),

ki =
|µ| (1− ai)

τi
,

di = ci(1− ki),

b′i =
bi

Σs,i
,

d′i =
di

Σs,i
.

3.1 Boundary conditions

As for the acceleration equations, we introduce two fictitious regions, the region
0 and region I + 1 to solve for the boundary fluxes. Those two regions updates
the incoming angular flux on the left an on the right boundary. As before, we
can generalize the boundary conditions by defining the two equations, the first
on the left boundary

ψ
(n+1)
0,R,1 = vL←Lψ

(n)
1,L,2 + vL←Rψ

(n)
I,R,1 for i = 1, (51)

and the second on the right boundary

ψ
(n+1)
I+1,L,2 = vR←Lψ

(n)
1,L,2 + vR←Rψ

(n)
I,R,1 for i = I. (52)

In particular, the albedo coefficients vL←L, vL←R, vR←L, and vR←R assumes
the values contained in (53).

Reflective Periodic Vacuum Fourier periodic
vL←L = 1 0 0 0

vL←R = 0 1 0 e−j
2πζ
∆1

(x1−∆1
2 )

vR←L = 0 1 0 e
−j 2πζ

∆I
(xI+

∆I
2 )

vR←R = 1 0 0 0

(53)
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Using this formalism, if we specialize Eq. (47) for the first region by taking into
account the left-side boundary condition, i.e. Eq. (51), we obtain

Ψ
(n+1/2)
1 = T1,0VL←RΨ

(n)
I + (T1,0VL←L + T1,1)Ψ

(n)
1 + T1,2Ψ

(n)
2 +Q′i, (54)

where

VL←L =

 0 0 0
vL←L 0 0

0 0 0

 , (55)

VL←R =

0 0 0
0 vL←R 0
0 0 0

 .
We do the same for the right boundary condition and we obtain

Ψ
(n+1/2)
I = TI,I+1VR←LΨ

(n)
1 + (TI,I+1VR←R + T1,1)Ψ

(n)
1 + T1,2Ψ

(n)
2 +Q′i, (56)

where

VR←R =

0 vR←R 0
0 0 0
0 0 0

 , (57)

VR←L =

vR←L 0 0
0 0 0
0 0 0

 .
3.2 The discrete-to-moment operator and the prolonga-

tion operator

The acceleration space needs the transport angular moments. The mapping
from the transport angular flux and transport angular moments is given by
the so-called discrete-to-moment operator. In the specific case, the discrete-
to-moment operator maps both volume and interface angular moments. In
coherence with our S2−like notation, the angular moments that defines the
acceleration space are the outgoing partial interface current and the outgoing
partial interface flux, namely J+

i,L/R and φ+
i,L/R, and the average volume current

and flux, respectively J i and φi,

J+
i,L = w |µ|ψi,L,2
J+
i,R = w |µ|ψi,R,1
J i = w |µ| ki(ψi−1,R,1 − ψi+1,L,2)

φi,L = w(ψi−1,R,1 + ψi,L,2)

φi,R = w(ψi,R,1 + ψi+1,L,2)

φi = φi
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by making the positions

Ψi =

ψi,L,2ψi,R,1
φi

 , with Ψ = {Ψi}i=1,I ,

and

Φi =



J+
i,L

J+
i,R

Ji
φ+
i,L

φ+
i,R

φi

 , with Φ = {Φi}i=1,I

we can write the discrete-to-moment operator as

Φ = K Ψ (58)

where K is the block-rectangular matrix

K =



K1,1 K1,2 0 . . . 0

0
. . .

. . .
. . .

...
0 Ki,i−1 Ki,i Ki,i+1 0
...

. . .
. . .

. . . 0
0 . . . 0 KI−1,I KI,I


where the minors Ki,i−1, Ki,i and Ki,i+1 satisfy the equation

Φi = Ki,i−1Ψi−1 +Ki,iΨi +Ki,i+1Ψi+1, (59)

such that

Ki,i =


w |µ| 0 0

0 w |µ| 0
0 0 0
w 0 0
0 w 0
0 0 1

 , (60)

Ki,i−1 =


0 0 0
0 0 0
0 wki |µ| 0
0 w 0
0 0 0
0 0 0

 , and

Ki,i+1 =


0 0 0
0 0 0
0 wki |µ| 0
0 0 0
w 0 0
0 0 0

 .
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In order to accurately update the transport solution using the SVRM partial
current, we must preserve the assumptions of the closure equations. Since the
angular flux distribution within each partial current was fixed by the closure
relation (12), the updated angular flux must be proportional to the partial
current. In the prolongation operator, the couple of values (J+

i,L, J
+
i,R) is used

to correct both interface angular flux and scalar flux. As is common for a
rebalancing method, the SVRM reconstructs the scalar flux using Eq. (14) with
the SVRM-computed partial currents,

φ̄
(n+1)
i = β̂i(J

+
i,R + J+

i,L)(n+1). (61)

The second update is on the interface angular flux,

ψ
(n+1)
i,L,2 =

J
+,(n+1)
i,L

J
+,(n+1/2)
i,L

ψ
(n+1/2)
1,L,2 , (62)

ψ
(n+1)
i,R,1 =

J
+,(n+1)
i,R

J
+,(n+1/2)
i,R

ψ
(n+1/2)
1,R,2 . (63)

Eqs. (62) and (63) are useful when the transport sweep is done using a G-J
iterative scheme, which commonly used to access domain decomposition and,
thus, parallel computing. Eqs. (62) and (63) can be cast in a matrix formalism,

Ψ(n+1) = P̂ J (n+1), (64)

where P̂ is a rectangular diagonal-by-block matrix composed of matrix P̂i con-
taining the coefficients of Eqs. (61), (62) and (63) for each region i,

P̂i =


ψ

(n+1/2)
i,L,2

J
+,(n+1/2)
i,L

0

0
ψ

(n+1/2)
i,R,1

J
+,(n+1/2)
i,R

β̂i β̂i

 . (65)

We remark that in this paper the SVRM mesh is the same as for the transport
operator. This choice simplifies the spectral analysis of the method. Neverthe-
less, the implementation of the SVRM is meant to treat coarser spatial mesh.

4 The Jacobian of the iterative scheme

Since we have an iterative multivariable map of the form Ψ(n+1) = F (Ψ(n)), we
can express the Jacobian in a point X as

J = ∇Ψ(n)F (Ψ(n))
∣∣∣
Ψ(n)=X

.
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The nonlinear scheme F summarizes the following system of equations

Ψ(n+1/2) = TΨ(n) +Q′,

Φ(n+1/2) = KΨ(n+1/2),

Â(Φ(n+1/2))J (n+1) = QA,

Ψ(n+1) = P̂ (Ψ(n+1/2),Φ(n+1/2))J (n+1).

(66)

where we explicitly write the non-linear nature of the matrix Â(Φ(n+1/2)) and̂̂
P (Ψ(n+1/2),Φ(n+1/2)). The first equation of (66) is the transport source itera-
tion, where T is the transport matrix given by (48) or (49), while Ψ(n) is the
vector containing the transport iterative unknowns. The second equations is a
the of discrete-to-moment linear operator mapping the transport unknowns to
the angular moments. Here, K is the rectangular matrix defined in map (58)
and Φ(n+1/2) is the vectors of transport angular moments. The third equation
is the acceleration equation with Â(Φ(n+1/2)) as the non-linear operator, J (n+1)

as the unknown partial currents and QA as the acceleration source. Next, the
forth equation is the correction equation that updates the transport unknowns
Ψ(n+1). The equation is defined by the non-linear correction matrix P̂ (Φ(n+1/2))
defined in (64) and (65).

The investigation of the rate of convergence of the system (66) can be carried
out by studying the Jacobian at the fixed point Ψ(∞) = Λ, as

E = ∇Ψ(n)Ψ(n+1)
∣∣∣
Ψ(n)=Λ

. (67)

Since
∇Ψ(n)Ψ(n+1) = ∇Φ(n+1/2)Ψ(n+1) ∇Ψ(n)Φ(n+1/2), (68)

the calculation of the Jacobian can be expressed as the composition of the linear
transport matrices

∇Ψ(n)Φ(n+1/2) = K T (69)

and the non-linear matrices

∇Φ(n+1/2)Ψ(n+1) = ∇Φ(n+1/2) [P̂ (Φ(n+1/2))Â−1 QA] + (70)

P̂ ∇Φ(n+1/2) [Â−1(Φ(n+1/2)) QA],

where we explicitly shows the non-linear dependence of the matrices P̂ and
Â−1 when the gradient ∇Φ(n+1/2) is applied. Combining Eq. (69) and (70) into
Eq. (68), we obtain the expression for the Jacobian in function of matrices

K, T , Â−1, P̂ and of the source QA. It is also clear that the effectiveness
of the non-linear equation is governed by the largest eigenvalue of the ma-
trix ∇Φ(n+1/2)Ψ(n+1). In fact, neglecting the boundary conditions, we have the
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bounding relation ‖KT‖ < c = max{Σs
Σ } < 1 and, thus, the Jacobian norm will

be bounded by
‖E‖ < λc

with λ being the largest eigenvalue of the matrix ∇Φ(n+1/2)Ψ(n+1).
We focus our analysis on two iterative transport schemes. The first is the

classical transport sweep, where the spatial meshes are swept one after the other
following the direction of flight of the particles. In this case, the iterative scheme
is a block Gauss-Jacobi over the angular directions, where each block represent
the spatial unknowns, and a Gauss-Seidel over the space. In that case, the
vector Ψ contains the scalar fluxes {φi}i=1,I and, in the case of homogeneous
boundary conditions, the outgoing angular fluxes ψ1,L,2 and ψI,R,1 needed for
updating boundary conditions, i.e. Ψ = {{φi}i=1,I , ψ1,L,2, ψI,R,1}. The second
is a pure Gauss-Jacobi scheme where the vector of the unknowns, Ψ, contains
the scalar fluxes and the outgoing angular fluxes of each computational mesh,
i.e. Ψ = {φi, ψi,L,2, ψi,R,1}i=1,I . This second scheme is typically used in the
parallelism framework for accessing scalability, as is typically done in the do-
main decomposition method.

In the following we will study the convergence properties of the two trans-
port iterative schemes, and the capability of the acceleration to enhance the
convergence speed.

4.1 Computing the Jacobian

The starting point is Eq. (68), the Jacobian is a composition of partial deriva-
tives and this Section is dedicated to the tedious computation of the derivatives.

Since ∂Φ(n+1/2)

∂Ψ(n) = KT is the transport contribution to the Jacobian, the accel-
eration contribution, which is the matrix (70), can be rewritten as

∂Ψ(n+1)

∂Φ(n+1/2)
= P̂

∂J (n+1)

∂Φ(n+1/2)
+
∂(P̂ J (n+1))

∂Φ(n+1/2)
. (71)

The matrix ∂J(n+1)

∂Φ(n+1/2) is obtained by deriving of the SVRM equations, i.e. the
third equation in the system (66), obtaining

∂J (n+1)

∂Φ(n+1/2)
= Â−1 ∂[Â J (n+1)]

∂Φ(n+1/2)
. (72)

We can explicitly compute the ∂[Â J(n+1)]
∂Φ(n+1/2) matrix as a composition of partial

derivatives

∂[Â J (n+1)]

∂Φ(n+1/2)
=

∑
x∈(α̂i,R,α̂i,L,β̂i,R,β̂i,L,β̂i,η̂i,γ̂R,γ̂L)i=1,I

∂[Â J (n+1)]

∂x
⊗ ∂x

∂Φ(n+1/2)
,

(73)
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note that in Eq. (73) J (n+1) is not derived. The non-zero derivatives that
appears in (73) are

∂Âi,i
∂α̂i,L

=

[
0 0
η̂i 0

]
, (74)

∂Âi,i
∂α̂i,R

=

[
0 0
0 −(1− η̂i)

]
, (75)

∂Âi,i+1

∂β̂i,R
=

[
0 0

η̂iδ̃iτi,r 0

]
,

∂Âi,i

∂β̂i,R
=

[
0 0

0 η̂iδ̃iτi,r

]
, (76)

∂Âi,i−1

∂β̂i,L
=

[
0 0

0 −(1− η̂i)δ̃iτi,r

]
,

∂Âi,i

∂β̂i,L
=

[
0 0

−(1− η̂i)δ̃iτi,r 0

]
, (77)

∂Âi,i

∂β̂i
=

[
τi,R τi,R

0 0

]
, (78)

∂Âi,i
∂η̂i

=

[
0 0

(α̂i,L + ∆i

2 + δ̃iτi,rβ̂i,L) (α̂i,R + ∆i

2 + δ̃iτi,rβ̂i,R)

]
, (79)

∂Âi,i−1

∂η̂i
=

[
0 0

0 ∆i

2 + δ̃iτi,rβ̂i,L

]
and (80)

∂Âi,i+1

∂η̂i
=

[
0 0

∆i

2 + δ̃iτi,rβ̂i,R 0

]
, (81)

In Eq. (73), the derivatives of the non-linear coefficients (α̂i,R, α̂i,L, β̂i,R, β̂i,L, β̂i, η̂i, γ̂R, γ̂L)i=1,I

with respect to the angular flux moments Φ
(n+1/2)
i are

∂α̂i,R

∂Φ
(n+1/2)
i

=
1

J
(n+1/2)
i,R

[0, −α̂i,R, 0, 0, 0, 0], (82)

∂α̂i,L

∂Φ
(n+1/2)
i

=
1

J
(n+1/2)
i,L

[−α̂i,L, 0, 0, 0, 0, 0], (83)

∂β̂i,R

∂Φ
(n+1/2)
i

=
1

(J+
i,R + J+,

i+1,L)(n+1/2)
[0, −β̂i,R, 0, 0, 1, 0], (84)

∂β̂i,R

∂Φ
(n+1/2)
i+1

=
1

(J+
i,R + J+,

i+1,L)(n+1/2)
[−β̂i,R, 0, 0, 0, 0, 0], (85)
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∂β̂i,L

∂Φ
(n+1/2)
i

=
1

(J+
i,L + J+,

i−1,R)(n+1/2)
[−β̂i,L, 0, 0, 1, 0, 0], (86)

∂β̂i,L

∂Φ
(n+1/2)
i−1

=
1

(J+
i,L + J+,

i−1,R)(n+1/2)
[0, −β̂i,L, 0, 0, 0, 0] (87)

∂β̂i

∂Φ
(n+1/2)
i

=
1

(J+
R + J+

L )(n+1/2)
[−β̂i, −β̂i, 0, 0, 0, 0], (88)

∂η̂i
∂Φ(n+1/2)

= − 1

(Pi +Ni)

[
(1− η̂i)

∂Pi
∂Φ(n+1/2)

+ η̂i
∂Ni

∂Φ(n+1/2)

]
, (89)

where the partial derivatives for Pi and Ni are

∂Pi

∂Φ
(n+1/2)
i

= [α̂i,L, (
∆i

2
+ δ̃iτi,rβ̂i,R), 0, 0, 0, 0], (90)

∂Pi

∂Φ
(n+1/2)
i−1

= [0,
∆i

2
, 0, 0, 0, 0], and (91)

∂Pi

∂Φ
(n+1/2)
i+1

= [δ̃iτi,rβ̂i,R, 0, 0, 0, 0, 0], (92)

∂Ni

∂Φ
(n+1/2)
i

= [(
∆i

2
+ δ̃iτi,rβ̂i,L), α̂i,R, 0, 0, 0, 0], (93)

∂Ni

∂Φ
(n+1/2)
i−1

= [0, δ̃iτi,rβ̂i,L, 0, 0, 0, 0] and (94)

∂Ni

∂Φ
(n+1/2)
i+1

= [
∆i

2
, 0, 0, 0, 0, 0]. (95)

Finally, for the reconstruction of the Jacobian, we have to specify the second
term of Eq. (71) which is characterized by the derivatives of the update operator

P̂ , expressed in Eq. (65). This term is composed by the following non-zero
partial derivatives

∂P̂i

∂J
+,(n+1/2)
i,L

=

−
ψ

(n+1/2)
L,2

(J
+,(n+1/2)
L )2

0

0 0
β̂

(J+
L+J+

R )(n+1/2)

β̂

(J+
L+J+

R )(n+1/2)

 , (96)

∂P̂i

∂J
+,(n+1/2)
i,R

=


0 0

0 − ψ
(n+1/2)
R,1

(J
+,(n+1/2)
R )2

β̂

(J+
L+J+

R )(n+1/2)

β̂

(J+
L+J+

R )(n+1/2)

 , (97)
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∂P̂i

∂φ
(n+1/2)

i

=

 0 0
0 0
1

(J+
L+J+

R )(n+1/2)

1
(J+
L+J+

R )(n+1/2)

 . (98)

The Jacobian matrix (67) can be computed by reassembling Eq. (69) and (70)
into Eq. (68). In particular, the derivatives contained in the matrix (70) are
computed by Eqs. (72) and (73) in (71) and by substituting all the derivatives
appearing in (73) with Eqs. (74) to (98).

Note that the explicit computation of the Jacobian matrix allows the analysis
of the convergence of the method far and close to the fixed point. Moreover,
compared to the Fourier analysis tool when applied to non-linear methods, the
study of the spectral radius of the Jacobian provides a numerical tool to analyze
heterogeneous non-periodic geometries.

4.2 Results spectral radius analysis

Using the methodology defined in section 4 we perform a spectral radius analy-
sis of SVRM and CMR using both the Gauss-Jacobi and Gauss-Seidel transport
operator for the following case: finite 1D geometry composed of two computa-
tional cells with equivalent homogeneous, energy invariant, isotropic scattering
cross section, and fixed sources, and periodic boundary conditions. The re-
sults of this analysis when S2 or S8 angular distributions are used, along with
equivalent numerical benchmark results, are shown below in Figs.4.2 and 4.2
respectively. We can observe that the numerical results are in good agreement
with the analytical results for all cases, validating the analysis we have done up
until this point. An exact match between the numerical and analytical results
is not expected do to the nonlinear nature of the SVRM operator and numerical
in precision. For both the Gauss-Siedel and Gauss-Jacobi transport operators,
the spectral radii of both versions of SVRM and CMR are identical. This result
makes sense since we are solving a problem with flat flux solution, which means
that the first order spatially variant equation, which differentiates SVRM from
CMR has little effect. At large optical thickness we can observe that SVRM
and CMR perform significantly better than transport since the spectral radius
of transport is tied to the scattering ratio at large optical thicknesses [5].
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Figure 2: displays the spectral radius of SVRM for the problem defined in section
4.2, when a S2 angular distribution is used is used. NV stands for numerical
validation.
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Figure 3: displays the spectral radius of SVRM for the problem defined in
section 4.2, when a S8 angular distribution is used. NV stands for numerical
validation.

5 Fourier Analysis

While the methodology in section 4 lets us compute the spectral radius for a
generic problem, it is costly to compute for a problem with many cells. Thus, in
order to look at the spectral radius of SVRM when the number of cells goes to
infinite, we must use the following approach. Starting with Eq. (44), we focus
on the constraints that define an interior spatial cell there are no boundary
constraints. Because of the linearity of the transport operator, if we expand the
iterative solution around the fixed point Λ as

Ψ
(n+1/2)
i = Λ + ∂Ψ

(n+1/2)
i ,

where ∂Ψ
(n+1/2)
i is the error and Λ the solution verifying the equation Λ =

(Ti,i−1 + Ti,i + Ti,i+1)Λ + Q′i, the transport contribution to the Jacobian is
given by the transport matrix T. Following the Fourier ansatz for the principal
component

∂Ψ
(n+1/2)
i = FiΞ

(n+1/2),
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where Ξ is the error amplitudes

Ξ(n+1/2) =

ξLξR
ξ

(n+1/2)

,

and Fi is the Fourier matrix

Fi =

e
j 2πζ

∆i
(xi−

∆i
2 )

0 0

0 e
j 2πζ

∆i
(xi+

∆i
2 )

0

0 0 e
j 2πζ

∆i
xi

 ,
whit xi as the midpoint of region i, we can solve Eq. (44) for Ξ(n+1/2),

Ξ(n+1/2) = F−1
i,i (Ti,i−1Fi,i−1 + Ti,iFi,i + Ti,i+1Fi,i+1)Ξ(n) (99)

We do the same expansion around the fixed point for the partial currents J
(n+1)
i

as

J
(n+1)
i =

Λ

4
+ ∂J

(n+1)
i

where the error ∂J
(n+1)
i is expanded on the principal Fourier mode Θ as

∂J
(n+1)
i = F̃i Θ(n+1), (100)

where

Θ(n+1) =

[
θL
θR

](n+1)

and

F̃i =

[
e
j 2πζ

∆i
(xi−

∆i
2 )

0

0 e
j 2πζ

∆i
(xi+

∆i
2 )

]
.

By specializing the prolongation equation (64) for region i, the updated error
variation is given by a direct derivation of (64), which gives

∂Ψ
(n+1)
i = P̂i,i∂J

(n+1)
i +

∑
j∈(i−1, i, i+1)

∂(P̂i,iJ
(n+1)
i )

∂Φ
(n+1/2)
j

∣∣∣∣∣
Φ

(n+1/2)
j =KjΛ

∂Φ
(n+1/2)
j (101)

' P̂i,i∂J
(n+1)
i +

Λ

4

∑
j∈(i−1, i, i+1)

∂(P̂i,i1)

∂Φ
(n+1/2)
j

∣∣∣∣∣
Φ

(n+1/2)
j =KjΛ

∂Φ
(n+1/2)
j .

The first term on the rhs of Eq. (101) can be obtained by Eq. (73), in fact, the

error on the partial current ∂J
(n+1)
i is computed by differentiating (73) as

Âi,i−1∂J
(n+1)
i−1 +Âi,i∂J

(n+1)
i +Âi,i+1∂J

(n+1)
i+1 = −(∂Âi,i−1J

(n+1)
i−1 +∂Âi,iJ

(n+1)
i +∂Âi,i+1J

(n+1)
i+1 ).

24



Substituting the Fourier ansatz (100) for the partial currents in previous equa-
tion and specializing the equation near the convergence, i.e. J+

L/R = Λ
4 , we

obtain

Θ(n+1) =
Λ

4

 ∑
j∈(i−1, i, i+1)

Âi,jF̃j

−1 ∑
j∈(i−1, i, i+1)

∂Âi,j1 (102)

=

Λ

4

 ∑
j∈(i−1, i, i+1)

Âi,jF̃j

−1 ∑
j∈(i−1, i, i+1)

Ĥi,j

 Ξ(n+1/2).

In (102), ∂Âi,j1 is the vector summing all the columns of matrix ∂Âi,j (1 here
is the unitary vector of dimension 2). After algebraic manipulations, the vector
∂Âi,j1 can be expressed by

∂Âi,j1 = Ĥi,jΞ
(n+1/2)

where the differential matrix Ĥi,j is

Ĥi,j =
∑

x∈(α̂i,R,α̂i,L,β̂i,R,β̂i,L,β̂i,η̂i)

∂Âi,j
∂x

1⊗
∑

k∈(i−1, i, i+1)

∂x

∂Φ
(n+1/2)
k

∣∣∣∣∣∣
Φ

(n+1/2)
k =KkΛ

Kk,kFk.

(103)

The matrices Ĥi,j are computed using the non zero derivatives (74)-(95). Then,
using the Fourier ansatz in Eq. (101) and substituting (102) for Θ(n+1), we

obtain the final definition for the iterative matrix Ĝ

Ξ(n+1) =
Λ

4
F−1
i

P̂i,iF̃i
 ∑
j∈(i−1, i, i+1)

Âi,jF̃j

−1 ∑
j∈(i−1, i, i+1)

Ĥi,j+(104)

∑
j∈(i−1, i, i+1)

∂(P̂i,i1)

∂Φ
(n+1/2)
j

∣∣∣∣∣
Λ

KjFj

Ξ(n+1/2)

= Ĝ Ξ(n)

where the derivatives
∂(P̂i,i1)

∂Φ
(n+1/2)
j

are computed thanks to (96)-(98). We analyze

the spectral radius of the matrix Ĝ given by

Ĝ =
Λ

4

F−1
i P̂i,i

∣∣∣
Λ
F̃i

 ∑
j∈(i−1, i, i+1)

Âi,j

∣∣∣
Λ
F̃j

−1 ∑
j∈(i−1, i, i+1)

Ĥi,j

∣∣∣
Λ

(105)

∑
j∈(i−1, i, i+1)

∂(
̂̂
P i,i1)

∂Φ
(n+1/2)
j

∣∣∣∣∣∣
Λ

Kj,jFj

Ki,iF
−1
i,i

∑
j∈(i−1, i, i+1)

Ti,jFi,j
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where use have been made of (99). All the matrices and derivatives (74) to (95)
are computed at the fixed point by considering the following identities

Ψi ≡ Φi ≡ 4Ji ≡ Λ

and, consequently,

α̂i,R = α̂i,L = 2w |µ| b ,
β̂i,R = β̂i,L = β̂i = 2 ,

η̂i = 1/2.

5.1 Results of Fourier analysis

Using the methodology defined in section 5 we achieve the results shown by Fig.
5.1. By comparing the results of the Fourier analysis with those of the spectral
radius analysis, we can observe that that when the spatial mesh is increased from
two cells to an infinite grid, the performance of SVRM is relatively unaffected.
This is a good indication the performance of SVRM will hold for larger scale
problems then what have been tested in this article.

Figure 4: displays the spectral radius of SVRM for the infinite spatial mesh
problem defined in section 5, when the piece-wise and the quadratic spatial
distributions are used.

6 Numerical Benchmark

The accuracy of equation relating the surface current to the scalar flux signifi-
cantly affects the performance and stability of the method. The most dramatic
changes in the flux and current profile occur at boundaries with large material
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discontinuities. Subsequently the effect of the accuracy of the scalar flux and
surface current relationship is of greatest significance at these highly discontin-
uous boundaries. Thus, in order to investigate the effects the scalar flux and
surface current relationship used by SVRM, have on it’s performance, we must
study the behaviour of SVRM at boundaries with large material discontinuities.
In order to study a wide range of discontinuities in a time efficient manor, we
chose to use the simple benchmark case described below.

The benchmark problem has: one energy group, two cells, a fixed isotropic
source, S8 angular distribution, and reflective boundary conditions. To explore a
wide range of material discontinuities the total cross-section and the scattering
cross-section are fixed for one cell and varied for the other according to the
following equation.

τ2(P ) =
(1− c1)τ1

P
+ Pc1τ1 c2(P ) =

Pc1τ1
(1−c1)τ1

P + Pc1τ1
(106)

A visualization summarizing the relation between P and τ2 is shown in Fig.
6. The total cross section of material 2 of Eq. (106) is such that the material
2 becomes an infinite absorber as P goes to zero while it becomes an infinite
diffusive material as P increases to the infinite.

Figure 5: shows how τ2 varies as a function of P , according to Eq.106

The cell with fixed properties was studied for three different τ1 values (0.005, 0.5, 50),
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and for three different c1 values (0.5, 0.9, 0.99), for a total of nine variants. The
SVRM has been compared to the acceleration methods already available in the
1D slab solver, in particular, to the DSA and the BPA. Plots showing how the
number of iterations needed for convergence varies with P , for the unaccelerated
transport, SVRM, DSA, and BPA operators, and for each of these nine cases
are shown section 6.1.

6.1 Results of numerical benchmark

Using the methodology described in section 6 we produce the results displayed
by Figs.6.1 to 6.1. Starting with Fig.6.1 below, SVRM can be seen to converge
10→1000 times faster than DSA, BPA, CMFD and transport for all values of
P . The relative performance advantage of SVRM can be seen to increase as the
variable medium becomes more diffusive (highier P value).

Figure 6: Benchmarks the performance (number iterations required to reach
a converged solution) of SVRM against DSA, BPA, CMFD, and SI using the
methodology described in section 6 when the fixed cell has an optical thickness
of 0.005. Iteration values of 5× 105 indicate instability.

From Fig.6.1 below, we can observe that when the optical thickness of the
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fixed cell is increased to a value of 0.5, the performance advantage of SVRM
has degraded, relative to the other methods. However SVRM can still be seen
to provide a significant performance advantage over all other methods. DSA,
BPA, and transport continue to follow the the same trend as before, with the
number of iterations required for them to converge increasing as the variable cell
is made more diffusive. For small values of P we can see that DSA is unstable.
CMFD can be observed to provide good performance until it becomes unstable
at large values of P .

Figure 7: Benchmarks the performance (number iterations required to reach
a converged solution) of SVRM against DSA, BPA, CMFD, and SI using the
methodology described in section 6 when the fixed cell has an optical thickness
of 0.5. Iteration values of 5× 105 indicate instability.

In Fig.6.1 below we can observe that when we increase the optical thickness
of the fixed cell to a value of 50, the relative performance of SVRM method
continues to degrade. While SVRM still retains a performance advantage over
DSA and BPA, it is now significantly less effective than CMFD.
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Figure 8: Benchmarks the performance (number iterations required to reach
a converged solution) of SVRM against DSA, BPA, CMFD, and SI using the
methodology described in section 6 when the fixed cell has an optical thickness
of 50. Iteration values of 5× 105 indicate instability.

7 Conclusion and further remarks

In this paper we propose a new class of rebalancing methods. SVRM opens
up a new frontier for numerical research in non-linear accelerations. As was
previously explained, SVRM is based on linear variation of the particle balance
equation. This aspect is an important improvement for the effectiveness and for
the stability of the acceleration, as demonstrated by the spectral analysis and
the Fourier analysis and the numerical benchmarks. Further refinement of the
SVRM by way of improving the closure relations, is already underway and is
expected to greatly improve the relative performance of the method (particular
with respect to CMFD).

Compared to other rebalancing method, SVRM doubles the numbers of un-
knowns. However, in this paper we have limited our analysis to a particular case
when transport and the acceleration shares the same spatial mesh. Further in-
vestigation will be done by applying the SVRM operator to coarse meshes. This
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field will be important to find the compromise among the memory burden and
the effectiveness of the acceleration. We have also limited the application of the
SVRM to the inner iterations, but the method could be easily applied to multi-
group eigenvalue problems as a preconditioner for power and thermal iterations.

Another aspect earning further investigation is the application of SVRM
to high-order MOC. For example, the linear MOC satisfies automatically the
first-order balance equation, therefore the exact first order variation of the flux
and of the source will be available for use by SVRM. In this case, the SVRM
will be automatically consistent with the transport and, as a consequence, the
consistency parameter η̂ can be eliminated.

An important improvement can also be achieved by using finite differences
relation for the closures relations. This particular research filed open the doors
to a variety of class of spatially variant non-linear methods. Finally, we conclude,
that a multidimensional version of the SVRM method is under development in
our laboratory for application to real-scale reactor calculation.

References

[1] Marvin L. Adams and Edward W. Larsen. Fast iterative methods for
discrete-ordinates particle transport calculations. Progress in Nuclear En-
ergy, 40(1):3–159, 2002.

[2] Gregory R. Cefus and Edward W. Larsen. Stability analysis of coarse-mesh
rebalance. Nuclear Science and Engineering, 105(1):31–39, 1990.

[3] Hyeon Tae Kim and Yonghee Kim. Convergence studies on nonlinear coarse-
mesh finite difference accelerations for neutron transport analysis. Nuclear
Science and Engineering, 191(2):136–149, 2018.

[4] N.Z. Cho and C.J. Park. A comparison of coarse mesh rebalance and coarse
mesh finite difference accelerations for the neutron transport calculations.
Nuclear Mathematical and Computational Sciences: A Century in Review,
2003.

[5] J.R. Askew. A characteristics formulation of the neutron transport equation
in complicated geometries. INIS, 1972.

31


	Introduction
	Spatially Variant Rebalance Method
	Flux, source and current spatial representation
	Closure equations
	The average current closure relation
	Consistency with the transport and reduction of the spatial order of the acceleration

	Boundary conditions
	Matrix form of SVRM

	Defining the Transport Operator
	Boundary conditions
	The discrete-to-moment operator and the prolongation operator

	The Jacobian of the iterative scheme
	Computing the Jacobian
	Results spectral radius analysis

	Fourier Analysis
	Results of Fourier analysis

	Numerical Benchmark
	Results of numerical benchmark

	Conclusion and further remarks

