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A numerical investigation has been conducted by DNS to investigate the coupling between the internal and the external ows and their respective eects on mass transfer from a translating droplet in an immiscible phase. Low to moderate Reynolds ows have been investigated 0.1 < Re < 100. On the rst part of this paper, eorts have been made to suggest new correlations of the drag coecient and the angle of separation angle in terms of Re and the viscosity ratio µ * . In the second part, computations were focused on ow parameters inuence on the conjugate mass transfer and especially the evolution of the Sherwood number. The results has been compared with available experimental and numerical data. Moreover, through a parametric study, the eect of relevant physical parameters on the transfer process is investigated. An interesting behavior Sh is evidenced for low Henry coecient in a convective dominant process.

Introduction

In solvent extraction process, regardless of the type of contactors, the contact area between the two non-miscible liquid phases is enhanced by dispersing one of the liquid phases as droplets into the other (continuous) one. The solute transfer direction depends primarily on the solute gradient and the chemical anity in both phases. The inter-phase mass transfer occurs inherently at the boundaries of the droplets. Thus, the ow-eld and mass transfer in droplet swarms are essential for the design of liquid-liquid extraction devices. In order to capture these complex phenomena properly, the case of a single droplet has to be considered rst.

Mass transfer to/from a translating drop in an immiscible and quiescent liquid has been widely investigated, both experimentally and numerically for typical liquid-liquid systems encountered in solvent extraction [START_REF] Wegener | Fluid dynamics and mass transfer at single droplets in liquid/liquid systems[END_REF]. The single droplet problem is intrinsically a complex and multi-variable problem, as in most operational conditions, depending on their size and relative velocity, droplets can be seen either as rigid entities, or as circulating where internal circulations, triggered by the external ow, might develop. These circulation patterns are likely to move the inner mass transfer mechanism from a purely diusive one, to an advectivediusive process ( [START_REF] Juncu | Unsteady ternary mass transfer from a sphere in creeping ow[END_REF], [START_REF] Juncu | Unsteady heat and/or mass transfer from a uid sphere in creeping ow[END_REF]), where the solute distribution depends not only on the concentration gradient but also on the droplet hydrodynamics. A coupling between the mass transfer and the hydrodynamics is hence established, making the problem's physics sensitive to most of the system parameters such as viscosity ratio, mass diusivity ratio, etc.

The rst comprehensive study of droplet hydrodynamics is undoubtedly the reference book by Clift et al. [START_REF] Clift | Bubbles, drops, and particles[END_REF], where the shape of the drop (spherical, or deformed or oscillating) depending on the relative values of the Reynolds, Eötvös and Morton numbers is particularly discussed. In the case of a fully mobile interface (i.e. a complete absence of impurities or surfactants), one can spot the droplet's shape on the Clift diagram (Page 27 in [START_REF] Clift | Bubbles, drops, and particles[END_REF]) giving these three dimensionless parameters. It allows moreover to calculate the terminal velocity of the droplet in a quiescent liquid.

Regarding the mass transfer problem as for the heat transfer ones, three distinct behaviours are distinguished depending on where the main mass transfer resistance resides.

They are generally referred to as : internal problem (when the main resistance is located in the particle), external problem (main resistance outside) and conjugate problem (comparable resistances) respectively. The main dierence between the heat and mass transfer cases resides in the interface conditions. Indeed, while in thermal problem the temperature is the same on both sides of the interface, a concentration step generally prevails regarding the transferred species, which value, in non reactive system, is given by thermodynamic equilibrium. If k denotes the Henry coecient, and D c and D d the solute diusivity coecients in the continuous phase and in the droplet phase respectively, the mass transfer regime can be assessed by the value of the quantity k D d /D c [START_REF] Wylock | Gas absorption into a spherical liquid droplet: numerical and theoretical study[END_REF]. Hence, if k D d /D c << 1 the problem is supposed to be internal, it is considered external when k D d /D c >> 1, and a conjugate problem when k D d /D c ≈ 1.

The solution of the internal problems, where the stream ow imposes the concentration value at the interface, was rst derived analytically by Newman [START_REF] Broadus | The drying of porous solids: diusion and surface emission equations[END_REF]. For this problem controlled by pure diusion (P e/(µ * + 1) -→ 0) in a spherical droplet, the author shows that the asymptotic value of the Sherwood number converges toward Sh N ewman = 6.58.

Later, Kronig and Brink [START_REF] Kronig | On the theory of extraction from falling droplets[END_REF] considered the case of a circulating droplet in a creeping ow, with P e/(µ * + 1) -→ ∞ and highlighted a second asymptotic value of the Sherwood number Sh Kronig = 17.9. In all other congurations however, nding an analytical solution is less straightforward and a numerical approach is required. Hence, for intermediate Peclet numbers, numerical simulations by resolving the mass transport equation in a Hadamard-Rybczynski solution were proposed by (Juncu [12], Brignell [START_REF] Brignell | Solute extraction from an internally circulating spherical liquid drop[END_REF], Wylock et al. [START_REF] Wylock | Gas absorption into a spherical liquid droplet: numerical and theoretical study[END_REF]). At intermediate Reynolds numbers, Colombet et al. [START_REF] Colombet | Mass or heat transfer inside a spherical gas bubble at low to moderate reynolds number[END_REF] addressed the case of a small viscosity ratio(µ * = 0.018). The simulation of both the internal and external ows was rst solved by Uribe-Ramirez and Korchinsky [START_REF] Ar Uribe-Ramirez | Fundamental theory for prediction of multicomponent mass transfer in single-liquid drops at intermediate reynolds numbers (10 ≤ re ≤ 250)[END_REF] using the weighted residuals method [START_REF] Bruce A Finlayson | The method of weighted residuals and variational principles[END_REF]), but Ubal et al. [START_REF] Ubal | Numerical simulation of mass transfer in circulating drops[END_REF] later evidenced some limitations of the boundary layer model they proposed.

Regarding the external problems, the concentration is uniform inside the droplet and along the interface. However the value of the drop concentration may vary with time. Most of the studies labelled as external mass/heat transfer consider a constant concentration at the interface which might be sometimes misleading. Abramzon and Fishbein [START_REF] Bm Abramzon | Some problems of convective diusion to a spherical particle with pe ≤ 1000[END_REF] addressed numerically the solution of the convection-diusion equation for a solute transferred from a droplet in a creeping ow for Peclet numbers P e < 1000. The same authors also considered the transient heat transfer problem in a Stokes ow, in a rather large range of Peclet number 1 < P e < 10000 [START_REF] Abramzon | Unsteady heat transfer from a single sphere in stokes ow[END_REF]. Many numerical studies were proposed for intermediated Reynolds ows (see e.g. Saboni et al. [START_REF] Saboni | Mass transfer from a contaminated uid sphere[END_REF] , Alexandrova et al. [START_REF] Alexandrova | Eect of the viscosity ratio on the mass transfer into a spherical drop in liquid-liquid dispersions[END_REF], Feng and Michaelides [START_REF] Feng | Heat and mass transfer coecients of viscous spheres[END_REF]), and correlations of mass transfer coecient have been proposed by Feng and Michaelides [START_REF] Feng | Heat and mass transfer coecients of viscous spheres[END_REF]. A review of the main correlations for internal and external problems in circulating drops are summarized by Kumar and Hartland [17].

While the internal/external problems have been heavily studied, the solution of the conjugate problems is still an active area of research. This type of problems involves taking into account the concentration in both the continuous and the dispersed phases. As mentioned previously, one particularity is that the interfacial concentration is ruled by both an equilibrium law (as the Henry law) and the continuity of mass ux. In creeping ow, Ruckenstein [START_REF] Ruckenstein | Mass transfer between a single drop and a continuous phase[END_REF] derived an interesting analytical equation for the Sherwood number using similarity variables in the case of creeping ow. Cooper [START_REF] Cooper | Heat transfer from a sphere to an innite medium[END_REF] had found an analytical solution for the conjugate transfer at low Peclet. Still in creeping ows, Oliver and Chung [START_REF] Douglas | Conjugate unsteady heat transfer from a spherical droplet at low reynolds numbers[END_REF] considered the heat transfer from a translating droplet. The transient diusive convective heat equation is solved in a ow eld governed by the Hadamard-Rybczynski equation. The eect of the volumetric heat capacities ratio was illustrated for dierent Peclet numbers. A similar conguration was considered by Kleinman and Reed [START_REF] Leonid | Unsteady conjugate mass transfer between a single droplet and an ambient ow with external chemical reaction[END_REF] for mass transfer where the parametric study moreover considered the inuence of the Henry coecient. The addition rule has been proven not accurate enough, a correction was proposed by the authors. A more general sensitivity study of the temporal evolution of the Sherwood number was proposed by Paschedag et al. [START_REF] Ar Paschedag | Sensitivity study for the mass transfer at a single droplet[END_REF].

The paper is organized as follows. The numerical procedure is described in Section 2 where the governing equations, the typical conditions at the interface, the mesh features are successively discussed. Section 3.2 where the predicted uid motion, internal and the external transfer rates are compared to available analytical or numerical data based on the previously produced case studies. Finally, thanks to the general model developed, a complete study of the problem of conjugate mass transfer is proposed in Sec 4, where the sensibility to the main parameters (µ * , ρ * , D * , k) is studied and analysed.

Model description

General

The ow around and inside a spherical droplet, with a prescribed and xed shape is investigated by direct numerical simulation (DNS).

In this study, the external ow is assumed to be uniform. The two liquid phases are considered Newtonian, and incompressible. The non deformable interface is supposed to be completely free from surface-active contaminants. Meaning that the continuity of the velocity and of the tangential shear stress have to be fullled at the interface (no possible Marangoni eects due to surface tension variations). By convention, the mass transfer rate is assumed to occur from the droplet (with a given initial solute concentration) to the external uid. In addition, we assume that the density and the viscosity of the two phases are not aected by the changes in the solute. With these assumptions, the continuity and the momentum transport equations can be solved separately from the mass transport equations.

The numerical model is based on the balance equations written in dimensionless form in an inertial reference frame attached to the center of mass of the droplet. A two-dimensional axisymmetric computational domain is used. The latter is divided into two distinct subdomains: one referred to the droplet phase and the other one represents the continuous phase. The droplet radius, R is used as the length reference. Similarly, the free stream velocity U 0 is used as the velocity scale. The global size of the computational domain is approximately 50R.

Governing equations

The ow elds are computed by solving the unstationary incompressible NavierStokes and continuity equations in both phases, in a general orthogonal curvilinear coordinates (ξ i ) i=1,3 as recommended by Magnaudet et al. [START_REF] Magnaudet | Accelerated ows past a rigid sphere or a spherical bubble. part 1. steady straining ow[END_REF]. V δ stands for the dimensionless velocity along the coordinate line ξ i and the physical length ξ i = h i dξ i (where h i denotes the factor scale along the direction i), P δ represents the dimensionless pressure. The superscript δ refers to either the dispersed phase "d" or the continuous phase "c". The Navier-Stokes equations can be written in each phase δ in the dimensionless and compact conservative form (Pope [START_REF] Sb Pope | The calculation of turbulent recirculating ows in general orthogonal coordinates[END_REF]) :

∂V δ j ∂ξ j = 0 ∂V δ i ∂t + ∂ V δ i V δ j ∂ξ j = - ∂P δ ∂ξ i + ∂ τ δ ij ∂ξ j + H i j V δ j V δ j -τ δ jj -H i j V δ i V δ j -τ δ ij (1) 
The stretching factors (curvature terms) H i j are dened as :

H i j = 1 h j ∂h j ∂ξ i (2) 
τ δ ij represents the dimensionless components of the viscous stress given in the considered orthogonal curvilinear coordinates by :

τ d ij = 1 Re ∂V d i ∂ξ j + ∂V d j ∂ξ i -H i j V d j -H j i V d i + 2H k i V d k δ i,j τ c ij = µ * Re ∂V c i ∂ξ j + ∂V c j ∂ξ i -H i j V c j -H j i V c i + 2H k i V c k δ i,j (3) 
µ * is the ratio of the dynamic viscosities (µ d /µ c ). The Reynolds number shown in the τ δ ij expression is dened by Re = U 0 2R ν c , with ν c denotes the kinematic viscosity of the continuous phase.

The mass transfer resistance is considered to be comparable in both phases. Hence the inner and outer concentration elds are computed by solving the transient mass transport equations in both phases. The dimensionless concentration of the solute in phase δ, it is dened as

C δ = C δ -C ∞ C d 0 -C ∞
(the prime refers to dimensional concentration) where C d 0 stands for the initial concentration inside the droplet and C ∞ for the solute concentration in the stream ow, far from the droplet. In the absence of chemical reaction, the mass balance equation involves only convective and diusive transport terms. In the considered coordinates system (ξ i ) the dimensionless solute's balance equations read :

∂C d ∂t + ∂ V d j C d ∂ξ j = 1 P e ∂ 2 C d ∂ξ 2 j ∂C c ∂t + ∂ V c j C c ∂ξ j = D * P e ∂ 2 C c ∂ξ 2 j (4) 
P e = 2U 0 R D c is the external Peclet number. Note that P e is the product of the Reynolds number and the Schmidt number Sc = ν c D c , with D c the solute's mass diusivity in the continuous phase.

Interface conditions

The droplet interface is considered to be free from surface-active contaminants. Hence the tangential velocity and shear stress are continuous at the interface while the velocity normal component at the interface is equal to 0. Moreover, since the spherical droplet is 5 non-deformable, there is no need to specify a condition for the normal stress at the interface.

Therefore, the hydrodynamic jump conditions at the interface are expressed as follow, where

(n, t) are the normal and the tangential vectors to the interface respectively :

V d • t = V c • t V d • n = V c • n = 0 (τ d I • n) • t = (τ c I • n) • t (5) 
Regarding the transferred species, equilibrium distribution is assumed to prevail at the droplet's interface. Besides, as the mass ux at the interface is continuous, therefore the mass jump conditions at the interface may be expressed in by the following equations :

C d I = k • C c I - D d D c ∂C d ∂n I = - ∂C c ∂n I ( 6 
)
Where k is the distribution coecient or sometimes called the Henry coecient (namely in liquid-gas systems).

Meshing & Discretization

Two types of orthogonal curvilinear meshes have been considered in this study. In both cases the droplet is discretized using a polar mesh centred at the droplet center. Whereas for the continuous phase domain, two meshing strategies have been proposed. The rst mesh is based on the streamlines ψ and the equipotential lines of a potential ow around a cylinder. The expressions of Ψ and φ in the considered polar coordinates are :

φ = ξ 1 = -cos(θ) r + R 2 /r ψ = ξ 2 = -sin(θ) 1 -R 2 /r 2 (7) 
It is important to note that ψ and φ are orthogonal by denition. In the second approach, as for the droplet, a polar mesh is used for the continuous phase domain. In each case, the mesh is axisymmetric and presents a bijection with the Cartesian coordinates.

The Navier Stokes and the diusion-convective transport equation are solved using a staggered mesh where the pressure nodes and the velocity nodes are shifted from one anther. The second order discretization of the jump conditions at the interface are given by Equations ( 8)- [START_REF] Johns | Mechanism of dispersed-phase mass transfer in viscous, single-drop extraction systems[END_REF] illustrated in Figure 1. These expressions, where the ratios of the relevant phase properties are highlighted is red, enable to link the internal/external hydrodynamics and the mass transfer. The discretization factors of Eq ( 8)-( 11) are detailed in Appendix A.

The studied meshes are presented in Figure 2. and their corresponding numerical domains in Figure 3. A rening at the interface is necessary in order to resolve both the hydrodynamic and the mass boundary layer with a good precision. The thickness of this later can be approximated by R/Re 1/2 for the hydrodynamic boundary layer and R/P e 1/2

for the mass boundary layer. 

V 2 V 1 P R=1 (i , j ) (i , j -1) (i , j -2) (i , j +1) C j C j-1 C j-2 C j+ 1 V j-2 V j-1 V j V j+
(τ c I • n) • t = µ d µ c d3v d V d j-2 -d2v d V d j-1 + (d1v d -H 1 2 )(d2v c V c j -d3v c V c j+1 ) d1v c + H 1 2 1 + µ d µ c d1v d -H 1 2 d1v c + H 1 2 (8) V c I = d2v c V c j -d3v c V c j+1 -(τ c I • n) • t d1v c + H 1 2 (9) C c I = d2p c C c j -d3p c C c j+1 + D d D c (d2p d C d j-1 -d3p d C d j-2 ) d1p c + D d D c k d1p c (10) 
∂C c ∂n I = k d1p d (d2p c C c j -d3p c C c j+1 ) -d1p c (d2p d C d j-1 -d3p d C d j-2 ) k d1p d + D c D d d1p c (11) 
Figure 2: Left : LCE Mesh, Right : Polar Mesh

Numerical procedure

The set of conservation equations is solved using an inhouse code JADIM based on Finite Volume Method, developed in IMFT [START_REF] Rivero | Etude par simulation numérique des forces exercées sur une inclusion sphérique par un écoulement accéléré[END_REF]. The algorithm of resolution relies on the projection method, where the diusive-convective terms are evaluated rst, then the pressure is resolved in order to satisfy the incompressibility condition. The numerical scheme of time advancement based on a second order Range-Kutta/Crank-Nichelson presents an ecient stability as explained in Rivero [START_REF] Rivero | Etude par simulation numérique des forces exercées sur une inclusion sphérique par un écoulement accéléré[END_REF] Thesis. The viscous terms are calculated implicitly while the convective terms are evaluated explicitly. The spatial discretization is based on second order centred scheme. The pressure's resolution is performed independently inside The simulation strategy is performed as follows. First, hydrodynamics is solved at a given Re number and viscosity ratio µ * until a steady state is reached. The concentration equation is then solved in a frozen velocity eld with an initial value of C d 0 = 1 and 0, respectively inside and outside the droplet, the calculation is then stopped as the mean solute dimensionless concentration inside the droplet goes below 10 -5 .

Post-processing and notations

Dimensionless parameters will be used in this study to analyse the results. Some of them were already seen in the dimensionless balance equations and the discretization of hydrodynamic and mass transfer quantities at the interface. Therefore results will be presented in terms of dimensionless ratios µ * , ρ * and D * which stands for dynamic viscosity ratio, density ratio and mass diusivity ratio, respectively dened by :

                 µ * = µ d µ c ρ * = ρ d ρ c D * = D d D c (12) 
By convention, and for the sake of simplicity, the Reynolds and the Peclet numbers, will be based on the external physical properties and the droplet diameter :

Re = U 0 • d ν c P e = U 0 • d D c (13) 
The drag coecient C D is calculated from the total drag force F D exerted by the uniform ow on the droplet using the classical denition :

C D = 8 F D,p + F D,f πρ c U 2 0 d 2 (14) 
The global Sherwood number is dened by the following expression (considering as driving force the dierence between the instantaneous sphere average concentration and the free stream concentration):

Sh = 1 C d drop ∂C d ∂n I • sin(θ)dS (15) 
Where C d is the mean solute's concentration in the droplet, given by :

C d = 12 R 0 π 0 C d (r, θ)r 2 sin(θ)drdθ (16) 
The local Sherwood number is also considered dened by

Sh θ = - 2 C d ∂C d ∂n I (17) 
At last, in the dimensionless framework considered here, the governing time-scale for the transport process is expressed by the Fourier number F o :

F o = D c t R 2 (18) 

Validations & discussions

Mesh sensibility

The mesh sensitivity has been studied by rening either the radial and the angular mesh inside the droplet (see Figure 4), we recall that the cell size on the interface was chosen to full the conditions discussed in Sec 2.4. In each case, the same expansion ratio is considered on each side of the interface in order to guarantee a smooth transition between the two liquid phases. Due to the structure of the external mesh (rst type), an internal angular rening induces an angular rening in the outer region just above the droplet, and a radial rening is sometimes required outside the droplet to keep a good mesh quality. The sensibility of the drag coecient C D Eq [START_REF] Juncu | A numerical study of the unsteady heat/mass transfer inside a circulating sphere[END_REF], and of the global Sherwood number Sh (Eq (15)) regarding the mesh size is reported in Tables 1 and2 respectively. 10 Note that, for the sake of simplicity, only the asymptotic value of Sh is reported in 

C D (Re, µ * ) = 8 Re 2 + 3µ * 1 + µ * (19)
For our purpose, we used the results reported by Feng and Michaelides [START_REF] Feng | Drag coecients of viscous spheres at intermediate and high reynolds numbers[END_REF] and by Oliver

and Chung [START_REF] Oliver | Flow about a uid sphere at low to moderate reynolds numbers[END_REF], the comparison is given in Table 3. Our results shows perfect agreement with these earlier works (deviation less then 1%), Figure 5. 

µ

1D diusion : contact

In order to test the validity of the implemented jump condition for the concentration, especially in the case of discontinuous concentration at the interface (k dierent from 1), we considered the diusion between two quiescent phases maintained in a perfect contact (see Figure 6 [right]). Both phases are supposed to be innite in the directions (x, z), so that the problem is 1D. Under the semi-innite wall assumption, we can derive the analytical solution in Eq [START_REF] Broadus | The drying of porous solids: diusion and surface emission equations[END_REF]. For the numerical simulations, the following values were considered:

(D 1 = D 2 ; C 0 1 = 1; C 0 0 = 1), and studied the inuence of the Henry coecient, responsible for the discontinuity of the concentration at the interface. The case is sketched in Figure 6(right)

with the boundary conditions used. The simulation results are in excellent agreement with the analytical solution ( Figure 7), as the Fourier number becomes signicant compared to 1, the innite-wall is no longer valid. It can be noticed that the concentration discontinuity at the interface is well predicted by the simulation, and that the value of the concentration at the interface is independent of the time. 

C + 1 = D 2 D 2 + k • D 1 k • C 0 2 -C 0 1 C 0 2 -C 0 1 erf c(-u 1 ) C + 2 = D 1 D 2 + k • D 1 k • C 0 2 -C 0 1 C 0 2 -C 0 1 erf c(u 2 ) (20)                        C + 1 = C 1 -C 0 1 C 0 2 -C 0 1 C + 2 = C 2 -C 0 2 C 0 1 -C 0 2 u 1 = y 2 √ D 1 t f or y < 0 u 2 = y 2 √ D 2 t f or y > 0 (21) 

1D diusion : Sphere

The basic problem of heat or mass transfer inside a droplet is that of the pure diusion problem (P e = 0 and Re = 0), The instantaneous radial prole of the normalized concentration C d is given by Newman [START_REF] Broadus | The drying of porous solids: diusion and surface emission equations[END_REF] equation.

C d = 1 + 2 r +∞ n=1 (-1) n nπ exp -(nπ) 2 F o d sin (nπr) (22) 
Where F o d = D d t R 2 is the Fourier number related to the droplet. The instantaneous Sherwood number may be derived from the previous expression as

Sh = 2π 2 3 +∞ n=1 exp -(nπ) 2 F o d +∞ n=1 1 n 2 exp (-(nπ) 2 F o d ) (23) 
The Sherwood number reaches the limiting value Sh N ewman = 2π 2 /3 ≈ 6.58 in the limit of F o -→ ∞. Radial concentration proles obtained by Eq [START_REF] Douglas | Conjugate unsteady heat transfer from a spherical droplet at low reynolds numbers[END_REF] and by our DNS simulation are compared in Figure 8 for dierent dimensionless times. A perfect agreement can be observed between our simulations (symbols) and the Newman's solution (lines). The corresponding asymptotic Sherwood number estimated from our simulations is Sh ∞ = 6.56, which diers only by 0.2% from the Newman's results to the steady value given by Eq [START_REF] Douglas | Conjugate unsteady heat transfer from a spherical droplet at low reynolds numbers[END_REF]. While When P e µ * +1 -→ ∞, an analytical solution of the Sherwood number is given by Kronig and Brink [START_REF] Kronig | On the theory of extraction from falling droplets[END_REF] in Eq [START_REF] Ar Paschedag | Sensitivity study for the mass transfer at a single droplet[END_REF]. The Sherwood number corresponding to P e = 10 5 is mingled with the one associated with Kronig and Brink Solution.

Sh = 32 3 +∞ n=1 A 2 n λ n exp -16λ n F o d +∞ n=1 A 2 n exp ((-16λ n F o d ) (24) 
Where A n and λ n are dened by the lists ( 25) Juncu [START_REF] Juncu | A numerical study of the unsteady heat/mass transfer inside a circulating sphere[END_REF] work has been adopted to investigated the evolution of the local Sherwood prole (Figure 10). The temporal evolution of Sh θ along the interface shows excellent agreement with Juncu's results. 

A n = [

Conjugate problem : low Reynolds number

In the case of comparable mass resistance in both phases, one must resolve the concentration equation in both the internal and the external phase with jump conditions at the interface. We consider a droplet in a small Reynolds ow (i.e. Re = 0.1), the viscosity ratio considered in this study is set to be one µ * = 1. As the Peclet number increases the eect of convection becomes increasingly signicant, hence the internal recirculation's eect on the Sherwood number evolution. Figure 11 A parametric study has been conducted, always on the limit of the Reynolds number.

three key parameters have been studied, the mass diusivity ratio, the Henry coecient and the viscosity ratio. The impact of these coecients seems to be signicant on the Sherwood number. Kleinman and Reed [START_REF] Leonid | Unsteady conjugate mass transfer between a single droplet and an ambient ow with external chemical reaction[END_REF] results have been token as a reference to validate our simulations, Figure 11 summarizes the main results of the parametric study. An increase in the distribution coecient k, Which means a decrease in the solubility of the solute in the continuous phase, leads clearly to a decrease in the mass transfer rate. It is worth to note that oscillations are damped as the Henry coecient increases (the eect of internal recirculation is hence linked to Henry coecient as well). In Figure 11 the temporal evolution of Sh has been displayed for a Peclet number of P e = 1000 and dierent values of the diusivity ratio D * , it can be noticed that the frequency of the internal oscillations in Sh is independent of the diusivity ratio. This conrms the explanation that these oscillations are due only to the internal recirculation and not the diusion. D * is a key parameter allowing to shift the mass resistance into either the internal or external phase. Theoretically, the Sherwood number evolution must converges to the proles associated to the internal problem. For D * = 0.25 the Sherwood temporal evolution converges toward the value Sh = 15.327 which is lower than 17.9, for D * = 0.1 it has been found that the Sherwood number asymptotically value converges toward Sh = 17.07 which represents 95% of the limiting value. The evolution of the solute concentration depends signicantly on the problem parameters. The eect of the Peclet number of temporal evolution of the solute concentration distribution has been highlighted if Figure 12 for diusive process (i.e. P e = 10), the diusion of the solute is almost symmetric. For P e = 1000 (convective process) Figure 13, one can observe the eect of the internal recirculation on the solute distribution, after a certain time the process became diusive limited from a torus located in the vortex zone toward the interface, this state represents the steady regime observed in the Sherwood temporal evolution. 19) can be written as :

C D (Re, µ * ) = C bubble D + µ * C particle D 1 + µ * (26) 
In order to verify the validity of equation 26 in the studied range of Re and µ * . It is interesting to start by noticing that all the curves of the droplet drag coecient C D (Re, µ * ) (Figure 14) lie between the Mei & Klausner correlation for bubble [START_REF] Mei | Unsteady force on a spherical bubble at nite reynolds number with small uctuations in the free-stream velocity[END_REF] and Shiller & Neuman one for rigid particle [START_REF] Clift | Bubbles, drops, and particles[END_REF] Table 5 and Figure 15 compare the present results of drag coecient with values using the simple correlation in Eq [START_REF] Rivero | Etude par simulation numérique des forces exercées sur une inclusion sphérique par un écoulement accéléré[END_REF]. Interestingly Equation ( 26 occur in the droplet's rear. Unlike the particle case, for a circulating drop, the internal circulation delays both the onset of ow separation and wake formation in the external uid. The separation angle θ d measures the angle at which the external boundary layer is detached from the sphere surface. This angle might characterize as well the position at which the vorticity at the interface (Eq ( 27)) changes sign. Clift et al. [START_REF] Clift | Bubbles, drops, and particles[END_REF] show that in the solid particle case, the ow is unseparated for 0 < Re < 20, then a steady wake region is then developed for 20 < Re130. Re = 20 represents the onset of separation. The authors report a correlation of the separation angle (Eq [START_REF] Saboni | Mass transfer from a contaminated uid sphere[END_REF]) which is valid for 20 < Re < 400.

ω I = ∂V c 2 ∂ξ 1 I - ∂V c 1 ∂ξ 2 I +H 1 2 V c 2 | I -H 2 1 V c 1 | I (27) θ d = 42.5 [log(Re/20)] 0.483 (28) 
For a gas bubble in liquid uncontaminated with surfactants, no separation is predicted (θ d = 0 even for Reynolds numbers as high as 200 [START_REF] Clift | Bubbles, drops, and particles[END_REF], it has been supported by our results

for small viscosity ratios. Figure 16 shows the vorticity (Eq ( 27)) proles along the interface for dierent congurations. We note that for a given Reynolds number (here Re = 100), as we increase the viscosity ratio the dierence between the extremums increases, if µ * ≥ 5, vorticity changes sign, which proves that an external separation occurs at an angle where ω I = 0. 28) so that our results may be correlated in the studied range of (Re,µ * ). As θ bubble d = 0 for the considered Reynolds range, we multiply Eq (28) by µ * /(1 + µ a st) (Eq (29)). Figure 17 shows the comparison between our results and the new correlation (e.g. Eq [START_REF] Ubal | Numerical simulation of mass transfer in circulating drops[END_REF]). With an error bar of ±1.5 We can characterize the presence or the absence of the external recirculation by a schematic curve (Figure 18). In the pink region (i.e. below the curves) the external ow is unseparated, whereas an external recirculation will appear in blue area. As µ * tends to high values, the droplet behaves such a particle which justify that the critical Reynolds number of separation is the onset of separation in the case of particle, hence Re -→ 20. However for low viscosities, the bubble-like behaviour is observed and no separation occurs. 

Mass transfer 4.2.1. Local quantities

In DNS calculations we can easily access more information about all relevant variables.

In this section we focus on the behaviour of the concentration distribution along the interface and the corresponding local Sherwood number.

Logically, as the solute migrates from the droplet to the continuous phase, the droplet mean concentration decreases. The same trend is globally observed with the interface concentration. Interestingly a dierent evolution is evidenced regarding the ratio between the interface concentration and the droplet mean concentration. Indeed, steady evolution has been detected for the ratio in question Figures 19. The prole, all curves converge toward a steady curve that depends only on θ and potentially problem parameters. For small times, C d ≈ 1, the concentration gradient is generally important in the droplet front at the stagnation point, this justies the proles of Sh θ for small times.

It is important to note that in some congurations, namely low P e or high µ * , the steady behaviour is hardly reached before the droplet is "empty". In fact, in such congurations the drop mean concentration is critically low before global or local Sherwood number settle to steady trend. The eect of the Henry coecient on the solution distribution is illustrated in Figure 23.

All congurations were run with P e = 1000, i.e. in convective transfer regime, which means that the eect of the internal circulation is enhanced. As the viscosity ratio increases, the circulation slows down and its center shifts toward the droplets front. The solute diuses then slowly from the droplet to the continuous phase. For k = 0.1, the concentration at the interface is discontinuous which yields high concentration gradient and the transfer is increased. 

Global Sherwood number

In the limit of small Re, the existence of a steady state for the Sherwood number is nontrivial. It has been discussed by Johns and Beckmann [START_REF] Johns | Mechanism of dispersed-phase mass transfer in viscous, single-drop extraction systems[END_REF], using the separation of variables, both the mass gradient at the interface and the bulk concentration decay exponentially, the ratio of the latter quantities (which denes the Sherwood number) converges toward a non zero value. Oliver and Chung [START_REF] Oliver | Unsteady conjugate heat transfer from a translating uid sphere at moderate reynolds numbers[END_REF], investigating numerically conjugate heat transfer from a translating uid sphere for intermediate Reynolds up to 50, found the same asymptotic behaviour of the Sherwood number.

A parametric study has been conducted to investigate the eect of some key parameters on the Sh for higher Reynolds numbers, Figures 24 show the evolution of global Sherwood number Sh with time. The evolution of Sh regarding problem parameters show similar trend as in creeping ow case (shown in Figure 11). An increasing viscosity ratio slows down the solute transfer and the Sh converges slowly to an asymptotic value, it impacts signicantly the transient regime, the oscillations magnitude and frequency. The same remark can be made regarding the Re inuence on the steady value of Sh as shown in Figure 24. Mass transfer parameters, namely k and D * still have big impact on the oscillations magnitude and the steady value of Sh. The impact of the previous parameters on the mean solute concentration inside the droplet is furthermore depicted in Figure 26. The inuence of the viscosity ratio in studied range is not signicant as it is the case for the mass transfer parameters (Henry coecient and diusivity ratio). For a decreasing diusivity ratio, the mass resistance is located in the droplet, therefore the solute mean concentration decays slowly from the droplet to the continuous phase (Figure 26 [bottom right]). It is interesting to note that for a variable P e (Figure 26 [top left]) and for small times, the transfer is mainly diusive and the eect of the recirculation is not seen yet [START_REF] Clift | Bubbles, drops, and particles[END_REF], therefore, the decreasing of C d is independent of the Peclet number. The convective process triggers after F o d ≈ 10 -3 , subsequently the solute draining speeds up as P e increases. Throughout what has been previously presented, it has been found that for a given conguration, an increasing viscosity ratio µ * is responsible for a slow transfer and a decreasing asymptotic value of the global Sherwood number (Figures 11 and24). For a diusive regime (P e = 100), the previous rule is respected whether the Henry coecient is small or equal to unity. However as the Peclet number increases, a curious behaviour occurs (Figure 27).

For k = 0.1, as the viscosity ratio increases from 0.25 to 1, a slight increase of the steady value of the Sherwood number is obtained from 18.04 to 18.63. The present results has been proven independent of the used mesh. This behaviour is well illustrated in Figures 28. For

Peclet numbers lower than 50, the Steady Sherwood number decreases monotonically with the viscosity ratio for the range of studied Henry coecient k. However, for Peclet number equals to 1000, two behaviours are highlighted. On the one hand, for k ≥ 1, Sh asy decreases monotonically with the viscosity ratio. On the other hand, as k < 1, Sh as (µ * ) is no longer monotonic, an extremum occurs at µ * < 2 in the function Sh as (µ * ) as is highlighted in Figure 28 . For small P e (P e < 10), the slope of the decreasing function Sh as (µ * ) decreases as the Henry coecient increases, the asymptotic Sherwood number becomes then less dependent on the viscosity ratio. On the other hand, the steady Sherwood number keeps practically decreasing with slightly the same rate for P e = 1000 and k > 1. A similar behaviour is illustrated when the diusivity ratio varies for a given Henry coecient (k = 1) in Figure ??. 

Conclusion & perspectives

In this paper, the hydrodynamic of a spherical droplet in a uniform ow has been investigated alongside with the conjugate mass transfer problem by means of direct numerical simulation. Simulation were performed for Reynolds numbers up to Re = 100 and relatively wide range of viscosity ratio 0.1 ≤ µ * ≤ 15 for the hydrodynamic part, the validation step showed that our results are in perfect agreement with previous works so far and that a simple correlation of the drag coecient might be used with a good precision. A simple correlation of the separation angle has been proposed as well. For mass transfer, three additional parameters (Diusivity ratio, Henry coecient and the Peclet number) whose eect on the Sherwood number has been analyzed. The objective of the present study is to shed the light on the complexity of the conjugate problem and the multi-parameters that impact highly the physics of the transfer. A non-trivial behaviour of the asymptotic Sherwood number has been detected when the problem is convective and the Henry coecient/diusivity ratio are small. Future work will be dedicated to nding an acceptable correlation of the Sherwood number and 3D simulation for hight Reynolds number.

Appendix B. Correlations

For 0 ≤ Re ≤ 5 [START_REF] Feng | Drag coecients of viscous spheres at intermediate and high reynolds numbers[END_REF] C 

Figure 1 :

 1 Figure 1: Left : General scheme of a calculation cell, Right : Discretization at the interface
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 113 Figure 3: Left : Numerical domaine associated with the LCE Mesh, Right : Numerical domain associated with the Polar Mesh
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 5 Figure 5: Drag coecient in terms of viscosity ratios
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 67 Figure 6: Left : Temperature distribution, Right : Boundary conditions
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 8 Figure 8: Temporal evolution of the concentration along the radius
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 399 Figure9: Temporal evolution of the Sherwood number for dierent values of P e/(µ * + 1), solid line : present results, dashed lines[START_REF] Clift | Bubbles, drops, and particles[END_REF] 

3 Figure 10 :

 310 Figure 10: Local Sherwood number proles for dierent Fourier Number, -blue : Juncu's results [14],black : present calculation (P e = 1000, ρ * = 1, µ * = 1, D * = 1 )
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 2152511 Figure 11: Temporal evolution of Sherwood number [Re = 0.1, P e = 1000] (solid lines represent present results, dashed lines Kleinman & Reed [15] (bottom and top right), Oliver & Chung [23](top left) )
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 1213 Figure 12: Temporal evolution of concentration distribution (Re = 10, µ * = 1, D * = 1, P e = 10)

Figure 14 :

 14 Figure14: Drag coecients, makers : present calculation, continuous line : correlations[START_REF] Mei | Unsteady force on a spherical bubble at nite reynolds number with small uctuations in the free-stream velocity[END_REF],[START_REF] Clift | Bubbles, drops, and particles[END_REF] 

Figure 15 :

 15 Figure 15: Parity plot of the drag coecient: symbols : present simulations vs Eq (26), blue lines : y = x (Each Reynolds number contains dierent viscosity ratios)

Figure 16 :

 16 Figure 16: Vorticity proles along the interface (Re = 1, ρ * = 1)

Figure 17 :

 17 Figure 17: Separation angle : symbols : present simulations, blue lines : correlation Eq (29)

Figure 18 :

 18 Figure 18: Schematic external bifurcation curve ( ρ * = 1)

  steady regime occurs at F o d = 0.1 regarding the studied conguration. The same trend was encountered with the local Sherwood number (i.e. Eq (17)). Figures 20 depicts the temporal evolution of the local Sherwood number

1 F 1 F o d = 0. 2 Figure 19 : 2 Figure 20 :

 11219220 Figure 19: Left : Temporal evolution of interface concentration prole, Right : Temporal evolution of the ratio C d θ (θ, F o d )/C d
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 22521111522 Figure 21: Left : Interface velocity, Right : interface vorticity

Figure 23 :

 23 Figure 23: Concentration distribution and streamlines (F o d = 0.15, Re = 100, P e = 1000, D * = 1) -top : k = 1, bottom : k = 0.1 -From left to right : µ * = 0.25, 1, 5
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 5124124125 Figure 24: Temporal evolution of global Sherwood number -top left : P e impact, top right : µ * , bottom left : k impact, bottom right : D * impact

1 Figure 26 :

 126 Figure 26: Temporal evolution of the mean concentration -top left : P e impact, top right : µ * , bottom left : k impact, bottom right : D * impact

1 Figure 27 :Figure 28 :

 12728 Figure 27: Temporal evolution of Sherwood number -Top : P e = 1000, Bottom : P e = 100

Figure 29 :

 29 Figure 29: Asymptotic Sherwood number as function of the viscosity ratio for dierent diusivity ratios (Re = 100, k = 1)

Table 2 .

 2 No signicant deviation is observed for the large range of conditions investigated

	0.5	0.541	0.542	0.541	0.541
	1	0.6598	0.6605	0.660	0.660
	2	0.803	0.803	0.803	0.803

(i.e. regardless of the viscosity ratio and/or the P e values) hence highlighting that mesh convergence is reached.

Figure 4: Radial and angular parameters of rening µ * Mesh N r × N θ 50 × 80 60 × 100 70 × 100 100 × 120

Table 1 :

 1 Drag coecient (Re = 100, ρ

	10	P e	50 × 80 1.742	Mesh N r × N θ 60 × 100 70 × 100 1.745 1.745	100 × 120 1.746
	100		5.501	5.505	5.507	5.507
	1000	12.404	12.413	12.399	12.385
	10000	16.911	16.903	16.9	16.87

* = 1)

Table 2 :

 2 Sherwood number (Re = 100, µ

	3.2. Validations
	3.2.1. Drag coecient

* = 1, ρ * = 1, D * = 1)

The drag coecient is a relevant criteria to validate hydrodynamic model. A good review of previous work can be found in

[START_REF] Clift | Bubbles, drops, and particles[END_REF]

. Ranging from analytical solution of the drag coecient of the Hadamard-Rybczynski solution in creeping ow (Eq

[START_REF] Mei | Unsteady force on a spherical bubble at nite reynolds number with small uctuations in the free-stream velocity[END_REF]

), to various experimental correlations at intermediate and higher Reynolds numbers.

Table 3 :

 3 Drag coecients (ρ

	* \Re	1	10	20	50	100	150	200
	0.05	17.98	2.45	1.45	0.7	0.39	0.28	0.23
	0.2	19.14	2.72	1.6	0.79	0.45	0.32	0.25
	0.333	19.96	2.87	1.7	0.85	0.49	0.35	0.28
		[19.9]	[2.87]	[1.71]	[0.89]			
	0.5	20.78	3.03	1.81	0.92	0.54	0.39	0.31
		(20.74)	(3.030)	(1.818)	(0.939)	(0.552)		(0.317)
	1	22.43	3.34	2.04	1.08	0.66	0.49	0.39
		(22.42)	(3.339)	(2.037)	(1.097)	(0.666)		(0.397)
	2	24.09	3.66	2.26	1.25	0.8	0.61	0.5
		(24.02)	(3.655)	(2.26)	(1.25)	(0.803)		(0.504)
	5	25.76	3.99	2.49	1.42	0.95	0.76	0.64
		(25.67)	(3.974)	(2.484)	(1.412)	(0.955)		(0.646)
	10	26.51	4.14	2.6	1.49	1.02	0.82	0.71
		(26.43)	(4.117)	(2.584)	(1.479)	(1.011)		(0.716)
	15	26.8	4.19	2.63	1.52	1.04	0.84	0.73
	100	27.33	4.29	2.71	1.57	1.08	0.88	0.76

* = 1), Values in parentheses

(Feng & Michalides [8]

), Values in brackets

(Oliver & Chung [21]

)

  1.33 0.60 0.36 0.35 0.28 0.22 0.16] λ n = [1.678 8.48 21.10 38.5 63.0 89.8 123.8]

						(25)
	0.00	0.02	0.04	0.06	0.08	0.10

Table 4 :

 4 Sh st , Table4reports the latter values which are consistent with previous works. Steady Sherwood number Sh ∞ for Re = 0.1 and µ

	P e	50	100	200	500	1000
	Present calculation	2.72	3.6	4.8	7.19	9.14
	Olivier & Chung	2.67	3.6	4.8	7.2	9.2

(top left) depicts a temporal evolution of the Sherwood number. A comparison with Oliver and Chung

[START_REF] Douglas | Conjugate unsteady heat transfer from a spherical droplet at low reynolds numbers[END_REF] 

works shows good agreement. For the studied Peclet number range, the Sherwood number temporal settles to a steady value * = 1

Table 5 :

 5 Comparison between present calculation of drag coecient and Eq (26) between parenthesesThe dependence of C D on the density ratio has been proven insignicant by Feng and Michaelides[START_REF] Feng | Drag coecients of viscous spheres at intermediate and high reynolds numbers[END_REF]. This result is supported by our present work (Table6).

	Re / ρ *	0.1	0.5	1	5	10
	10	3.345	3.345	3.344	3.342	3.342
	50	1.088	1.086	1.083	1.07	1.07
	100	0.671	0.667	0.662	0.66	0.66

Table 6 :

 6 Drag coecient (density ratio eect) 4.1.2. Separation angle For intermediate to high Reynolds ow and viscosity ratio, an external circulation may

Table 7 :

 7 Rounded separation angles µ * / Re

	• , the

Table 8 :

 8 Streamlines

Table 9 :

 9 Sherwood number

		k	D *	µ * \P e 10	50	100	500	1000
	Re = 0.1	1	0.5	0.25	2.352	5.239	7.183	12.005	13.5947
		1	0.5	1	2.1818	4.588	6.21	10.9848	12.736
		1	0.5	4	2.007	3.953	4.958	9.149	11.115
		1	1	0.25	1.288	3.007	4.137	8.237	10.213
		1	1	1	1.175	2.711	3.593	7.161	9.1
		1	1	4	1.063	2.454	3.077	5.576	7.2917
		1	2	0.25	0.641	1.7118	2.322	4.893	6.544
		1	2	1	0.573	1.546	2.062	4.129	5.577
		1	2	4	0.52	1.383	1.815	3.2	4.242
		0.5	1	0.25	1.5478	4.144	5.839	11.73	13.302
		0.5	1	1	1.39	3.696	4.991	10.066	12.251
		0.5	1	4	1.238	3.32	4.177	7.774	10.107
		2	1	0.25	0.962	1.979	2.664	5.313	6.877
		2	1	1	0.893	1.799	2.345	4.58	5.976
		2	1	4	0.825	1.637	2.042	3.618	4.724
	Re = 10	1	0.5	0.25	4.4115	9.644	12.134	15.558	16.55
		1	0.5	1	1.713	4.351	6.0639	11.601	13.512
		1	0.5	4	0.29955	1.818	2.808	5.2452	7.0598
		1	1	0.25	1.5573	3.560	4.9651	9.4925	11.431
		1	1	1	1.4375	3.178	4.3246	8.4464	10.406
		1	1	4	1.305	2.792	3.5371	6.7391	8.6389
		1	2	0.25	2.1071	4.3082	5.8148	4.6509	11.611
		1	2	1	1.0646	2.1	2.7988	5.4724	7.0273
		1	2	4	0.28405	1.1061	1.4776	2.5441	3.3152
		0.5	1	0.25	2.8234	6.2717	8.4648	13.194	14.615
		0.5	1	1	2.6458	5.5148	7.478	12.259	13.819
		0.5	1	4	2.4604	4.5335	5.9291	10.59	12.401
		2	1	0.25	0.81017	2.0013	2.7556	5.8429	7.618
		2	1	1	0.73988	1.813	2.4298	5.0295	6.677
		2	1	4	0.66523	1.6055	2.0858	3.861	5.1864
	Re = 100	1	0.5	0.25	3.2954	7.5365	9.8892	14.268	15.493
		1	0.5	1	3.1013	6.905	9.3007	14.181	15.62
		1	0.5	4	2.7754	5.3926	7.3127	12.498	14.272
		1	1	0.25	1.8545	4.3319	6.08	10.862	12.74
		1	1	1	1.744	3.9119	5.51	10.351	12.395
		1	1	4	1.5226	3.0919	4.1069	8.0948	10.239
		1	2	0.25	0.9931	2.4054	3.3894	7.0204	8.971
		1	2	1	0.9237	2.2122	3.10428	6.444	8.3648
		1	2	4	0.8074	1.7825	2.2804	4.5486	6.0778
		0.5	1	0.25	2.3449	6.1041	8.6512	13.983	17.006
		0.5	1	1	2.3659	6.7248	9.9664	16.245	17.378
		0.5	1	4	1.74	3.8787	5.2024	10.143	12.853
		2	1	0.25	1.3048	2.7898	3.8469	7.373	12.715
		2	1	1	1.2512	2.5661	3.5201	6.8615	8.6874
		2	1	4	1.5226	3.0919	4.1069	8.0948	10.239
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Appendix A. Mesh parameters