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NEW STATISTICAL DEVELOPMENTS FOR TARGET AND1
CONDITIONAL SENSITIVITY ANALYSIS2

HUGO RAGUET∗ AND AMANDINE MARREL∗3

Abstract. In the context of sensitivity analysis of complex phenomena in presence of uncertainty,4
we motivate and precise the idea of orienting the analysis towards a critical domain of the studied5
phenomenon. For this, target and conditional sensitivity analyses are defined. We make a brief6
history of related approaches in the literature, and propose a more general and systematic approach.7
Nonparametric measures of dependence being well-suited to this approach, we also make a review of8
available methods and of their use for sensitivity analysis, and clarify some of their properties. Then,9
we focus our attention on sensitivity indices based on correlation ratio, namely Sobol’ indices, and10
on two dependence measures: the kernel quadratic dependence measure also called Hilbert–Schmidt11
independence criterion and the Csiszár divergence dependence measure. We propose adapted versions12
of these tools for target and conditional analysis, by considering transformation of the output using13
hard or smooth weight functions. Finally, we show on synthetic numerical experiments both the14
interest of target and conditional sensitivity analysis, and the efficiency of the dependence measures.15
We also illustrate the relevance of the proposed smooth versions for conditional estimators.16

Key words. Sensitivity analysis, computer experiments, target and conditional sensitivity analysis,17
dependence measure, correlation ratio18
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1. Introduction. Nowadays, many phenomena are modeled by mathematical20
equations which are implemented and solved using complex computer programs. These21
numerical simulators are used to model and predict the underlying physical phenomena22
and their results can guide decisions, which can involve important financial, societal23
and safety stakes. However, they often take as inputs a high number of numerical,24
physical or even conception parameters. Because of a lack of phenomenon knowledge25
and characterization or a need to investigate various configurations, many of these input26
parameters are uncertain (or considered as such) and it is important to assess how these27
uncertainties can affect the model output. In a probabilistic framework, the uncertain28
parameters, also called factors, are modeled by random variables characterized by29
probabilistic distributions. Sensitivity analysis methods are performed to evaluate how30
input uncertainties contribute, qualitatively or quantitatively, to the variation of the31
output. The variety of approaches and applications of sensitivity analysis brings forth32
a diversity of objects and terms. Before presenting the goals of this document and the33
extent of our work, we introduce a few notations.34

In the classical framework, we assume the modeling of a phenomenon Y depending35
on a set of factors (Xi)1≤i≤d following a deterministic relation Y def= f(X1, . . . , Xd),36
f being the numerical simulator in our industrial applications and Y the output(s)37
of interest. Uncertainties are taken into account by modeling the factors as random38
variables, defined over the same implicit probability space (Ω,F,P) with Ω denoting39
the sample space, F the set of events and P the associated probability measure. It will40
also be convenient to consider a generic random variable X, usually standing for a41
group of one or several factors. For such a variable, we note its range X def= ran(X) and42
its law PX

def= P◦X−1 is the induced probability measure over X . We also particularize43
the range of the output Y def= ran(Y ).44
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2 H. RAGUET AND A. MARREL

1.1. Global, target and conditional sensitivity analysis. Global sensitivity45
analysis aims at measuring how the variations of one or several factors contribute to46
the variation of the studied phenomenon, over the whole domain of possible values.47
Many authors agree with Saltelli et al. (2008) to distinguish several use of sensi-48
tivity analysis. First, the ranking of factors by importance is the starting point of49
any application. Identifying the factors which are most influential in a phenomenon50
might help understanding it or guide resource investment for controlling it. Then,51
screening the factors for insignificant ones is considered, for instance for the purpose of52
model simplification. This sometimes calls on statistical tests, which might be practical53
but cannot be satisfying for all applications. In our experience, screening is often in54
practice interpretation of ranking, either through the expertise of the practitioner or55
with some cross-validation process. Finally, factor mapping is often described as a56
finer identification of functional relationship between the specific domains of values57
of the factors and of the phenomenon. This last use of sensitivity analysis consists58
in determining which values of these factors are responsible of the occurrence of the59
phenomenon in a given domain.60

61
In our work, we also focus on specific domains of values of the phenomenon62

but we want to determine which factors contribute most in the occurrence of the63
phenomenon in a given domain. For this, we first define the target sensitivity analysis64
which aims at measuring the influence of the factors over a restricted domain of the65
studied phenomenon, and in particular over the occurrence of the phenomenon in this66
restricted domain. Such domain of interest would usually be extreme and relatively67
rare, constituting a risk or an opportunity; we call it critical domain, noted C ⊂ Y and68
associated to a critical probability P(Y ∈ C) = PY (C). Alternatively, we also define the69
conditional sensitivity analysis which evaluates the influence of the factors within the70
critical domain only, ignoring what happens outside. Let us underline that those two71
notions can widely differ; this point will be illustrated by the numerical applications72
proposed in this paper.73

1.2. Goals and Structure of the Paper. In this paper, we aims at proposing74
news methods and tools for target and conditional sensitivity analysis. It seems to75
us that there are numerous, direct applications, especially for, but not restricted to,76
industrial safety. Still, while global sensitivity analysis has been an active research field77
for several decades, it seems that target sensitivity analysis is less understood, and78
until recently has not been studied systematically as such. This is why we sometimes79
introduce our own terminology, which we discuss along with the description of similar80
concepts that we identify in the literature. Finally, let us point out that we are mostly81
interested in phenomena influenced by many factors and of which only limited under-82
standing is available. Typical situations include complex systems observed through83
heavy computer simulations or costly physical measures. These applicative constraints84
should be taken into account when selecting and proposing dedicated tools.85

86
In section 2, we propose a review on the existing approaches and tools for target87

sensitivity analysis before introducing our contributions in this framework. Then, the88
actual sensitivity analysis tools on which our work relies are more precisely described in89
section 3. In section 4, we get back to our initial problematic of target and conditional90
sensitivity analysis: we propose a simple dedicated framework and describe some91
resulting tools. Finally, we give numerical evaluations of our methods along section 5,92
on various synthetic data.93
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TARGET AND CONDITIONAL SENSITIVITY ANALYSIS 3

2. Review on Existing Approaches. We propose here a coarse classification94
of methods relating to target sensitivity analysis, according to both chronological and95
methodological criteria.96

2.1. Regional Sensitivity Analysis. The very notion of target sensitivity anal-97
ysis dates back at least to Spear and Hornberger (1980), motivated by environmental98
science applications. The proposed methodology compares the distribution of the99
factors within the critical domain against their distribution outside. The authors100
choose to use the Kolmogorov distance, almost systematically reused ever since:101

sup
x∈X

∣∣FX|Y ∈C(x)− FX|Y ∈Y\C(x)
∣∣ ,102

where FX|A is the cumulative distribution function of a real random variable X (i.e.103
X ⊆ R) conditioned by an event A ∈ F of nonzero probability (see section 4.1.2 for104
details).105

They call it regional sensitivity analysis, or sometimes generalized sensitivity106
analysis. The former name could fit our purpose, if it was not for two inconveniences.107
First, it evokes more of a sensitivity analysis within the critical domain (what we call108
conditional sensitivity analysis) rather than its occurrence; second, for the past three109
decades in the literature it referred exclusively to the above methodology. It appears110
to be the generalization of no other method, explaining why the alternative name is111
not used anymore. Finally, one may encounter the term Monte Carlo Filtering, which112
might be vague and restrictive.113

Comparing distributions conditionally to the critical domain seems a good choice114
for target sensitivity analysis. It involves only two conditionings, which facilitates115
its estimation, for instance with Monte Carlo method. One difficulty, mentioned by116
the authors and common to all target sensitivity methods, arises when the critical117
probability is low. Another deficiency pointed out by the authors is the difficulty to118
study factors in interaction. From this viewpoint, observe that a metric comparing119
cumulative distribution functions can be extended to multidimensional settings, which120
would allow to regroup several factors. However, the particular metric used here, namely121
the supremum norm over the differences, is sensitive to outliers. Both aspects make it122
particularly unsuitable for categorical factors.123

Strangely enough, regional sensitivity is mostly used in the literature as a mean of124
global sensitivity analysis, the partition of the domain of values of the phenomenon125
into several regions losing its original sense and becoming more or less arbitrary.126

2.2. Reliability Sensitivity Analysis. Another field dealing with target sensi-127
tivity analysis is motivated by applications in structural reliability, where the term128
reliability sensitivity analysis is commonly used. In this context, critical domains are129
failure domains, and the developed methods are influenced by two typical features:130
failure probabilities are small in comparison to the number of available observations,131
and the probability distributions of the factors are assumed to be known.132

The first methods developed seek, in a suitable transformation of the factors space,133
to determine a “most probable failure point”, and to estimate the critical probability134
from linear or quadratic approximations of the boundary of the critical domain around135
that point. This yields the first- and second-order reliability methods, reviewed by136
Rackwitz (2001). It is possible to give to each factor an importance measure based on137
the position of the most probable failure point. The geometrical assumption about the138
failure domain seems however restrictive, implying in particular that the factors have139
a monotonous effect on the phenomenon.140
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4 H. RAGUET AND A. MARREL

The sensitivity measures which later prevail in the field are based on derivatives of141
the critical probability, with respect to the parameters defining the probability laws of142
the factors or of their transformation. This framework seems once again restrictive for143
our purpose. Nonetheless, the approaches developed in parallel for dealing with low144
critical probabilities deserves to be incidentally noted, because they could be adapted to145
other sensitivity measures. Let us mention the methods based on importance sampling146
(see for instance the adaptation of Wu, 1994), as well as the approach of sequential147
Monte Carlo as proposed by Au and Beck (2001), who call it subset simulation. As148
further developed by Song et al. (2009) and Cérou et al. (2012), the latter is based on149
Markov chain Monte Carlo with the Metropolis–Hasting algorithm.150

Still in the reliability context, the Ph.D. dissertation of Lemaître (2014) is the first151
systematic study of target sensitivity analysis. With this purpose in mind, the author152
compares more general methods of global sensitivity analysis, of which we give a brief153
overview below. We can already mention that he identifies the need to transform the154
variable modeling the phenomenon into a binary variable encoding the occurrence in155
the critical domain; that is 1C(Y ), where 1C : y 7→ 1 if y ∈ C, 0 otherwise. This is one156
of the approach on which we focus in this work (see subsection 4.1).157

A first sensitivity analysis method considered is the estimation of (square) correla-158
tion ratio between the factors and the phenomenon (real, with finite variance),159

(2.1) η2(X,Y ) def= V(E[Y |X])
V(Y ) .160

Resulting quantities are often called Sobol’ (1990, 1993) indices. These are nowadays161
standard for global sensitivity analysis, notably because they can be interpreted in162
terms of decomposition of the variance of the studied phenomenon. Lemaître shows163
how these indices applied to the binary transformation of the observed phenomenon,164
η2(X, 1C(Y )), are relevant at least for cases that are simple and where the number of165
available observations is high enough.166

A second method is based on the total variation which we develop later (see167
section 3.2.2), once again applied to the binary transformation. Unfortunately, the168
proposed estimation methods might be inadequate and the analysis is too brief; the169
author mentions a “positive bias” without further explanations.170

Another set of methods is based on binary classification trees. The author lists171
many ways of defining classification trees, and even more ways of deducing sensitivity172
indices. This indicates a lack of generality and robustness, actually revealed by some173
numerical experiments. For the sake of brevity, we do not elaborate here and invite174
the interested reader to refer to the dissertation for more details.175

Then, Lemaître takes over regional sensitivity described above with some modifi-176
cations. He compares the probability laws conditionally to the critical domain against177
the (known) marginal probability laws. In addition to Kolmogorov distance, he tries178
other discrepancy measures between cumulative distribution functions classically used179
in statistical tests, namely Cramér–Von Mises and Anderson–Darling, and shows that180
this choice can influence the importance ranking of factors. More importantly, he181
suggests that sequential Monte Carlo approaches are well adapted to methods based182
on comparisons of factor distributions conditionally to the critical domain.183

Finally, closer to the classical sensitivity measures for reliability mentioned above,184
the author proposes its own measures, quantifying how modifications of the factors185
probability laws impact on the critical probability. Although it has specific advan-186
tages, such as quantification of uncertainties due to estimation errors on the model’s187
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parameters, this framework seems somewhat artificial and restrictive.188
Altogether, this Ph.D. dissertation is an interesting entry point to target sensitivity189

analysis. However, more numerical experiments seem necessary in order to conclude190
about the advantages and drawbacks of the different considered approaches, and those191
which should be retained for further improvements and comparisons are not clearly192
identified.193

2.3. Sensitivity Analysis of a Specific Statistic. Another recent approach194
for target sensitivity analysis is due to Fort et al. (2013). Their formulation is more195
precise than ours: they are interested in the sensitivity of an estimator of a statistical196
quantity of the studied phenomenon. For this, they introduce the term of goal-oriented197
sensibility analysis.1198

From the relations V
(
E[Y |X]

)
= E

((
E[Y |X]− E[Y ]

)2
)

= V(Y )− E
(
V[Y |X]

)
,199

the authors show how the correlation ratio, (2.1), is, in their sense, a measure adapted200
to the sensitivity of the expectation of the phenomenon: indeed, it measures a distance201
between expectations, quantified by a difference of variances. Now for a generic real202
random variable Y , expectation and variance can be defined through an optimization203

problem, E[Y ] = arg minθ∈R E
(

(Y − θ)2
)
and V[Y ] = minθ∈R E

(
(Y − θ)2

)
, where204

the functional (y, θ) 7→ (y − θ)2 plays the role of a contrast function.205
The generalization of the correlation ratio to a statistic defined by another con-206

trast function ψ becomes2 minθ∈R E(ψ(Y, θ))− E(minθ∈R E[ψ(Y, θ) |X]). In practice,207
in order to study extreme values, they focus on the quantiles of the phenomenon,208
considering for a level α ∈ ]0,1[, the contrast function (y, θ) 7→ (y − θ)(1{y≤θ} − α).209
However, resulting indices turn out to be difficult to estimate, as shown by the recent210
developments of Browne et al. (2017) and Maume-Deschamps and Niang (2017).211

Les us mention that Kucherenko and Song (2016) propose another adaptation of212
the correlation ratio to analysis of sensitivity of quantiles, more direct: expectations213

are simply replaced by quantiles3 of level α ∈ ]0,1[, E
((

F−1
Y |X(α)− F−1

Y (α)
)2
)
, where214

F−1 is the generalized inverse of a cumulative distribution function. As its estimation215
is also difficult, the authors propose to approximate the quantiles conditionally to216
factors values by a rough form of kernel method.217

At last, let us add that the quantile is a peculiar notion and in our opinion, its use for218
sensitivity analysis raises some troubles. Beyond difficulty of definition and estimation,219
these tools are adapted only to phenomena which are unidimensional and continuous.220
Moreover, the “sensitivity of a quantile” has a less straightforward interpretation than221
the sensitivity of the occurrence of a phenomenon, or of the variation of a phenomenon,222
in a critical domain.223

2.4. Contributions. The majority of the methods previously described are224
originally developed for particular applications; we would like to make abstraction225
of the problem to get more general methods. To this end, rather than defining or226
enhancing specific methods, we seek modifications or generalizations of global sensitivity227
analysis tools, which would be adapted to target or conditional sensitivity analysis.228

Such modifications boil down, for a given analysis tool considered, to weighting229
the observations according to the critical domain. The weights can operate following230

1Beware that this term already exists in the literature referring to tools of different nature.
2Provided that the random variable minθ∈R E[ψ(Y, θ) |X] is well defined.
3The random variable F−1

Y |X is now defined through conditional distribution.
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6 H. RAGUET AND A. MARREL

two principles: either as a transformation of the phenomenon prior to the application231
of the tool, or as a modification of the parameters and objects which define the tool232
itself. This includes, but is not restricted to, the natural notion of conditioning. Several233
variations around these principles are presented along section 4; before that, the actual234
sensitivity analysis tools must be introduced.235

3. Correlation Ratio and Dependence Measures for Sensitivity Analy-236
sis. We present here the measures of sensitivity analysis upon which we construct our237
tools. First, sensitivity indices based on correlation ratio, the popular Sobol’ indices,238
are introduced. Now, it appears that sensitivity analysis based on nonparametric239
dependence measures, recently advocated by Da Veiga (2015), is particularly adapted240
to our framework. This will retain most our attention in the following, starting from241
subsection 3.2 where we review available methods for measuring statistical dependence242
and detail the use of some of them in the context of sensitivity analysis.243

3.1. Correlation Ratio yielding Sobol’ Indices. Given a group of factors244
I ⊂ {1, . . . , d}, we write XI

def= (Xi)i∈I for the corresponding random tuple, and245
cI

def= {1, . . . , d} \ I for the complementary group of factors. Moreover, we abusively246
note the concatenation

(
XI , XcI

) def=
(
Xi

)
1≤i≤d.247

The use of correlation ratio for sensitivity analysis has been proposed by Iman248
and Hora (1990) and Ishigami and Homma (1990), and independently by Sobol’ (1990,249
1993). The latter was the most popularized, introducing modifications of correlation250
ratios of groups of factors to achieve a convenient decomposition of the total variance251
of the phenomenon, provided that the factors are independent; these are the Sobol’252
indices. While they are theoretically interesting for studying specific interactions of253
factors, in practice the most useful sensitivity indices are the first-order indices and the254
total-order indices. The former tends to evaluate the influence of a group of factor I255
on its own and is simply η2(XI , Y ), and the latter incorporate all possible interactions256
with other factors, defined as 1− η2(XcI , Y

)
.257

Estimation of correlation ratio can be expensive because it involves the term258
E
(
E[Y |XI ]2

)
. Most common efficient estimators develop the square conditional ex-259

pectation as the product E
[
f(XI , XcI)

∣∣XI

]
E
[
f(XI , X

′cI)
∣∣XI

]
where (XI , X

′cI) is260
distributed identically to (XI , XcI), which in turn is E

[
f(XI , XcI)f(XI , X

′cI)
∣∣XI

]
,261

provided that XcI and X ′cI are independent conditionally to XI . In practice, this is262
ensured when the input factors are independent. The expectation of the last expression263
is nothing but E

(
f(XI , XcI)f(XI , X

′cI)
)
, which is now easier to handle. Typical esti-264

mator consists in drawing 2n independent observations
(
X

(j)
I , X

(j)
cI

)
1≤j≤2n distributed265

as
(
XI , XcI

)
, and evaluating the model at specifically chosen factors combinations,266

typically267

(3.1) E
(
E[Y |XI ]2

)
n

def= 1
n

n∑
j=1

f
(
X

(j)
I , X

(j)
cI

)
f
(
X

(j)
I , X

(n+j)
cI

)
.268

Let us mention that this approach, usually referred to as pick-and-freeze, has two269
drawbacks: first, this constrains the experience design (the set of points at which the270
model must be observed or computed), and second, the required number of model271
evaluations grows with the number of factors to be investigated.272

3.2. Sensitivity Analysis with Dependence Measures. Sensitivity analysis273
based on correlation ratio as described above is fairly general and can be readily adapted274
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for target and conditional analysis, as we propose later in sections 4.2.1 and 4.2.2.275
However, several weaknesses can be pointed out.276

First, accurate estimation is known for requiring many observations. In addition,277
although statistical independence implies zero correlation ratio, some variables can278
be significantly related and yet their correlation ratio be zero as well; in such case,279
one must resort to total-order indices to identify a relationship. More generally, the280
statistical variance of the phenomenon might not be the most representative mode of281
variation. Finally, the above extension for multidimensional phenomenon might not be282
satisfying. In the classical probabilistic framework, we believe with Da Veiga (2015)283
that a more general and more versatile notion of sensitivity of a phenomenon to a group284
of factors can be captured by the notion of statistical dependence. Moreover, De Lozzo285
and Marrel (2016) recently investigated the use of dependence measures for sensitivity286
analysis of costly model and illustrated the efficiency of associated significance tests287
for screening purpose.288

We propose somewhere else (Raguet and Marrel, 2018, §§ 3.1 and 3.2), a classifi-289
cation of dependence measures in general, and an extensive discussion on their use for290
sensitivity analysis in particular. We refer the interested reader to the above article for291
details; for now, let us focus on two important classes. Note that our choice is mainly292
guided by ease of implementation (notably the possibility of writing estimators as293
empirical expectations), aim for generality (factors and phenomenon of any nature294
and dimension), good invariance properties, and ease of adaptation for target and295
conditional sensitivity analysis. They both rely on the same principle: measuring296
the statistical dependence between two variables X and Y by comparing their joint297
distribution PX,Y to their product PX ⊗ PY ; the two being equal if, and only if, X298
and Y are independent.299

3.2.1. Kernel Quadratic Dependence Measure also called Hilbert–Schmidt300
Independence Criterion. The first class of dependence measures which we consider301
arises in the literature from the comparison of the distributions according to their302
probability density or characteristic functions, with help of weighted L2 norms. However,303
more recent interpretations in terms of kernel embeddings of probability distributions304
yield the kernel quadratic dependence measure, following the terminology of Achard305
et al. (2003) and Diks and Panchenko (2007), also called Hilbert–Schmidt independence306
criterion by Gretton et al. (2005).307

In brief, if P is a probability distribution over a generic space Z, and if k : Z2 → R308
is a suitable positive definite kernel, then the mapping z 7→

∫
k(z, z′) dP(z′) is an309

element of the reproducing kernel Hilbert space induced by k (see the introduction310
of Berlinet and Thomas-Agnan, 2003, Chapter 4). The norm between such kernel311
embeddings of two different probability distributions is called their kernel distance.312

A measure of the dependence between X and Y is thus defined by the ker-313
nel distance between PX,Y and PX ⊗ PY . These are probability distributions over314
the space X × Y; a useful particular case arises when the kernel k is separable as315
((x, y), (x′, y′)) 7→ kX (x, x′)kY(y, y′), where kX and kY are positive definite kernels316
over X and Y, respectively. The square of the resulting kernel distance is the kernel317
quadratic dependence measure, and can be expressed as318

319

(3.2) QDMkX,kY
(X,Y ) def=320

E(kX (X,X ′)kY(Y, Y ′)) + E(kX (X,X ′)) E(kY(Y, Y ′))− 2 E(kX (X,X ′)kY(Y, Y ′′)) ,321322
provided that (X ′, Y ′) is independent of, and distributed identically to, (X,Y ), and323
Y ′′ is independent of X,Y,X ′, Y ′ and distributed identically to Y .324
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8 H. RAGUET AND A. MARREL

A straightforward estimator, given
(
X(i), Y (i))

1≤i≤n independent observations325

distributed identically to (X,Y ), is326

QDMkX,kY
(X,Y )n

def= 1
n2

n∑
i,j=1

kX
(
X(i), X(j))kY(Y (i), Y (j))

+ 1
n2

 n∑
i,j=1

kX
(
X(i), X(j)) 1

n2

 n∑
i,j=1

kY
(
Y (i), Y (j))

− 2
n

n∑
i=1

 1
n

n∑
j=1

kX
(
X(i), X(j)) 1

n

n∑
j=1

kY
(
Y (i), Y (j)) ,

327

which should be put under the following handier form for practical implementation,328

1
n2

n∑
i,j=1

(
kX
(
X(i), X(j))− 1

n

n∑
`=1

kX
(
X(i), X(`)))(kY(Y (i), Y (j))− 1

n

n∑
`=1

kY
(
Y (`), Y (j))) .329

Note that some authors prefer normalizing with factors n− 1 and n− 2, or add some330
other debiasing modifications, which are of little interest here. The required number331
of computations grows as O(n2), which is acceptable in situations where the cost for332
obtaining each observation is large.333

When X is a finite set, the categorical kernel (x, x′) 7→ 1 if x = x′, 0 otherwise, is334
most typically used. When X is a normed vector space, the Gaussian kernel (x, x′) 7→335
exp
(
−‖x− x′‖2/2σ2) for some parameter σ2 ∈ R, dependent in practice on the data,336

is also typically used, but others variants are popular; Sejdinovic et al. (2013) show337
that the distance covariance of Székely et al. (2007) is a particular case.338

These last authors propose to normalize their dependence measure in the spirit339
of the linear correlation coefficient, yielding the distance correlation, which is scale-340
invariant. When Da Veiga (2015) highlights the potential use of the quadratic de-341
pendence measure for sensitivity analysis, he also advocates for such normalization,342
leading to the sensitivity index343

QDMkX,kY
(X,Y ) def=

QDMkX,kY
(X,Y )√

QDMkX,kX
(X,X)

√
QDMkY,kY

(Y, Y )
,344

and similarly for its plug-in estimator QDMkX,kY
(X,Y )n.345

3.2.2. Csiszár Divergence Dependence Measure. The second class of de-346
pendence measures which we consider compares the distributions through Csiszár347
(1972) divergences. Considering again P,Q two probability distributions over a generic348
space Z, a Csiszár divergence between P and Q can be defined as349

divφ(P,Q) def=
∫
φ

(
dP
dQ

)
dQ ,350

where φ : R+ → R ∪ {+∞} is a convex function vanishing at unity, and dP
dQ is the351

Radon–Nikodym derivative of P with respect to Q; note that this can be conveniently352
extended to cases where P is not dominated by Q. Notable examples include the353
(reverse) Kullback–Leibler divergence with φ : t 7→ − log(t) and the total variation354
distance with φ : t 7→ |t− 1|.355
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Again, one can measure dependence between X and Y by measuring discrepancy356
between PX,Y and PX ⊗ PY with help of this tool, yielding Csiszár divergence depen-357

dence measure, CDMφ(X,Y ) def= divφ(PX ⊗ PY ,PX,Y ). The famous special case of the358
mutual information, stemming from the work of Shannon (1948), is obtained with the359
Kullback–Leibler divergence, div− log(PX ⊗ PY ,PX,Y ). In the context of sensitivity360
analysis, Park and Ahn (1994) use a form of mutual information, and later Borgonovo361
(2007) uses the total variation dependence measure. In both cases, estimating the362
Csiszár divergence is problematic, and the authors must call on ad hoc parametric363
density fits.364

In fact, estimations of Csiszár divergences have been studied in many contexts, often365
focused on specific versions defined by a given function φ or on specific knowledge about366
the involved distributions. In order to devise a general tool, we choose in the current367
work to rely on nonparametric estimations of the Radon–Nikodym derivatives. Densities368
at specific points can be estimated through kernel or nearest-neighbors methods, see for369
instance the monograph of Silverman (1986). Probabilities are estimated by empirical370
frequencies. Both can be combined if necessary.371

We justify somewhere else (Raguet and Marrel, 2018, § 3.4.2) that a “support”372
version, sCDMφ(X,Y ), where the integration is performed over the range of the373
joint variable (X,Y ) rather than the whole product space X × Y, is convenient. The374
corresponding estimator is375
(3.3)

sCDMφ(X,Y )kX,kY,n

def= 1
n

n∑
i=1

φ


(

1
n

∑n
j=1kX

(
X(i), X(j)))( 1

n

∑n
j=1kY

(
Y (i), Y (j)))

1
n

∑n
j=1 kX ,Y

((
X(i), Y (i)), (X(j), Y (j)))

376

where kX , kY and kX ,Y are the kernels used for estimating densities or probabilities;377
typically (normalized) Gaussian and categorical, respectively. It has a computational378
cost of O(n2), just as for the kernel quadratic dependence measure.379

Unfortunately, normalization is not as natural as for the kernel quadratic depen-380
dence measure which derives from a square norm. Consider moreover that, for instance,381
sCDMφ(X,X) might be infinite. We propose to normalize the estimators as382

sCDMφ(X,Y )kX,kY,n
def=

sCDMφ(X,Y )kX,kY,n

sCDMφ(X,X)kX,kX,n
.383

Let us mention to the interested reader that this can be seen as a rough generalization384
of the normalization proposed by Joe (1989) for mutual information of categorical385
variables, because sCDM− log(X,X) is in that case the Shannon entropy of X.386

4. Some Tools for Conditional and Target Sensitivity Analysis. All of387
the sensitivity measures detailed above can be easily adapted to target and conditional388
sensitivity analysis. We describe first general approaches which can be applied to any389
sensitivity measure. Further details are then given for each tool that we consider.390

4.1. Transformations and Weights. Our general approaches are based on391
transformations of the variable quantifying the phenomenon and on conditioning;392
specific notions and notations are introduced here.393

4.1.1. Targeting with Transformations. In order to study the occurrences of394
the phenomenon Y within the critical domain C ⊂ Y , the natural transformation which395
comes to mind is a binary random variable encoding directly the actual phenomenon of396
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10 H. RAGUET AND A. MARREL

interest and suppressing uninformative fluctuations. This leads to consider the weight397
function 1C : Y → {0, 1} : y 7→ 1 if y ∈ C, 0 otherwise.398

Now, recall that a limited number of observations is usually assumed, so that399
estimation considerations cannot be ignored. The binary transformation above might400
result in a significant loss of the information conveyed by the relative values of Y .401
Indeed, when the critical probability PY (C) is low, most data is summed up to a bunch402
of zeroes.403

Fortunately, a sensible relaxation of the binary assumption can be given as soon as404
one can evaluate some sort of distance dC : Y → R+ between each point in Y and the405
critical domain C. One can compose it by a decreasing real function R→ [0,1], with406
the rationals that the closer is an observation to the critical domain, the more likely it407
is to convey similar information. This of course assumes some kind of regularity of the408
phenomenon’s statistical properties. When Y lies in an Euclidean space, we typically409
consider the weight function y 7→ exp(−dC(y)/s), where dC(y) def= infy′∈C‖y−y′‖. Here,410
the exponential function encodes multiplicative contributions, and s is a smoothing411
parameter depending typically on a measure of dispersion of the values of Y .412

In all the following, w : Y → [0,1] is any kind of the above weight functions, either413
used deterministically, or as a transformation yielding a random variable through the414
composition w(Y ). Any sensitivity measure between a group of factors X and w(Y )415
yields a target sensitivity measure.416

4.1.2. Conditioning with Weighted Probabilities. Alternatively, in order417
to study the behavior of the phenomenon within the critical domain, a natural idea418
is conditioning by the event {Y ∈ C}. Given an initial probability space (Ω,F,P),419
if A ∈ F is an event of nonzero probability, then conditioning by A simply means420
endowing the measurable space (Ω,F) with the probability measure P|A, defined as421

P|A(B) def= P(B ∩A)
/

P(A) for all B ∈ F. If X is a random variable over (Ω,F,P), then422
its law conditionally to A is the law of the mapping X over the conditioned probability423
space

(
Ω,F,P|A

)
, that is PX|A

def= P|A ◦X−1.424
Just as we introduced smooth relaxation of the binary transformation above, it425

might be useful to consider extensions of conditioning allowing to take into account426
some of the information outside the critical domain. This can be easily done by427
observing that P|A(B) can be expressed as

∫
B

1A dP
/ ∫

Ω
1A dP. If W is a positive428

nonzero random variable over (Ω,F,P) with finite expectation, we define the probability429
P weighted by W , noted PW , with for all B ∈ F, PW (B) def=

∫
B
W dP

/∫
Ω
W dP. In430

other words, PW is the probability distribution absolutely continuous with respect to P431
whose density is proportional to W . In addition, if X is a generic random variable, we432
clarify that the notation PWX stands for the image measure

(
PW

)
X
; although strictly433

speaking, it cannot be confused with a weighted image measure (PX)W since W is434
defined over Ω and not over the range of X. Let us also exemplify the particular cases435
of weighted probabilities which are actual conditional probabilities, P|A = P1A , and436
PX|A = P1A

X .437
In a probabilistic framework, any sensitivity measure is defined depending on a438

(usually implicit) probability space. When conditioning by weight W , we change the439
underlying probability measure, but the mappings defining the random variables are440
left unchanged; in such case, the notations are prefixed by

[
PW

]
. Let us underline441

here that, provided that the expectations exist,
[
PW

]
E(X) = E(WX)

/
E(W ),.442

For conditional sensitivity analysis, we typically use conditioning by weights443
W

set= w(Y ) as defined above.444
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4.2. Correlation Ratio. As presented in subsection 3.1, sensitivity indices based445
on correlation ratio (widely known as Sobol’ indices) all consists in (possibly weighted446
sums of) correlation ratios of the phenomenon Y with well chosen groups of factors,447
noted generically X.448

4.2.1. Target Correlation Ratio. Correlation ratios can be directly applied449
to the transformation w(Y ), yielding target sensitivity analysis indices based on450
η2(X,w(Y )). Observe that even for multidimensional Y , the transformation w(Y )451
takes values in [0,1], thus sparing us the trouble of interpreting multidimensional452
extensions of correlation ratio.453

4.2.2. Proposition of Hybrid Conditional Correlation Ratio. Following454
section 4.1.2, the correlation ratio conditioned by the critical domain is the quantity455 [
Pw(Y )] η(X,Y ). It is important to note that even if the factors are independent456
under P, they usually are not under Pw(Y ). The covariance estimator in (2.1) cannot457
be used anymore, hindering the estimation of the correlation ratio as explained in458
subsection 3.1.459

Alternatively, it is possible to define a conditional correlation ratio by another460
transformation of Y . We have seen that w(Y ), keeping no memory of the actual values461
of Y , is more adapted to target sensitivity; for conditional sensitivity, it is preferable462
to weight multiplicatively the values, as w(Y )Y . However, the fact that w vanishes on463
regions away from the critical domain seems arbitrary: the value zero might not be464
meaningful for the phenomenon at hand. Since the correlation ratio is a measure of465
variance, it still seems relevant to set a constant value over these regions, but equal to466
the expectation of the resulting transformation; they would then not contribute to the467
variance of the phenomenon. We thus define the transformation468

Yw
def= w(Y )Y +(1−w(Y ))y0 such that y0

def= E(Yw) ; yielding y0 = E(w(Y )Y )
E(w(Y )) .469

Observe that with w
set= 1C, E(w(Y )) = P(Y ∈ C) and y0 = E[Y |Y ∈ C]; more470

generally, we have y0 =
[
Pw(Y )]E(Y ). In any case, it is easy to estimate with471 ∑n

i=1 w(Y (i))Y (i)/∑n
i=1 w(Y (i)), and η2(X,Yw) can be estimated in turn with any472

usual method, with the advantage over the conditional correlation ratio that even473
observations associated to null weight are somehow taken into account.474

4.3. Kernel Quadratic Dependence Measure. We recall that this depen-475
dence measure is also known as Hilbert–Schmidt independence criterion, and is detailed476
in section 3.2.1.477

4.3.1. Target Kernel Quadratic Dependence Measure. Just as with the478
correlation ratio, target sensitivity measure of a group of factors can be obtained479
through the weight transformations w(Y ), that is to say QDMkX,kw(Y)

(X,w(Y )). Our480
notation reminds that the kernels depend on the underlying spaces; in the particular481
case of the binary transformation w set= 1C , it seems natural to use a categorical kernel for482
k{0,1}. Let us mention that this last case was already suggested and briefly illustrated483
by Da Veiga (2015).484

4.3.2. Conditional Kernel Quadratic Dependence Measure. The condi-485
tional version

[
Pw(Y )] QDMkX,kY

(X,Y ) is defined through kernel distance and can486
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12 H. RAGUET AND A. MARREL

be again expressed as expectations of kernels analogously to (3.2)487

E(kX (X,X ′)kY(Y, Y ′)w̄(Y )w̄(Y ′))
+ E(kX (X,X ′)w̄(Y )w̄(Y ′)) E(kY(Y, Y ′)w̄(Y )w̄(Y ′))

− 2 E(kX (X,X ′)kY(Y, Y ′′)w̄(Y )w̄(Y ′)w̄(Y ′′)) ,
488

having taken care of normalizing the weights w̄ def= E(w(Y ))−1
w. This can also be489

analogously estimated, by replacing empirical averages by weighted averages490

n∑
i,j=1

(
kX
(
X(i), X(j))− n∑

`=1
kX
(
X(i), X(`))ŵ(Y (`)))

×

(
kY
(
Y (i), Y (j))− n∑

`=1
kY
(
Y (`), Y (j))ŵ(Y (`)))× ŵ(Y (i))ŵ(Y (j)) ,491

with empirical normalized weights ŵ def=
(∑n

i=1 w
(
Y (i)))−1

w.492

4.4. Csiszár Divergence Dependence Measure. We refer to section 3.2.2493
for the definitions of the “support” Csiszár divergence dependence measure.494

4.4.1. Target Csiszár Divergence Dependence Measure. As previously,495
target sensitivity measure of a group of factors can be obtained through Csiszár diver-496
gence dependence measures of the transformations w(Y ), that is to say sCDMφ(X,w(Y )).497

Let us emphasize that, in the case of the binary transformation w
set= 1C, Radon–498

Nikodym derivatives should be estimated with normalized categorical kernel.499

4.4.2. Conditional Csiszár Divergence Dependence Measure. The condi-500

tional versions are respectively
[
Pw(Y )] CDMφ(X,Y ) = divφ

(
Pw(Y )
X,Y ,Pw(Y )

X ⊗ Pw(Y )
Y

)
501

and
[
Pw(Y )] sCDMφ(X,Y ) = sdivφ

(
Pw(Y )
X ⊗ Pw(Y )

Y ,Pw(Y )
X,Y

)
. In the estimator in (3.3),502

the weights are influencing the expectations in each density estimation and each integral,503

yielding with empirical normalized weights ŵ def=
(∑n

i=1 w
(
Y (i)))−1

w,504

n∑
i=1

φ


(∑n

j=1 kX
(
X(i), X(j))ŵ(Y (j)))(∑n

j=1 kY
(
Y (i), Y (j))ŵ(Y (j)))∑n

j=1 kX ,Y
((
X(i), Y (i)), (X(j), Y (j))ŵ(Y (j)))

ŵ(Y (i)) .505

Versions with nearest-neighbors density estimation can also be easily adapted. For506
instance, the k-th nearest-neighbor distance of the point (x, y) ∈ X ×Y is the smallest507
distance dk such that the cumulative sum of the weights of the points within dk508
distance to (x, y) reaches k. If copula transforms are used, recall that they are also509
modified by weighted probabilities.510

5. Numerical Illustrations. We conduct here numerical illustrations and com-511
parisons of the different adapted tools that we propose for target and conditional512
sensitivity analysis. These concise examples also demonstrate that target and condi-513
tional sensitivity analysis explore aspects of a model which are both different from514
global sensitivity analysis and valuable for practitioners.515

Note that all the above tools are implemented in the language R, interfaced with516
C++ for some routines; we intend to integrate them to the Sensitivity package of R.517
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5.1. Presentation of Test Case Functions. To illustrate target and condi-518
tional sensitivity analysis, we first propose a model with a simple but strong nonlin-519
earity, which we call minimum-normal-uniform. It is defined in dimension d set= 2, with520
f : x 7→ min(x1, x2), with independent factors conveniently notedX1

set= N andX2
set= U ,521

following respectively a standard normal distribution, and a uniform distribution over522
[0,1].523

524
We then explore the more complicated Ishigami–Homma model which is well-525

known from the sensitivity analysis community. This model is defined in dimension526
d

set= 3 by527

f : x 7→ sin(x1) + a sin2(x2) + bx3
4 sin(x1),528

where a, b ∈ R+; all factors (X1, X2, X3) are independent and uniformly distributed529
over [−π,π]. The influence of the factor X2 is purely additive, its importance being530
modulated by the parameter a. The influence of the factor X1 includes an additive531
part and an interaction with the factor X3, the balance being tuned by parameter532
b. We set here the parameters a set= 5 and b set= 0.1, so that first-order Sobol’ indices533
are η2(X1, Y ) = 0.40, η2(X2, Y ) = 0.29 and η2(X3, Y ) = 0, while total-order ones are534
1− η2(Xc{1}, Y ) = 0.71, 1− η2(Xc{2}, Y ) = 0.29, and 1− η2(Xc{3}, Y ) = 0.31.535

536
In both models, we suppose that the critical domain C is defined by Y exceeding537

a given critical value: C set= {y ∈ Y | y ≥ c}, chosen as the ninth decile of Y computed538
empirically, c set= F−1

Y,n(0.9). Recall that target and conditional sensitivity measures are539
defined via weight functions w : Y → [0,1] which depends on C. In both models, we540
use the indicator function 1C , and a smooth relaxation in accordance with the notion541
of distance over the reals,542

(5.1) wC : y 7→ exp
(
−max(c− y, 0)

s σY

)
;543

where σY is an estimation of the standard deviation of Y , and s set= 1/5 is a factor544
tuning the smoothness, chosen so that wC almost vanishes one standard deviation545
away from C.546

5.2. Tested Target and Conditional Sensitivity Tools. Among the large547
choice of interesting sensitivity measures, we consider those in Table 5.1. Correlation548
ratios estimated with pick-and-freeze factors combinations are included because they549
are currently the most popular for global sensitivity analysis. Recall however from550
section 4.2.2 that they do not allow for proper conditional versions, because conditioning551
introduces dependence between factors. Consequently, we use what we call the “hybrid”552
version. We report here results only for the first-order indices, but we can mention that553
the total-order indices behave similarly for target and conditional sensitivity analysis554
of both analytical models.555

Then, we include the quadratic dependence measure with Gaussian kernel, and556
the mutual information dependence measure with truncated nearest-neighbors copula557
density estimation Blumentritt and Schmid (2012). For the hard target versions, recall558
that 1C(Y ) is a discrete random variable over {0, 1}. For the mutual information,559
its law is estimated by empirical frequencies and the law of the joint (Xi, 1C(Y )) is560
estimated by conditioning. For the quadratic dependence measure, we use a categorical561
kernel for k{0,1}.562
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14 H. RAGUET AND A. MARREL

Table 5.1: Sensitivity measures used for target and conditional analysis experiments.
The generic weight function w is either 1C, or the smooth relaxation wC defined in
(5.1).

Notation Definition Expression for factor i

S(1,tgt,w)
PF

First-order correlation ratio target
sensitivity measure η2(Xi, w(Y ))n

S(1,hbd,w)
PF

First-order correlation ratio hybrid
sensitivity measure η2(Xi, Yw)n

QDM(tgt,w)
G

Normalized target kernel quadratic
dependence measure QDMkX,kw(Y)

(Xi, w(Y ))n

QDM(cnd,w)
G

Normalized conditional kernel
quadratic dependence measure

[
Pw(Y )]QDMkX,kY

(Xi, Y )n

MI(tgt,w)
c,nn

Normalized target mutual informa-
tion sCDM− log(Xi, w(Y ))knn,n

MI(cnd,w)
c,nn

Normalized conditional mutual in-
formation

[
Pw(Y )] sCDM− log(Xi, Y )knn,n

5.3. Numerical Experiments and Results. For each model, we draw hun-563
dred different samples of size n set= 1 000 and schematize the resulting distribution of564
each conditional or target sensitivity measure, together with their global sensitivity565
counterpart, with Tuckey box plots on Figures 5.1 and 5.2.566

On the minimum-normal-uniform model, the critical value is c = 0.62. The global567
analysis, on Figures 5.1(a) to 5.1(c), is unanimous: the factorN is much more important568
than the factor U . This is not surprising, since N presents more variability and takes569
values far below the minimum of U .570

The target analysis indicates that the ordering of the factors is the same, although571
the relative importance difference is less drastic. This is again not surprising because N572
has a higher probability to be below the critical value than U , hence still determining573
again the outcome of interest here, but in the same time, the variability of N below the574
threshold has no influence anymore. The correlation ratio on Figure 5.1(d), is much575
less precise than the dependence measures (e) and (g). The target mutual information576
shows an important bias, but this does not impact the ordering of the factors. It577
can be noted that the smoothed versions present less variability while still ordering578
correctly the factors. However, it is unclear if this is thanks to better behavior of the579
smooth estimator, or simply because the estimated smoothed quantity is some kind of580
interpolation between target and global measures. In the latter case, this effect would581
turn out unfavorable if the ordering of the factors were different in both analysis. The582
smoothed target mutual information on Figure 5.1(i) is clearly problematic, as it yields583
the same importance measures as the global version (c). This can be explained by the584
fact that the density estimation is based on copula transforms, and that Y and wC(Y )585
have very similar copula transforms with the level of smoothing that we used; in this586
case and for this particular estimator, smoothing is not judicious.587

The conditional analysis tells a whole different story: now U is more important588
than N . Indeed, conditionally to both U and N being no less than c, U varies in [c,1]589
while N varies in [c,+∞[, in such a way that the former has more chance to determine590
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Figure 5.1: Global (black), target (blue) and conditional (green) sensitivity analysis
of minimum-normal-uniform model on samples of size n set= 1 000. Red circles are
asymptotic values estimated on samples of size n set= 10 000.
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the value of their minimum. This is clearly captured by both dependence measures591
considered, on Figures 5.1(k) and (l), and moreover their smoothed conditional versions592
improve perceptibly their precision, as indicated by the relative height of the box plots593
in Figures 5.1(n) and (o), Hybrid correlation ratio adapted to pick-and-freeze estimator594
follows the same trend on Figures 5.1(j) and (m), but precision is not satisfying at all.595

For the Ishigami–Homma model, the critical value is c = 6.31. Here, the relative596
importances of the factors are different in each analysis case. In the global analysis, the597
factor X1 is the most important, and the factors X2 and X3 have lower importance,598
being ranked differently according to different sensibility measures (Figures 5.2(a), (b)599
and (f)).600

In the target analysis, X3 has now similar importance to X1, while X2 has much601
less. Indeed, the combined effect ofX1 andX3 easily exceeds the critical value, while the602
isolated action of X2 can merely approach the critical value (recall that the parameter603
a

set= 5 is significantly less than c). As previously, the dependence measures offer more604
precision than the correlation ratio with pick-and-freeze estimator. It can be noted that605
they do not agree exactly on the relative importance of X1 and X3 on Figures 5.2(e)606
and (f), and that the target kernel quadratic dependence measure does not differ much607
from its global version in (b). Once again, the smoothed versions for target analysis608
are not particularly relevant: even if they seem to slightly reduce the variability of the609
estimators of kernel quadratic dependence measures, they completely fail to improve610
the estimators of the mutual information computed through copula density.611

In the conditional analysis, X3 becomes the dominant factor: being raised to the612
fourth power, the corresponding term presents steep derivatives in the regime of high613
values. The mutual information on Figure 5.2(l) seems the most suitable method614
for putting this into evidence. Once again for conditional analysis, the smoothing615
techniques do improve the quality of both dependence measures considered, even616
enabling kernel quadratic dependence measure to capture the dominance of X3.617

6. Conclusion. In the context of sensitivity analysis of complex phenomena618
in presence of uncertainty, this work motivates and precises the idea of orienting619
the analysis towards a critical domain of the studied phenomenon. This gives rise620
to the notions of target and conditional sensitivity analysis. We show that many621
concepts in the literature relate to them, although usually in more specific frameworks622
depending on considered applications. Building up on modern statistical tools, we define623
mathematically a broad range of sensitivity measures which make as few assumptions624
as possible on the model at hand, while remaining flexible enough to be adapted to625
many particular situations.626

To provide dedicated tools for target and conditional sensitivity analysis, we focus627
our attention on the popular sensitivity indices based on correlation ratio, namely628
Sobol’ indices, and on dependence measures which seem to us particularly well-adapted629
to our problematic. More particularly, we consider two dependence measures: the kernel630
quadratic dependence measure also called Hilbert–Schmidt independence criterion and631
the Csiszár divergence dependence measure, the mutual information being a particular632
case of the latter. For these different selected sensitivity measures, we propose adapted633
versions for target and conditional analysis, by considering transformation of the634
output using hard or smooth weight functions. We also propose an hybrid version for635
correlation ratio.636

The proposed tools are illustrated and compared on analytical test cases. These637
experiments on synthetic data clearly illustrate the interest of target and conditional638
sensitivity analysis which can differ from global one. They also show that dependence639
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Figure 5.2: Global (black), target (blue) and conditional (green) sensitivity analysis of
Ishigami–Homma model on samples of size n set= 1 000. Filled red dots are analytical
values, hollow red circles are asymptotic values estimated on samples of size n set= 10 000.
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measures are well suited for this task and are more precise than the correlation ratio.640
Our preliminary results favor the use of kernel quadratic dependence measures rather641
than correlation ratio. The mutual information with truncated nearest-neighbors cop-642
ula density estimation is also relevant (low variability and good capacity to capture643
influence), but more adjustments should be required to reduce its bias. Furthermore,644
even if more numerical explorations are necessary before drawing further conclusions,645
the proposed smooth versions of estimators seem clearly suited for conditional estima-646
tors, especially when the number of available observations in the critical domain is647
low. However, their use for target sensitivity analysis remains questionable yet.648

649
Altogether, this work is a good starting point towards sensitivity measures which650

are more powerful and more adapted to questions raised by experimenters. There is still651
much to do before actually establishing good practice. Naturally, we do not pretend to652
exhaustiveness, since we cannot evaluate in this work all existing dependence measures.653
Other popular approaches of global sensitivity analysis could be adapted to target or654
conditional sensitivity analysis. We voluntarily set those aside for brevity, but other655
approaches such as the regional sensitivity analysis ought to be more deeply studied;656
e.g. by considering other measures of discrepancy between probability distributions657
rather than Kolmogorov distance.658

Then, it is important to test the target and conditional sensitivity measures in659
more challenging situations, it particular where the critical probability is low, or to put660
it otherwise, where less critical observations are available. In that respect, we believe661
that the smoothing technique is promising, if correctly tuned. Last but not least, all662
these sensitivity measures can only be completely assessed through confrontation to663
real data.664
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