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Abstract 6 

Measuring accurately phase properties is essential for a realistic mesoscale modeling of materials, and 7 

nanoindentation is a popular technique regarding mechanical properties. Given the statistical nature 8 

of the grid indentation method, where large arrays of indents are performed blindly, the identification 9 

of phases from the distributions of measured properties is an essential step. Many biases can be 10 

introduced at that stage when the phases do not have very distinct properties as is often the case for 11 

cementitious materials, since many indentation tests may also be in effectively heterogeneous areas. 12 

It is proposed in the present work to analyze statistical indentation results on cementitious materials 13 

with a hierarchical clustering algorithm making use of enriched information, including the spatial 14 

coordinates of the indent. It is shown that it allows to reduce potential biases of the method by 15 

eliminating tests in potentially heterogeneous areas and performing model independent identification 16 

of the different phases. 17 

Keywords 18 
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1. Introduction 20 

Nanoindentation provides an efficient method to probe the mechanical properties of materials at 21 

microscopic length scales. By applying force using an indenter of known geometry and properties onto 22 

the surface of a sample, the obtained force-depth response is analyzed through contact mechanics in 23 
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order to commonly extract the local elastic modulus and hardness. In the context of cementitious 1 

materials, nanoindentation is being widely used, for example, to study Interfacial Transition Zones 2 

[1,2], chemical degradation [3] or carbonation [4], or time-dependant (creep) properties [5–8]. By 3 

directly measuring the elementary phases properties [9–13] nanoindentation allows for a direct 4 

experimental input to upscaling methods [14] that aim to increase their predictive capabilities in 5 

deriving effective mechanical properties. 6 

The now standard phase identification procedure from nanoindentation data relies on the 7 

identification of a Gaussian Mixture Model (GMM) on the 2D distribution of indentation mechanical 8 

properties [15,16]. More descriptors such as chemical information can be added in these classification 9 

methods to identify phases more reliably coupling EDS and nanoindentation, where one can use in the 10 

procedure atomic ratios combined with indentation parameters [17–19]. For the standard approach 11 

making use only on micromechanical measurements, some controversy has arisen on the capabilities 12 

of the statistical indentation method to determine properties of single phases in cement paste [20,21], 13 

since  the fitting of GMM presents many local minima [22]. More generally, it has been notably argued 14 

that in the nanoindentation testing of cementitious materials, probed volumes smaller than the 15 

heterogeneity length scale (possibly in pure phases) are too small relatively to the minimal obtainable 16 

roughness given by the porosity (where adequate contact conditions are fulfilled).  17 

In view of these issues, it is proposed in the present work to take advantage of the spatialized nature 18 

of the data provided by nanoindentation maps in order to reduce these biases commonly introduced 19 

in the post-processing stage of statistical nanoindentation. It is first argued that the standard analysis 20 

of nanoindentation data based on Gaussian mixture models inevitably introduces biases when phases’ 21 

mechanical properties do partially overlap. A post-processing method using more fully the obtained 22 

experimental data is proposed: after the removal of indentation tests where a local homogeneity 23 

criterion is violated, a hierarchical clustering algorithm making use of enriched and spatialized data is 24 
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used. An application to indentation results on a high water-to-cement ratio cement paste and hydrated 1 

alite is presented. 2 

2. Standard indentation methods 3 

a. Analysis of load-displacement data 4 

An instrumented indentation test consists in applying a force load path to the surface of a sample using 5 

an indenter with precisely characterized properties, and recording the corresponding displacement 6 

response of the indenter tip. This force-displacement data (assuming proper preliminary correction of 7 

the indenter’s compliance and detection of the contact point) is then subject to an inverse analysis 8 

using contact mechanics, often with the Oliver and Pharr method [23]. The hardness 𝐻 follows its usual 9 

definition: 10 

𝐻 =
𝐹𝑚𝑎𝑥

𝐴𝑐
 11 

where 𝐹𝑚𝑎𝑥 is the peak load and 𝐴𝑐 the contact area under the indenter, obtained through 𝑓, the 12 

indenter area function with 𝐴𝑐 = 𝑓(ℎ𝑐). The contact depth ℎ𝑐 is obtained by correcting the measured 13 

depth ℎ for the displacement of the contact perimeter (sink-in), given by the solution of Sneddon for 14 

the indenter elastic contact [24] : 15 

ℎ𝑐 = ℎ − 𝜀
𝐹𝑚𝑎𝑥

𝑆
 16 

where 𝑆 is the elastic unloading stiffness. The 𝜀 coefficient takes values 0.72 for conical indenters and 17 

0.75 for spheres at small depths. The contact stiffness 𝑆 is the measured initial slope of the unloading 18 

force-displacement curve; it follows from the elastic modulus through the equation: 19 

𝑆 = 2𝛽√
𝐴

𝜋
𝐸𝑟  20 
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with 𝛽 a correction coefficient equal to 1 for axisymmetric indenters and 𝐸𝑟  the “reduced” modulus 1 

obtained from the indented material moduli 𝐸 and 𝜈, and the indenter tip moduli 𝐸𝑖  and 𝜈𝑖 (usually 2 

diamond): 3 

1

𝐸𝑟
=
1 − 𝜈2

𝐸
+
1 − 𝜈𝑖

2

𝐸𝑖
 4 

Although sharp pyramidal indenters are widely used in this context, spherical indentation allows for 5 

primarily elastic contact for shallow indents [25] and is preferred here for to perform property mapping 6 

at high spatial resolution and with therefore small probed volumes. The scale dependency of the 7 

spherical indentation (due to the non-self-similarity of the geometry) also allows to study the amount 8 

of irreversible strain relatively to elasticity for a given loading path. 9 

b. Gaussian mixture property decomposition and issues 10 

Given the random nature of the probed areas under the indenter (heterogeneity, residual roughness) 11 

the statistical indentation technique is the usual way to analyze nanoindentation data on cementitious 12 

materials [15]. The technique essentially consists in fitting the mechanical properties experimental 13 

statistical distribution with a weighted sum of Gaussian functions, known as a Gaussian Mixture Model 14 

(GMM). This fit is a highly dimensional optimization problem (a two-component GMM in two-15 

dimensions has 7 parameters) commonly solved using the Expectancy-Maximization (EM) algorithm 16 

[26]. 17 

One may consider a simple numerical experiment based on a simple statistical model for the 18 

indentation modulus on a two-phase material. Let us consider that the effective indentation modulus 19 

measured in a biphasic area is given by the Voigt (uniform strain) bound [27], to which is added some 20 

error term. For a uniform Poisson’s ratio, it yields the simple rule of mixtures: 21 

𝐸𝑒𝑓𝑓 = 𝑓𝐸1 + (1 − 𝑓)𝐸2 + 𝑒 22 



5 
 

where 𝐸1 is the indentation modulus of phase “1”, 𝑓 its volume fraction in the probed volume and 𝑒 a 1 

measurement error. One may check that using the Reuss (uniform stress) bound does not yield 2 

significantly different conclusions for the range of parameters chosen here. This random variable is 3 

obtained from the random variables 𝐸1, 𝐸2 and 𝑒, which will assumed to follow a normal distribution 4 

and 𝑓 which is assumed to follow a beta distribution, with probability density: 5 

𝛽(𝑥) =
𝑥𝑎−1(1 − 𝑥)𝑏−1

𝐵(𝑎, 𝑏)
 6 

with 𝐵 the beta function which is the proper normalization constant. Parameters 𝑎 and 𝑏 define the 7 

shape of this distribution. The beta distribution allows for general modelling of a continuous random 8 

variable on [0,1] and is therefore well adapted to the statistical behavior of proportions. In our case, 9 

we assume that indents in nearly homogenous areas are highly probable (𝑓 very likely to be close to 0 10 

or 1) and therefore 𝑎 ≪ 1 and 𝑏 ≪ 1. Phase “1” is also assumed to be of higher volume fraction than 11 

phase “2” (hence, 𝑓 is more likely to be close to 1 than 0) and therefore 𝑎 < 𝑏.  12 

As a numerical application, we assume phases with mechanical properties similar to the two usually 13 

considered types of C-S-H [28,29] and chose 𝐸1 and 𝐸2 to follow a Gaussian distribution with means 14 

18 and 28 GPa and standard deviation 4 GPa (Figure 1). This assumption matters since we assume 15 

phases have an intrinsic dispersion in mechanical properties and that the final statistical dispersion is 16 

only partially due to heterogeneous probed volumes. The error 𝑒 is taken from a centered Gaussian 17 

distribution with standard deviation 1 GPa. Finally, coefficients for the beta distribution are taken 18 

arbitrarily as 𝑎 = 0,017 and 𝑏 = 0,035 which results in a probability of 𝑓 to be in [0, 0.01] of 19 

approximately 62% and 28% between [0.99, 1](Figure 1). Having 10% of indents in somewhat 20 

heterogeneous areas is voluntarily an extremely optimistic model that assumes that the experiment is 21 

properly designed [22].  22 
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     1 

Figure 1: Cumulative distribution function selected for 𝑓 (left), probability density functions selected 2 

for 𝐸1 and 𝐸2 (right). 3 

Datasets with 1000 modulus measurements are then generated as they appear empirically to be a 4 

reasonable amount of data to differentiate phases in cementitious materials. A two-component 5 

Gaussian mixture model is then fitted to this data with the usual EM algorithm, as it can be observed 6 

for a dataset in Figure 2. One expects to recover the correct means of the 𝐸1 and 𝐸2 distributions as 7 

the two means of the Gaussian mixture components, at least as a limit for a large number of repeated 8 

experiments. 9 

     10 

Figure 2: One realization of the 𝐸𝑒𝑓𝑓 distribution for 1000 indents and associated best Gaussian 11 

mixture fit (left), distributions of average values of the Gaussian components fitted for 1000 12 

experiments with 1000 indents each (right). 13 
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For 1000 experiments each containing 1000 indents, the fit of a Gaussian mixture model with two 1 

components is performed. The distribution of the means of these Gaussian curves is represented in 2 

Figure 2: it can be observed in particular that these means generally underestimate the means of the 3 

original phase distributions; finding the correct average value for the stiff phase modulus has actually 4 

almost zero probability. The most likely value is around 25.4 GPa, to be compared to the expected 5 

28 GPa; the estimated weight (volume fraction) of the soft phase is approximately 55% as compared 6 

to the expected 67% (as defined as the value of the cumulative distribution function of 𝑓 at 50%). 7 

However, one may check that constraining either the weights (phase volume fractions) or means of 8 

the Gaussian components would yield correct values for the free parameters, which is characteristic 9 

of an underdetermined problem. As a conclusion, with fairly reasonable assumptions about the 10 

statistics of nanoindentation results (two phases, separated with moderate overlap, moderate 11 

heterogeneity, low experimental errors), it can be observed that results yielded by Gaussian mixture 12 

phase decomposition do not generally converge to the correct average values for the phases 13 

properties (both mechanical properties and phase fractions), even for an unrealistic large number of 14 

experiments. This type of method may converge to many local minima as shown by [22], and the model 15 

parameters at the global minimum do not generally coincide with the sample generating distribution 16 

parameters. The potential bias of the method in the case where more than two phases partially overlap 17 

(for example in cementitious matrices with portlandite CH around 40 GPa and stiffer anhydrous 18 

phases), or have non-Gaussian distributions, may be significantly high.  19 

3. Alternative method : hierarchical clustering applied to nanoindentation 20 

In view of the previous results, it is useful to attribute phases to each indent based on the properties 21 

of the force-displacement curves themselves instead of identifying phase probability distributions on 22 

the whole dataset. With no a priori knowledge about the mechanical properties of each phase, one 23 

may use unsupervised clustering algorithms, a class of algorithms aiming to regroup automatically data 24 

vectors into classes based on some similarity measure. Moreover, the usual decomposition method 25 
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makes no use of spatial correlations of the dataset that arises when the experiment is properly 1 

designed (indent spacing adequately small - lower than the characteristic heterogeneity size). In 2 

particular, indents in heterogeneous areas can be detected as small scale variations in measured 3 

mechanical properties, and spatially close areas with similar mechanical properties are likely to be 4 

from the same phase. The proposed algorithm attempts to take into account these remarks. 5 

a. Data preprocessing 6 

Each indentation force-displacement curve is summarized as a vector that describes as completely as 7 

possible its properties with minimal data. To each point (“observation”) from an indent is associated 8 

the vector 𝑋: 9 

𝑋 = [𝑥, 𝑦, 𝐸, 𝐻, ℎ𝑟, 𝑅] 10 

Where 𝑥 and 𝑦 are the spatial coordinates of the indent, 𝐸 and 𝐻 the usual indentation modulus and 11 

hardness, ℎ𝑟 the residual depth and 𝑅 the ratio of the elastic strain energy to the total strain energy, 12 

that is linked to the compared curvatures of the loading and unloading curves. 𝑅 is calculated as the 13 

ratio of the integrals of the force-displacement unloading branch and the loading branch. Although 14 

large (non-linear) correlations exist between these quantities, they are not entirely redundant: no data 15 

reduction procedure (such as Principal Component Analysis, for example) is attempted. Data remains 16 

of reasonable dimensionality, unlike datasets with many descriptors given for example by Acoustic 17 

Emission signals [30]. Moreover, using an enriched dataset relatively to the usual [𝐸, 𝐻] is expected to 18 

provide additional robustness into the method when dealing with noisy or imperfectly corrected data: 19 

𝑅 is notably invariant through a shift in displacement and insensitive to small errors in zero-point 20 

correction. 21 

The local relative error of the indentation hardness is computed as the ratio of the standard deviation 22 

𝑆 to the mean 𝜇 of hardness values in a neighborhood (called 𝐻𝑥): 23 
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𝑠(𝐻, 𝑥) =
𝑆(𝐻𝑥)

𝜇(𝐻𝑥)
 1 

Where the neighborhood is chosen here as the indent itself and its four nearest neighbors. This 2 

parameter characterizes the local variability in mechanical properties. The physical size of the 3 

neighborhood should be smaller than the characteristic heterogeneity length scale. In order to 4 

eliminate probably heterogeneous regions, indents are eliminated from the analysis if 𝑠(𝐻) is higher 5 

than some arbitrarily defined value; in the present work, indents must verify 𝑠(𝐻, 𝑥) < 25%. 6 

Finally, since 𝑋 components are of different magnitudes and are to be compared, each measured 7 

quantity is normalized such that the whole dataset is of mean 0 and variance 1 for each component. 8 

b. Clustering algorithm 9 

The selected clustering algorithm is of agglomerative hierarchical type [31]: with initially each 10 

observation belonging to its own cluster (“singlet”), clusters are successively merged until the final 11 

number of required clusters is reached. At each step, merging is performed according to some criterion 12 

which aims at globally achieving maximal similarity of elements inside each cluster and maximal 13 

dissimilarity between clusters (or, geometrically, maximal intra-cluster compacity and inter-cluster 14 

separation). We use the weighted Euclidean distance as a similarity measure in the 6D space of data 15 

vectors: 16 

𝑑(𝑋𝑎 , 𝑋𝑏) = √∑𝑤𝑖
2(𝑋𝑖

𝑎 − 𝑋𝑖
𝑏)

2
6

𝑖=1

 17 

The weights 𝑤𝑖 are introduced in order to adjust the influence the different measured quantities on 18 

the similarity measure. All mechanical parameters are treated equally but spatial coordinates are 19 

chosen to have a reduced influence when selecting the clusters to merge. Therefore we choose in the 20 

present case 𝑤1
2 = 𝑤2

2 < 1, all other weights being kept to 1. 21 
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The selected algorithm is Ward’s method [32]; at each merging step, one selects the couple of clusters 1 

to merge such that the increase in intra-cluster “inertia” is minimal, defined as: 2 

𝐼𝑖𝑛𝑡𝑟𝑎 =
1

𝑁
∑∑𝑑(𝑋𝑗 − 𝜒𝑖)2

𝑁𝑖

𝑗=1

𝑘

𝑖=1

 3 

where we have at the current step 𝑁 observations in 𝑘 clusters with each 𝑁𝑖  elements, and center of 4 

gravity 𝜒𝑖  (such as defined with the aforementioned distance). For a given dataset and distance, the 5 

final cluster hierarchy is unique: it does not depend on any initialization of the algorithm or on the 6 

number of clusters to be found. The final number of clusters 𝑘 (where to “stop” the merging process) 7 

in the dataset must however be selected or deduced from some clustering quality evaluation 8 

parameter (such as [33]). The interest of the method is that one takes into account the fact that indents 9 

in the same phases should be similar in mechanical properties but also spatially close; using different 10 

wording, two distant points, to be affected to the same cluster, have to exhibit very similar mechanical 11 

properties. 12 

4. Application 13 

a. Materials and methods 14 

Two different materials are tested: firstly a CEM I cement paste with water-to-cement ratio of 0.52 15 

(see, for example, [34]) (Figure 3); secondly a hydrated C3S (alite) paste with identical water-to-cement 16 

ratio (Figure 4). In both cases a small sample was extracted from a large mature sample and was 17 

mounted in epoxy resin, grinded and polished with a final step during one hour in an alcohol based 18 

diamond suspension with average grain size 0.25 µm, in order to reach adequate surface quality.  19 

 20 
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 1 

Figure 3: Backscattered electron microscope image at 388x of a freeze-dried similar sample of cement 2 

paste and composite Si+Ca+Fe+Al (+O) Energy Dispersive X-ray Spectroscopy elemental map of the 3 

area. Usual phases are observed in SEM-EDS maps: C-S-H, (green), portlandite (CH, blue), anhydrous 4 

residual cement grains (cyan), and other minor hydration products (red and pink). 5 

 6 

 7 

Figure 4: Backscattered electron microscope image at 603x of a freeze-dried similar sample of 8 

hydrated C3S and composite Si+Ca Energy Dispersive X-ray Spectroscopy elemental map of the area. 9 

Observed phases are C-S-H (green), portlandite (CH, blue), anhydrous C3S (cyan), and mesoporosity 10 

(black). 11 

The microstructures are observed to be quite different: the mesoporosity in hydrated alite is coarser 12 

and clustered in very porous regions of some 100 µm in size (Figure 4). However, the properties of the 13 
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two C-S-H types have been shown not to depend on the material composition; only the volume 1 

fractions are expected to vary [3] which is the basis for comparing both materials’ phases properties. 2 

The datasets on cement paste and hydrated alite were obtained from respectively 32×32 and 32×38 3 

indentation grids of spacing 2 µm acquired with a 10 µm radius spherical diamond indenter and a 4 

Zwick-Roell ZHN/SEM® (Ulm, Germany) nanoindenter in the laboratory conditions, with maximum 5 

force 2 mN.  6 

b. Results on cement paste 7 

The resulting maps of the indentation modulus, hardness, residual depth and elastic-to-total strain 8 

energy ratio are presented in Figure 5. The resulting mapping of a 64 µm × 64 µm area shows relatively 9 

homogeneous subdomains of approximately 10-20 µm that can visually be attributed to 4 different 10 

phases of distinct mechanical properties. The probed area may be too small to constitute a 11 

representative sample of the cement paste mechanical properties, especially in terms of phase volume 12 

fractions, although microstructure data yields comparable orders of magnitude [35,36].  The elastic-13 

to-total strain energy ratio (𝑅) map allows to distinguish phases with properties around the values 0.3, 14 

0.5, 0.65 and 0.8. The standard analysis of statistical nanoindentation has been applied to this 1024 15 

point dataset and a Gaussian mixture model with three components fitted (with full covariance matrix) 16 

to the (𝐸, 𝐻) results using the implementation of Python module scikit-learn [37]. The distribution 17 

components and (𝐸, 𝐻) data are presented in Figure 6 and numerical parameters in Table 1. 18 

It can be observed for this sample that phases are not clearly separated in the data histograms and 19 

that issues of the type presented in 2.b may be expected, as a large number of models may yield fits 20 

as adequate as the global optimum presented here. In particular, one may check that using a four 21 

component Gaussian mixture yields optima with components of comparable weights and largely 22 

overlapping, which constitutes an even worse decomposition of the material phase’s properties. 23 

 24 
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1 

 2 

Figure 5: Maps of the indentation modulus, indentation hardness, residual depth and elastic-to-total 3 

strain energy ratio (R) on a cement paste sample using spherical nanoindentation. 4 

 5 

Figure 6: Obtained 2D Gaussian mixture using the standard method, fit projected onto the E and H 6 

axes. 7 
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 Weight E (GPa) H (GPa) 

Component 1 41% 21 ± 4.3 0.56 ± 0.15 

Component 2 41% 29 ± 3.6 0.77 ± 0.18 

Component 3 19% 34 ± 6.2 1.01 ± 0.32 

Table 1 : Properties of the three component optimal Gaussian mixture model fitted to the data, with 1 

standard deviations given as errors. 2 

The proposed method is then applied to the analysis of this dataset using empirically defined weights 3 

𝑤1
2 = 𝑤2

2 = 0.2 also implemented from the Python module scikit-learn [37]. In order to calculate in 4 

each point the local variability criterion, the outer indents are excluded from the analysis and therefore 5 

the studied dataset makes use of 900 indents; moreover the criterion excludes 181 points from the 6 

subsequent steps (21% of the dataset). The 719 remaining indents are classified using the hierarchical 7 

algorithm described above and results for the 𝑘 = 4 cluster number are represented in Figure 7. 8 

 9 

 10 

 11 

 12 

 13 

 14 
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Figure 7: Obtained clustering in physical space (map), in the (E, H) plane, and E and H distributions per 1 

phase as stacked histograms for cement paste. 2 

The obtained per phase property distributions are “irregular” and unsymmetrical and cannot be 3 

accurately fitted with Gaussian distributions.  The clustering results for 𝑘 = 4 shows that areas 4 

excluded from the analysis are mostly of “weaker” mechanical properties that may correspond to 5 

roughness due to local porosity and/or damage, and their sizes are consistent with the porosity sizes 6 

observed in the electron microscopy images (few micrometers, Figure 3) and also to isolated indents 7 

with high mechanical properties, that may be attributed to minor hydration products or anhydrous 8 

phases. The procedure yields necessarily well separated clusters that optimize the prescribed criterion 9 

of separation in the space of mechanical properties mixed with some preference for local space 10 

compacity. The properties of the four phases are given in Table 2. 11 

 12 
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 Weight E (GPa) H (GPa) Attribution 

Cluster 0 (yellow) 12% 19 ± 3.5 0.42 ± 0.07 High porosity area 

Cluster 1 (green) 46% 25 ± 4.6 0.63 ± 0.09 OP C-S-H 

Cluster 2 (red) 34% 31 ± 3.2 0.89 ± 0.10 IP C-S-H 

Cluster 3 (blue) 7% 35 ± 2.9 1.31 ± 0.14 CH 

Table 2 : Properties of the four clusters found using the proposed algorithm, with standard deviations 1 

given as errors. 2 

The size of the studied example area being relatively small, the representativity of the sample may be 3 

too weak for definitive results, especially regarding the volume fractions. At the studied high water-4 

to-cement ratio, the need to separate very high porosity areas from the commonly defined “outer 5 

product (OP)” and “inner product (IP)” C-S-H is confirmed [28] although most of it is already eliminated 6 

when considering our criterion of local homogeneity. These very high porosity areas are clustered in 7 

Cluster 0. Cluster 1, 2 and 3 may therefore be classically attributed to respectively OP C-S-H, IP C-S-H 8 

and portlandite (CH), with consistent mechanical properties with those reported in the literature 9 

[28,29].  10 

c. Application to hydrated C3S 11 

The phases are less clearly separated in this example (Figure 8) and the selected area does not contain 12 

a highly mesoporous zone. The distribution of indentation properties can also be seen to be almost 13 

unimodal and can be shown to be accurately fitted with a single Gaussian component, hence negating 14 

the capabilities of the standard statistical indentation technique. For a selected ponderation 15 

parameter 𝑤𝑖
2 the proposed method yields a unique classification for a given number of clusters. 16 

Excluding the edges and the indents violating the local homogeneity criterion, 1035 points are 17 

classified. 18 
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Figure 8: Map of the indentation hardness, obtained clustering in physical space, and E and H 1 

distributions per phase as stacked histograms for hydrated C3S. 2 

 3 

 Weight E (GPa) H (GPa) Attribution 

Cluster 1 (green) 35% 25 ± 2.8 0.59 ± 0.07 OP C-S-H 

Cluster 2 (red) 52% 29 ± 3.0 0.65 ± 0.09 IP C-S-H 

Cluster 3 (blue) 13% 32 ± 3.0 0.96 ± 0.10 CH 

Table 3 : Properties of the four clusters found using the proposed algorithm, with standard deviations 4 

given as errors. 5 

The result for 𝑘 = 3 is reported in Table 3. The determined clusters possess mechanical properties 6 

consistent with those numbered 1 to 3 in cement paste (Table 2) that were attributed respectively to 7 
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OP C-S-H, IP C-S-H and CH (portlandite), without the need to separate in the analysis very porous areas, 1 

consistenty with the observations of [3]. This application confirms the main interest of the method : 2 

phases are unambiguously classified when no obvious separation in the (E, H) histograms exist.  3 

5. Conclusions 4 

A classification method based on a classical hierarchical clustering algorithm has been applied to 5 

nanoindentation results, using enriched information: to the usual indentation hardness and modulus 6 

is added additional mechanical parameters and spatial position of the indent. This method has been 7 

shown to: 8 

1. Allow an identification of phases on nanoindentation results that is model independent (no 9 

need for Gaussian properties distribution or widely separated phases), and identify each point 10 

unambiguously (instead of deriving a probability distribution for each phase), 11 

2. Allow eliminating points in areas that may be largely porous or heterogeneous.  12 

As a perspective, this method can be extended in a straightforward manner to “multichannel” maps 13 

obtained using other experimental techniques. It will require the definition of suitable components to 14 

the data vector and an updated distance function. It may include compositional information such as 15 

elemental ratios (SEM-EDS), density/average atomic number (SEM-backscattered imaging gray level) 16 

or molecular composition and structure (Raman microspectroscopy) that would allow an increased 17 

reliability of the phase separation as well as establishing correlations between the local measured 18 

quantities. If the properties of Gaussian Mixture Models are desirable (smooth distributions of 19 

properties) the hierarchical clustering method presented here may also be used to initialize or 20 

constrain fit parameters (such as the means) when many local minima are expected. 21 
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