

Remediation of ¹³⁷Cs-contaminated concrete gravels by supercritical CO_2 extraction

A. Leybros, N. Segond, Agnès Grandjean

▶ To cite this version:

A. Leybros, N. Segond, Agnès Grandjean. Remediation of ¹³⁷Cs-contaminated concrete gravels by supercritical CO_2 extraction. Chemosphere, 2018, 208, pp.838-845. cea-02339847

HAL Id: cea-02339847 https://cea.hal.science/cea-02339847

Submitted on 5 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Remediation of ¹³⁷ Cs-contaminated concrete rubble by supercritical CO ₂
2	extraction
3	
4	Antoine Leybros ^a *, Nathalie Segond ^b , Agnès Grandjean ^a
5	
6	^a CEA, DEN, DE2D, SEAD, LPSD, F30207 Bagnols sur Cèze, France
7	^b AREVA Back-end BG- D&S BU, F92084 la Defense, France
8	
9	* Corresp. author.; Tel: +(33) 04 66 79 16 41; E-mail: antoine.leybros@cea.fr
10	
11	Highlights
12	
13	• Supercritical CO ₂ was used as solvent to extract 137 Cs from concrete rubble.
14	• The best extractant system was found to be CalixOctyl/HPFOA.
15	• Extraction is hindered by carbonation reducing the porosity of the cement.
16	• Poor Cs desorption also explained by formation of insoluble Cs-concrete complexes.
17	• Preceding extraction with HNO ₃ leaching increased the extraction yield up to 55%.
18	
19	Abstract
20	The removal of cesium contamination is a critical issue for the recycling of concrete rubble in
21	most decommissioning operations. The high solvent strength and diffusivity of supercritical
22	CO ₂ make it an attractive choice as vector for extractant system in this context. Experimental
23	extraction runs have been carried out in a radioactive environment on rubble contaminated
24	with ¹³⁷ Cs. The best extraction system was found to be CalixOctyl (25,27-Bis(1-
25	octyloxy)calix[4]arene-crown-6, 1,3-alternate) with pentadecafluorooctanoic acid as a

26 modifier. The effects of various operating parameters were investigated, namely the 27 coarseness of rubble, the temperature of supercritical CO_2 , the residual water and initial 28 cesium concentrations, and the amounts of extractant and modifier used. The yields from 29 direct extraction were low (< 30%), because of the virtually irreversible sorption of Cs in 30 concrete. The best extraction yield of ~55% was achieved by leaching concrete rubble with 31 nitric acid prior to supercritical CO_2 extraction.

32

33 Keywords: supercritical CO₂, metal extraction, calixarene, concrete rubble

34 **1. Introduction**

35 Concern has been growing worldwide about the presence of contamination from years of industrial activities during which toxic substances were improperly handled, stored and 36 37 disposed. In March 2011, the Fukushima Daiichi nuclear accident led to the release of large quantities of radionuclides, with the total amounts of ¹³⁷Cs and ¹³¹I released estimated to be 38 approximately $1.5 \cdot 10^{17}$ Bq and $1.3 \cdot 10^{16}$ Bq, respectively (Kato et al., 2012). The presence of 39 40 these elements in the natural environment is concerning as they present both external and 41 internal exposure risks. In this context, the DEMETERRES project was set up to develop 42 innovative and environmentally-friendly processes for ex situ and in situ treatments to extract radionuclides and especially Cs. 43

Most decommissioning projects involve the treatment of contaminated concrete rubble. 44 The total amounts of primary and secondary waste generated vary greatly between 45 decontamination processes (Kaminski et al., 2015) and the best choice depends on what the 46 47 final objectives are: reducing the dose rate before another treatment or declassification for 48 surface storage or suppressing any trace of contamination for rehabilitation and reuse. The 49 choice of a decontamination process depends essentially on the nature of the matrix to be 50 treated and on the nature of different radionuclides to extract. Cesium for example is very 51 difficult to desorb from concrete rubble because sorption inside the concrete structure is 52 virtually irreversible and because it forms insoluble complexes with calcium silicate hydrate 53 gels (Real et al., 2002). Mechanical, thermal and chemical (such as gel (Castellani et al., 54 2014) and foam (Dame et al., 2005)) processes can be used to remove surface contamination 55 to a certain depth but the main drawback of these techniques is that they destroy a part of the 56 concrete matrix.

57 Concrete can also be decontaminated using physicochemical processes such as 58 leaching or hydrothermal treatments, whose main advantage is that they preserve the rubble 59 matrix. There have been a number of studies on this topic regarding the treatment of

60 construction materials (Samuleev et al., 2013), granite (Wang et al., 2010), dredged sediments, 61 shales (Sandalls, 1987), ashes (Parajuli et al., 2013) and cemented waste (Reynier et al., 2015). Supercritical CO₂ treatments are a promising alternative that also preserve the 62 63 structure of the concrete. Supercritical CO₂ is used in a wide range of extraction processes 64 because it is nontoxic, inexpensive, environmentally friendly, and has a low critical temperature and pressure (McHugh and Krukonis, 1994). Supercritical CO₂ exhibits both high 65 solvent strength and diffusivity, which facilitate extraction in porous structures. Supercritical 66 67 CO₂ has already been investigated for the extraction of metals (Lin et al., 2014). However, a crucial issue for these processes is the availability of an efficient and selective extractant that 68 69 is soluble in supercritical CO₂.

70 The three classes of chemicals that are generally used for cesium removal by liquid-71 liquid extraction are dicarbollides, crown ethers and calixarenes (Dozol et al., 2000). 72 Dicarbollides have a good extraction capacity for cesium, but their selectivity for cesium over 73 other alkali elements is low. In the same way, crown ethers, whose selectivity is based on 74 cation size (macrocycle cavity size complementarity), are poorly selective in the presence of 75 other alkali species. Crown ethers with modifiers (such as di-(2-ethylhexyl) phosphoric acid 76 (HDEHP), pentadecafluorooctanoic acid (HPFOA) or tetraethylammonium perfluoroctane 77 sulfonate (PFOSANEt₄)) have been evaluated for the recovery of cesium from aqueous 78 solutions containing other alkali ions such as Na⁺ or K⁺ (Lee et al., 1986) and from synthetic 79 soil samples using supercritical CO_2 (Park et al., 2015). Elsewhere, Lamare et al. (1997) used 80 calixarenes functionalized with crown ethers to extract cesium from a sodium nitrate solution. 81 They found that the selectivity of these compounds for cesium was highly dependent on the 82 conformation of the calixarenes. Indeed, CalixOctyl (25,27-Bis(1-octyloxy)calix[4]arene-83 crown-6, 1,3-alternate) is remarkably selective in forming complexes with cesium rather than 84 other alkali species in acidic environments (Rais et al., 2015). In the other hand, the solubility of calixarenes in supercritical CO₂ has been measured at 60°C and 20 MPa to be between 0.1 85

and 120 mmol·L⁻¹ depending on their functionalization (Glennon et al., 1997). These properties have led to their use for the supercritical CO₂ extraction of Cs (Kanekar et al., 2014), Cd (Rathod et al., 2015), Pb (Rathod et al., 2014) and U (Rao et al., 2013).

As extractant/Cs complexes are almost completely insoluble in supercritical CO₂, an 89 90 organic modifier is required to neutralize the charge of the complex and increase its solubility. 91 The importance of interfacial phenomena between the supercritical CO_2 phase and the 92 aqueous phase for CalixOctyl/modifier/Cs has been highlighted by molecular dynamics 93 simulations (Schurhammer et al., 2001; Sieffert et al., 2006). The organic modifier used in 94 most cases is HPFOA with macrocyclic polyethers. Extraction yields up to 60% have been 95 obtained with a good selectivity for cesium over potassium cations (Mochizuki et al., 1999; 96 Wai et al., 1999).

97 Cesium decontamination studies have been carried out previously using supercritical 98 CO₂ from silica soil (Leybros et al., 2016). Satisfactory yields of between 70 and 95% were 99 achieved with (non-radioactive) cesium 133 Cs concentrations much greater (1–14 mg/g) than observed in practice for ¹³⁷Cs contaminations. This paper reports experimental extraction runs 100 with realistic ¹³⁷Cs activities (~800 Bq/g) performed in a nuclear laboratory on concrete 101 102 rubble. The extractant considered was CalixOctyl with an organic modifier. The first step of 103 the study consisted in determining the most suitable modifier. The influence of various 104 operating parameters was investigated before the efficiency of supercritical CO₂ extraction 105 was compared for this application with leaching using water and nitric acid. Supercritical 106 extraction complemented by acid leaching was also considered.

107

108 **2. Materials and methods**

109

110 2.1. Reagents

111 Calixarenes are macrocyclic compounds formed by the condensation of a phenol 112 and an aldehyde. They have hydrophobic cavities which can accommodate small molecules or 113 ions. The selectivity of calixarenes stems from the size of their cavities and the nature of their 114 functionalization. Crown calixarenes have a much higher selectivity for cesium over other 115 alkali cations than crown ethers do (Danil de Namor et al., 1998), the most selective 116 calixarenes being CalixOctyl (25,27-Bis(1-octyloxy)calix[4]arene-crown-6, 1,3-alternate), 117 shown in Fig. 1. The calixarene structure stiffens the whole molecule through steric effects 118 that fix the size of the crown ether's cavity. CalixOctyl was synthesized following Casnati et al. (1995) and its purity (> 95%) was verified by 1 H and 13 C NMR and IR spectroscopy. The 119 solubility of this calixarene in CO₂ is about 0.64 kg \cdot m⁻³ at 27 MPa and 40 °C (Dartiguelongue 120 121 et al., 2017).

122

Fig. 1. Chemical structure of CalixOctyl (25,27-Bis(1-octyloxy)calix[4]arene-crown-6, 1,3alternate).

125

126 The organic modifiers considered in this study were HDEHP, bromocapric acid, 127 HPFOA, formic acid, perfluoropentanoic acid (PFPEA), methyloxovaleric acid, 128 heptadecafluorooctanesulfonic acid (PFOS) and PFOSANEt₄. The characteristics of these 129 chemicals are summarized in **Table 1**. No further purification was performed. These 130 modifiers are generally highly soluble in supercritical CO_2 under the conditions used here 131 (Byun et al., 2000; Dartiguelongue et al., 2016; Meguro et al., 1998; Shimizu et al., 2006).

- 132 Carbon dioxide (> 99.99% purity) was obtained from Air Liquide and used without further133 purification.
- 134
- 135 **Table 1**
- 136 Chemical structure and purity of the modifiers used in this study.

Chemical name	CAS N°	Source Chemical formula/structure		Purity (wt%)
HPFOA	335-67-1	Aldrich	F F F F F F O F F F F F F F O F F F F F	0.96
PFPEA	2706-90-3	Aldrich		0.97
HDEHP	298-07-7	Aldrich	OF OH	0.97
Formic acid	64-18-6	Aldrich	О Ш Н ^С ОН	0.96
2-bromodecanoic acid	2623-95-2	Aldrich	HO Br	0.96
4-methyl-2-oxovaleric acid	816-66-0	Aldrich	ОН	0.98
PFOS	1726-23-1	Aldrich	F F F F F F F F F F F F F F F F F F F	0.40 in water

PFOSA-NEt4 56773-42-3 Aldrich
$$H_3C \xrightarrow[]{} CH_3 & O \\ H_3C \xrightarrow[]{} CH_3 & O \\ C$$

HPFOA, pentadecafluorooctanoic acid; PFPEA, perfluoropentanoic acid; HDEHP, bis(2-ethylhexyl)phosphate;
 PFOS, heptadecafluorooctanesulfonic acid; PFOSA-NEt4, tetraethylammonium heptadecafluorooctanesulfonate

140 Different types of (uncontaminated) concrete rubble from peeling operations were 141 obtained from decommissioning sites. The rubble were sieved and crushed. The rubble 142 samples contained particles of 2–5 mm in diameter (for Run 9 the particles were smaller: 1–2 143 mm in diameter). The rubble samples were artificially contaminated by impregnation with diluted solutions (45 mL, 780 Bq·mL⁻¹) of ${}^{137}Cs + {}^{137}Ba^{m}$ in HCl (0.1 mol·L⁻¹), prepared 144 145 from sealed 5 mL, 40 kBq \cdot g⁻¹ standard solutions (AREVA CERCA LEA, > 97.5%). Nitric acid samples (3 mol· L^{-1}) were prepared by dilution from commercial HNO₃ (Aldrich, 65 146 147 wt%).

148

149 2.2. Extraction experiments

The setup used for the extraction experiments is shown in **Fig. 2** and has been described previously (Leybros et al., 2017). Briefly nonetheless, the device was operated in dynamic mode. A high pressure pump (Jasco HPLC PU-2080-CO2) was used to supply CO_2 allowing to reach operating pressure of 30MPa at a maximum flow rate of 10 mL·min⁻¹. The CO_2 flow rate was measured using a mass flowmeter (FT1, Brooks). The heat exchanger and stove were used to heat the feed up to the operating temperature (typically 40–60 °C).

Fig. 2. Schematic diagram of the setup used for the extraction of cesium using supercritical
CO₂. VM: stop valve; P: pump; ES: heat exchanger; R1: solubilization reactor; R2: extraction
reactor; DM: back-pressure regulator; C1, C2 and C3: collectors.

161

162 The extractant and modifier were loaded in advance into reactor R1, in which they 163 were solubilized in supercritical CO₂. The reactions with and extraction of Cs occurred in 164 reactor R2, which contained one of the samples of contaminated concrete rubble in an 165 extraction basket. For the extraction step, the supercritical CO₂ was fed from the bottom of 166 this basket. The dynamic extraction processes lasted up to 6 h. The CO₂ flow rate from the 167 feed pump was 10 mL·min⁻¹. A back pressure regulation device (Tescom) was used to set the 168 operating pressure in the R1 extraction reactor to 27 MPa.

This device and procedure are designed to extract cesium in reactor R2 as an organometallic complex (Cs/extractant/modifier). The Cs was then recovered in the separators (C1 and C2) held at a lower pressure (0.1 MPa) to reduce the solvating power of the CO₂. The C3 collector trapped any trace amounts of cesium complex that remained in the gas stream after depressurization.

174 2.3. Leaching experiments

175 Leaching experiments were performed at ambient temperature using 45 mL of either 176 water or $3 \text{ mol} \cdot \text{L}^{-1}$ HNO₃. The rubble samples were leached for 3 h.

177

178 2.4. Protocol for the preparation of cesium-contaminated concrete rubble

179 The samples of contaminated rubble (initial mass, 45 g) were impregnated (fully soaked) with 45 mL of an aqueous solution of 137 Cs with an activity equal 780 Bg·mL⁻¹ and 180 181 then dried in a stove until the desired water content (3 wt%) was achieved (Fig. 3). The 182 targeted initial activity was 35 kBq. For run 10, in which a cesium activity in the contaminating solution of $\sim 7.8 \cdot 10^5$ Bq·mL⁻¹ was simulated, an aqueous solution of $3.1 \cdot 10^{-4}$ 183 $g \cdot L^{-1}$ ¹³³Cs was doped with a 780 Bq $\cdot mL^{-1}$ ¹³⁷Cs solution. To guarantee the reproducibility of 184 each experiment, the residual water content of the rubble samples was measured as a function 185 186 of the drying time. Here, the target of residual water contents of around 3 wt% were obtained after 40 h drying at 40 °C. 187

188

189

Fig. 3. Preparation of cesium-contaminated rubble. Photographs of (A) their initial state; (B)
during impregnation with a ¹³⁷Cs solution and (C) after drying.

193 2.4. Analysis

194 The rubble samples were analyzed by γ -ray spectrometry before and after 195 supercritical CO₂ extraction, as were the extracts collected in the three collectors. The 196 presence (absence) of ¹³⁷Cs in the extracts reveals the presence (absence) of back-extraction.

197 The extraction yield of the decontamination process was calculated using Eq. (1),

198

$$E(\%) = \frac{a_{initial} - a_{final}}{a_{initial}} \tag{1}$$

where a_{initial} and a_{final} are respectively the activity of the sample (in Bq) before and after the
extraction run.

201 These γ -ray spectrometry measurements were performed using a Tennelec series 5 202 γ -ray spectrometer (Canberra, USA) equipped with a high-purity germanium detector and a 203 Tennelec TC242 amplifier. The acquisition software was Interwinner 6.

204 One of the main limitations of this approach is the possible attenuation of the γ 205 radiation in case of measurement in the solid sample. A calibration curve was therefore 206 established for the activity of the rubble samples to determine a valid working range. The 207 rubble samples used as standards were prepared as described above for the extraction 208 samples, with the same mass, but with targeted activities of 35, 15, 3 and 0.5 kBq. The results 209 presented in **Table 2** show that γ -ray spectrometry is accurate enough to quantify cesium 210 extraction efficiencies under these working conditions.

211

212 **Table 2**

213 Nominal versus measured ¹³⁷Cs activity of the standard samples used to validate the 214 radioactivity measurements performed by γ -ray spectrometry.

	Nominal activity (kBq)	Measured activity (kBq)	Deviation (%)
Sample n°1	35	32.652	7.2

	Sample n°2	15	14.202	5.6
	Sample n°3	3	2.896	3.6
	Sample n°4	0.5	0.421	18.7
215				
216				
217				
218	3. Results and discussio	n		
219	Table 3 summ	arizes all the results obta	ined for each supercritical	CO ₂ extraction
220	run. We describe first ho	w the best modifier was s	selected, and then the influe	nce of different
221	operating parameters (pa	rticle size, temperature, Ca	alixOctyl/modifier ratio, and	d residual water
222	content).			

Table 3

Run	Modifier	P (MPa)	T (°C)	Molar ratio Cs/Extractant/Modifier	Initial activity (Bq)	Final activity (Bq)	Activity of extracts (Bq)	Extraction yield (%)
1	HDEHP	27.3	43	1/3.4.10 ⁶ /1.0.10 ⁷	33 541 ± 2 415	30 465 ± 2 193	126 + 24	9.2 ± 7.2
2	Bromocapric acid	27.0	41	1/2.5.10 ⁶ /1.7.10 ⁷	$33\ 525\pm 2\ 414$	32 791 ± 2 361	224 ± 42	2.2 ± 7.2
3	HPFOA	27.3	41	1/3.3.10 ⁶ /1.5.10 ⁷	32 653 ± 2 351	$28\ 650\pm 2\ 063$	448 ± 84	12.3 ± 7.2
4	Formic acid	27.2	41	1/2.9.10 ⁶ /1.5.10 ⁷	33 640 ± 2 422	32 832 ± 2 364	29 ± 5	2.4 ± 7.2
5	PFPEA	27.4	40	$1/2.4 \cdot 10^{6}/1.6 \cdot 10^{7}$	31 649 ± 2 279	29 673 ± 2 136	408 ± 76	6.2 ± 7.2
6	Methyl oxovaleric acid	26.9	41	1/2.5.10 ⁶ /1.2.10 ⁷	32 751 ± 2 358	30 591 ± 2 202	191 ± 36	6.6 ± 7.2
7	PFOS	27.2	42	$1/2.0 \cdot 10^6 / 1.0 \cdot 10^7$	$32\ 564 \pm 2\ 345$	30 455 ± 2 193	$1\ 143 \pm 214$	6.5 ± 7.2
8	PFOSA-N(Et)4	27.1	43	1/2.1.10 ⁶ /1.3.10 ⁷	$32\ 970\pm 2\ 374$	31 534 ± 2 270	249 ± 47	5.9 ± 7.2
9 ^a	HPFOA	27.2	43	1/3.1.10 ⁶ /1.1.10 ⁷	33 181 ± 2 389	26 971 ± 1 942	138 ± 26	18.7 ± 7.2
10 ^b	HPFOA	27.5	42	$1/2.5 \cdot 10^3 / 1.1 \cdot 10^4$	32 139 ± 2 314	25 081 ± 1 806	$1\ 225 \pm 229$	22.0 ± 7.2
11	HPFOA	27.3	57	$1/2.4 \cdot 10^6 / 1.1 \cdot 10^7$	33 041 ± 2 379	28 177 ± 2 029	996 ± 186	14.7 ± 7.2
12 ^c	HPFOA	27.1	42	$1/2.7 \cdot 10^{6}/1.0 \cdot 10^{7}$	29 232 ± 2 105	23 536 ± 1 695	1 511 ± 283	19.5 ± 7.2

Extraction of cesium from concrete rubble using supercritical CO₂: operating conditions and results.

13	HPFOA	26.6	101	1/2.1.10 ⁶ /1.0.10 ⁷	33 399 ± 2 405	27 563 ± 1 985	414 ± 77	17.5 ± 7.2
14 ^d	HPFOA	27.0	40	1/2.0,10 ⁶ /1.0.10 ⁷	$33\ 031\pm 2\ 378$	25 678 ± 1 849	184 ± 34	22.3 ± 7.2
15 ^c	HPFOA	26.4	64	$1/2.2 \cdot 10^6 / 1.1 \cdot 10^7$	$33\ 038 \pm 2\ 378$	24 261 ± 1 747	63 ± 12	26.5 ± 7.2
16	HPFOA	27.1	43	1/6.6·10 ⁶ /3.0·10 ⁷	32 981 ± 2 375	27 277 ± 1 964	$1\ 325 \pm 248$	17.3 ± 7.2
17	HPFOA	26.8	58	1/2.8.106/2.0.107	32 648 ± 2 351	$28\ 372 \pm 2\ 043$	261 ± 49	13.1 ± 7.2

HDEHP, bis(2-ethylhexyl)phosphate; HPFOA, pentadecafluorooctanoic acid; PFPEA, perfluoropentanoic acid; PFOS, heptadecafluorooctanesulfonic acid; PFOSA-NEt4,

226 tetraethylammonium heptadecafluorooctanesulfonate.

227 Unless otherwise specified, the samples contained particles 2–5 mm in diameter, with an initial 137 Cs concentration of 2.7 $\cdot 10^{-7}$ mg $\cdot g^{-1}$ and a residual water content of 3 wt%.

^aThe particles in this sample were between 1 and 2 mm in diameter.

229 ^bThe initial cesium concentration in this sample was $2.7 \cdot 10^{-4} \text{ mg} \cdot \text{g}^{-1}$.

^c The residual water content of this sample was 2 wt%.

^d The residual water content of this sample was 1 wt%.

232

234

235 *3.1. Determining the most suitable extractant/modifier system*

236 CalixOctyl was combined with different modifiers in supercritical CO₂ (at 27 MPa, 237 40 °C; Runs 1-8 in Table 2).Indeed, CalixOctyl is little soluble in our working conditions and 238 the most suitable modifier has to be identified to enhance both extractant system and 239 organometallic complexes solubilities. As shown in Table 2, these runs were performed with a high stoichiometric excess of the extractant, given the very small amount of ¹³⁷Cs present in 240 241 the samples. The extraction yields were low, between 2 and 12%. The extracts in the 242 collectors were found to have a low activity (between 10 and 500 Bq), whatever the modifier. 243 The modifier that gave the highest extraction yield was HPFOA (12.3%, Run 3). This can be 244 explained by the high solubility of fluorinated compounds in supercritical CO₂, which stems 245 from the presence of fluorine substituents and the length of the fluorinated chain (Smart et al., 246 1997). Furthermore, the low pKa of fluorinated compounds (Goss, 2008) facilitates ion 247 exchange with cesium inside the concrete.

248 Low extraction yields are expected for concrete rubble because of their chemical 249 structure: cesium cations are strongly adsorbed on their calcium silicate hydrate structure 250 (Evans, 2008). This virtually irreversible ion exchange process and the formation of insoluble 251 complexes with calcium silicate hydrate make cesium desorption (and therefore extraction) 252 very difficult. Moreover, the concentration of alkali ions (Na⁺; K⁺) was significantly higher (a 253 few mmol per gram of concrete as determined by inductively coupled plasma atomic emission 254 spectroscopy) than the Cs⁺ concentration in the samples (a few pmol per gram), which makes 255 strong competition between Cs and other alkali cations.

Another factor that may contribute to the low extraction yields is accelerated carbonation, which reduces the size of the pores inside the concrete structure (Garcia-Gonzalez et al., 2008). The rubble samples were found to be between 0.5 and 2.3 g heavier after extraction. **Fig. 4** shows the thermogravimetric analysis of a rubble sample treated by 260 supercritical CO₂ for 4 h at 27 MPa and 40 °C. The presence of a calcite peak (at 760–770 °C) 261 confirms that carbonation has occurred (Villagran-Zaccardi et al., 2017). This suggest that the 262 inside concrete do indeed shrink, the pores the trapping organometallic CalixOctyl/modifier/Cs complexes formed therein. CO2-philic extractants, more soluble in 263 264 supercritical CO₂, may therefore be a more suitable choice to extract cesium from the concrete 265 matrix before carbonation.

266

Fig. 4. Demonstration of the formation of calcite in a sample of concrete rubble. Thermogravimetric analysis of a sample of concrete rubble after treatment using supercritical CO_2 (P = 27 MPa; T = 40°C; CO_2 flow = 10 g·min⁻¹, treatment time = 4 h).

271

272 Our results are similar to those of Kanekar et al. (2014), who extracted cesium from 273 soils using supercritical CO_2 and calixarene mixed with methanol. The efficiency of extraction 274 processes such as these can be improved by tuning the operating parameters to find the best 275 compromise between thermodynamic and kinetic limiting factors.

- 276
- 277

3.2. Optimizing the operating parameters

278 Having identified CalixOctyl/HPFOA as the most suitable extractant system, the 279 following paragraphs describe the effects on the process efficiency of the particle size in the 280 samples (section 3.2.1), of the initial cesium concentration and the Cs/extractant 281 stoichiometric ratio (section 3.2.2) and of the temperature and residual water content (section 282 3.2.3).

- 283
- 284 3.2.1. Role of rubble particle size

285 Comparing the results obtained for Runs 3 and 9 (Table 3) shows that reducing the 286 rubble particle size from 2-5 mm to 1-2 mm (all other parameters being identical) leads to a 287 modest increase in the extraction yield from $12.3 \pm 7.2\%$ to $18.7 \pm 7.2\%$. This effect is 288 expected because smaller particles have a larger specific surface area, making the cesium 289 binding sites in the concrete pores more accessible. The energetic cost of crushing the rubble 290 should be considered however in choosing the best particle size in view of industrialization of 291 the process.

292

293 3.2.2. Cesium content and amounts of extractant and modifier

294 Run 3 was repeated in Run 10 but with a much higher cesium concentration initially present in the concrete rubble sample $(2.7 \cdot 10^{-4} \text{ mg} \cdot \text{g}^{-1} \text{ versus } 2.7 \cdot 10^{-7} \text{ mg} \cdot \text{g}^{-1}, \text{ Table 3})$. In 295 the latter case, 133 CsNO₃ was added to simulate a rubble radioactivity of 10⁶ Bq·mL⁻¹, which 296 297 is in the range of the levels of contamination observed in practice. The extraction efficiency 298 measured for Run 10 was $22.0 \pm 7.2\%$ compared with $12.3 \pm 7.2\%$ for Run 3. This suggests 299 that the selectivity of the process for Cs over other alkali metal ions is not perfect.

300 The influence on the extraction yield of the amounts of extractant/modifier 301 (CalixOctyl/HPFOA) used was investigated in Run 16, performed with twice the amount of 302 extractant as Run 3 (all other parameters being equal, including the CalixOctyl/HPFOA molar 303 ratio at 1/5). Table 3 shows that this has little effect on the extraction yield $(17.3 \pm 7.2\%)$ for 304 Run 16 versus $12.3 \pm 7.2\%$ for Run 3). The extraction capacity (the ratio of the amount of Cs 305 extracted from the sample over the amount of extractant (CalixOctyl) used) was higher for Run 3 (5.5 10^{-8} versus 3.3 10^{-8} for Run 16). This suggests that the limiting factor here is the 306 307 low Cs concentration in the rubble, which makes the probability of Cs-extractant interactions 308 very low even when the amount of extractant used is increased.

309 The results for Run 17 show that increasing the ratio between extractant and 310 modifier from 1/5 (Run 11) to 1/7 (Run 17) had little effect on the extraction yield (13.1 \pm 311 7.2% for Run 17 versus $14.7 \pm 7.2\%$ for Run 11). This may be because the HPFOA molecules 312 self-associate in supercritical CO₂, which limits their solubility. This effect has been observed 313 previously for fluorocarboxylic acids in supercritical CO₂ (Dartiguelongue et al., 2016). 314 Further investigations are in progress to determine whether the structure of the complexes 315 formed by the extractant system may involve a molecule of calixarene and fluorocarboxylic 316 acid monomers or dimers.

317

318 *3.2.3. Operating temperature and rubble water content*

Previous studies on supercritical CO₂ extraction in porous media have demonstrated that the solvent strength and diffusivity of CO₂ are strongly dependent on its density (Anitescu and Tavlarides, 2006). In Runs 3 and 11–15 (**Table 3**), the operating temperature was varied between 40 and 100 °C with a rubble water content of either 1 wt% (Run 14) 2 wt% (Runs 12 and 15) or 3 wt% (Runs 3 and 11–13) (**Fig.5**). Note that calixarene was found to be chemically stable at temperatures up to 150 °C. Increasing the temperature up to 100 °C did not significantly affect the extraction yield (which varied from 12.3 \pm 7.2% to 17.5 \pm 326 7.2%, see **Table 3**). The solvent strength of CO_2 is lower at higher temperatures but this 327 decrease may have been offset by an increase in the extraction kinetics and reduced concrete 328 carbonation.

329

332

333 Reducing the water content of the rubble was found to have a favorable effect on the 334 extraction yield, which was $22.3 \pm 7.2\%$ for Run 14 with 1 wt% water (Table 3). It is 335 therefore important to properly dry rubble before proceeding with supercritical CO₂ extraction. 336 These results are in keeping with the literature. Wang et al. (1995) suggest that low water 337 concentrations may promote extraction because this allows hydrogen ions from the modifier 338 to be exchanged with cesium adsorbed in the solid matrix. On the other hand, higher water 339 contents limit extraction because the formation of a water films in the pores may block the 340 supercritical CO₂ and thus limit interactions with the extractant system (Smyth et al., 1999).

341 Moreover, increasing the water content promotes carbonation and therefore reduces the 342 porosity of the concrete (Vance et al., 2015).

The best extraction yield of all these runs was $26.5 \pm 7.2\%$ for Run 15, performed at an intermediate temperature (65 °C) and water content (2 wt%). In line with the mechanisms described above, these conditions offer the optimal balance between faster extraction or backextraction kinetics and slower carbonation on the one hand, and a lower CO₂ solvent strength on the other.

348

349 *3.3. Combining supercritical CO*₂ *extraction with leaching*

Table 4 compares the effects of leaching (with water or HNO_3) with the results obtained using HNO_3 leaching followed by supercritical CO_2 extraction to extract Cs from concrete rubble.

Table 4.

354 Extraction of cesium from concrete rubble by leaching and by leaching followed by supercritical CO₂ extraction: operating conditions and results.

Run		P (bar)	T (°C)	Molar ratio Cs/Extractant/Modifier	Initial activity (Bq)	Activity of leaching solution (Bq)	Final activity (Bq)	Activity of extracts (Bq)	Extraction yield (%)
18	Water leaching	_	ambient	_	33 152 ± 2 387	4 471 ± 161	26 461 ± 1 905		20.2 ± 7.2
19	HNO ₃ leaching	_	ambient	_	32 482 ± 2 339	$17\ 627\pm952$	$16\ 944 \pm 915$		47.8 ± 6.3
20	HNO ₃ leaching followed by SCCO ₂ extraction	27.4	40	1/ 2.0.10 ⁶ /1.0.10 ⁷	32 765 ± 2 359	$14\ 074\pm760$	14 861 ± 802	494 ± 92	54.6 ± 6.3

355 SCCO₂, supercritical CO₂

The extraction efficiency of the water leaching run was almost as high as the best supercritical CO₂ extraction (Run 18, 20.2 \pm 7.2% and Run 15, 26.5 \pm 7.2% respectively). With HNO₃ leaching (Run 19), the extraction yield was much higher (47.8 \pm 6.3%). These yields are similar to those of previous studies of the acidic leaching of soil and/or concrete samples (Kim et al., 2007; Samuleev et al., 2013) and show that HNO₃ efficiently desorbs ¹³⁷Cs from otherwise irreversible sorption sites in the concrete pores.

364 A further increase in the extraction yield was obtained by performing supercritical CO_2 extraction after HNO₃ leaching (Run 20, 54.6 ± 6.3%). These results suggest coupling 365 366 between leaching and supercritical CO₂ extraction by cumulating steps up to reach targeted 367 threshold for rubble activity for reuse or storage. It would be interesting to perform the HNO₃ 368 leaching in situ in supercritical CO₂, which may reduce the amount of HNO₃ required and 369 allow the procedure to be performed in a single step. The benefits would be substantial on an 370 industrial scale. The influence of the HNO₃ concentration may also be worth investigating, to 371 find the optimal balance between extraction yields and the corrosion of the pipes and internal 372 walls.

373

374 **4. Conclusion**

375 Supercritical CO₂ extraction runs have been performed on samples of cesium-376 contaminated concrete rubble, with an extractant system composed of a cesium-selective 377 crown calixarene and a modifier. These experiments were carried out in a radioactive environment with realistic levels of ¹³⁷Cs contamination. Preliminary tests identified the most 378 379 suitable modifier (HPFOA) to be used in this context with CalixOctyl (the crown calixarene). 380 Experiments performed on rubble with different particle sizes and residual water contents, at 381 different temperatures and with different amounts of cesium and extractant showed that the 382 most important factors were the temperature of the process and the water content of the 383 samples. In choosing the operating conditions, a compromise has to be found between kinetic 384 (for extraction, back-extraction and the carbonation of the concrete), thermodynamic (the 385 solubility of the extractant system and the resulting organometallic compounds) and 386 diffusivity effects. The best cesium extraction yield obtained here using supercritical CO₂ 387 extraction alone was $26.5 \pm 7.2\%$. Similar results were obtained by Kanekar et al. (2014) for 388 soil samples using supercritical CO₂ and three calix-crown derivatives in methanol or 389 acetonitrile. An extraction yield of $54.6 \pm 6.3\%$ was obtained by leaching the concrete rubble 390 with nitric acid before the supercritical CO₂ extraction step. Leaching makes the cesium more 391 labile and thus more easily extractable. Our results show furthermore that the benefits of 392 leaching and supercritical CO₂ extraction are cumulative. Further studies are ongoing to 393 synthesize a CO₂-phile and Cs-selective extractant and compare its performance with the CalixOctyl/HPFOA system. Thermodynamic studies of CalixOctyl/HPFOA/CO2 mixtures 394 395 may also facilitate the optimization of the operating conditions in view of scaling up the 396 process.

397

398 Acknowledgements

This work was supported financially through the ANR DEMETERRES project
(Investissements d'avenir, Grant n°ANR-11-RSNR-0005). The authors thank Emmanuel
Humbel, Amélys Venditti and Pierre Venditti for technical help.

- 403 **References**
- 404
- 405 Anitescu, G., Tavlarides, L., 2006. Supercritical extraction of contaminants from soils and
- 406 sediments. J. Supercrit. Fluids. 38, 167–180. https://doi.org/10.1016/j.supflu.2006.03.024
- 407 Byun, H.S., Kim, K., McHugh, M.A., 2000. Phase behavior and modeling of supercritical
- 408 carbon dioxide-organic acid mixtures. Ind. Eng. Chem. Res. 39, 4580–4587.
- 409 http://dx.doi.org/10.1021/ie0001164
- 410 Castellani, R., Poulesquen, A., Goettmann, F., Marchal, P., Choplin, L., 2014. A topping gel
- 411 for the treatment of nuclear contaminated small items. Nucl. Eng. Des. 278, 481-490.
- 412 <u>http://dx.doi.org/10.1016/j.nucengdes.2014.07.043</u>
- 413 Casnati, A., Pochini, A., Ungaro, R., Ugozzoli, F., Arnaud, F., Fanni, S., Schwing, M.-J.,
- 414 Egberink, R., de Jong, F., Reinhoudt, D. N., 1995. Synthesis, complexation, and membrane
- 415 transport studies of 1,3-alternate calix[4]arene-crown-6 conformers: a new class of cesium
- 416 selective ionophores. J. Am. Chem. Soc. 117, 2767–2777.
- 417 <u>http://dx.doi.org/10.1021/ja00115a012</u>
- 418 Dame, C., Fritz, C., Pitois, O., Faure, S., 2005. Relations between physicochemical properties
- 419 and instability of decontamination foams. Colloids and Surfaces A: Physicochem. Eng.
- 420 Aspects. 263, 210-218. <u>http://dx.doi.org/10.1016/j.colsurfa.2004.12.053</u>
- 421 Danil de Namor A., Cleverley, R., Zapata-Ormachea, M., 1998. Thermodynamics of
- 422 calixarene chemistry. Chem. Rev. 98, 2495–2525. <u>http://dx.doi.org/10.1021/cr970095w</u>
- 423 Dartiguelongue, A., Leybros, A., Grandjean, A., 2016. Solubility of perfluoropentanoic acid
- 424 in supercritical carbon dioxide: Measurements and modeling. J. Chem. Eng. Data. 61, 3902–
- 425 3907. http://dx.doi.org/10.1021/acs.jced.6b00649
- 426 Dartiguelongue, A., Leybros, A., Grandjean, A., 2017. Solubility and solution enthalpy of a
- 427 cesium-selective calixarene in supercritical carbon dioxide. J. Supercrit. Fluids. 125, 42–49.
- 428 <u>http://dx.doi.org/10.1016/j.supflu.2017.01.017</u>

- 429 Dozol, J.F., Dozol, M., Macias, R., 2000. Extraction of strontium and cesium by dicarbollides,
- 430 crown ethers and functionalized calixarenes. J. Incl. Phenom. Macrocycl. Chem. 38, 1–22.
- 431 <u>http://dx.doi.org/10.1023/A:1008145814521</u>
- 432 Evans, N., 2008. Binding mechanisms of radionuclides to cement. Cem. Concr. Res. 38, 545-
- 433 553. http://dx.doi.org/10.1016/j.cemconres.2007.11.004
- 434
- 435 Garcia-Gonzalez, C., El Grouh, N., Hidalgo, A., Fraile, J., Lopez-Periago, A., Andrade, C.,
- 436 Domingo, C., 2008. New insights on the use of supercritical carbon dioxide for the
- 437 accelerated carbonation of cement pastes. J. Supercrit. Fluids 43, 500–509.
- 438 <u>http://dx.doi.org/10.1016/j.supflu.2007.07.018</u>
- 439 Glennon, J. Hutchinson, S., Harris, S., Walker, A., McKervey, A., McSweeney, C., 1997.
- 440 Molecular baskets in supercritical CO₂. Anal. Chem. 69, 2207–2212.
- 441 <u>http://dx.doi.org/10.1021/ac960850q</u>
- 442 Goss K., 2008. The pKa values of PFOA and other highly fluorinated carboxylic acids.
- 443 Environ. Sci. Technol. 42, 456–458. <u>http://dx.doi.org/10.1021/es702192c</u>
- 444 Jokic S., Nagy, B., Zekovic, Z., Vidovic, S., Bilic, M., Velic, D., Simandi, B., 2012. Effects
- 445 of supercritical CO₂ extraction parameters on soybean oil yield. Food Bioprod. Process. 90,
- 446 693–699. <u>http://dx.doi.org/10.1016/j.fbp.2012.03.003</u>
- 447 Kaminski, M., Lee, S., Magnuson, M., 2016. Wide-area decontamination in an urban
- 448 environment after radiological dispersion: A review and perspectives. J. Hazard. Mater. 305,
- 449 67–86. <u>http://dx.doi.org/10.1016/j.jhazmat.2015.11.014</u>
- 450 Kanekar, A.S., Pathak, P.N., Mohapatra, P.K., 2014. Online recovery of radiocesium from
- 451 soil, cellulose and plant samples by supercritical fluid extraction employing crown ethers and
- 452 calix-crown derivatives as extractants. J. Radioanal. Nucl. Chem. 300, 1281–1289.
- 453 <u>http://dx.doi.org/10.1007/s10967-014-3034-0</u>

- 454 Kato, H., Onda, Y., Teremage, M., 2012. Depth distribution of ¹³⁷Cs, ¹³⁴Cs and ¹³¹I in soil
- 455 profile after Fukushima Dai-ichi nuclear power plant accident. J. Environ. Radioact. 111, 59–

456 64. <u>http://dx.doi.org/10.1016/j.jenvrad.2011.10.003</u>

- 457 Kim, G., Choi, W., Jung, C., Moon, J., 2007. Development of a washing system for soil
- 458 contaminated with radionuclides around TRIGA reactors. J. Ind. Eng. Chem. 13, 406–413.
- 459
- 460 Lamare, V., Bressot, C., Dozol, J.F., Vicens, J., Asfari, Z., Ungaro, R., Casnati, A., 1997.
- 461 Selective extraction of cesium at tracer level concentration from a sodium nitrate solution
- 462 with calix-crowns. Molecular modeling study of the Cs^+/Na^+ selectivity. Sep. Sci. Technol.
- 463 32, 175–191. http://dx.doi.org/10.1080/01496399708003193
- 464 Lee, I.C., Kim, S. J., Lee, C., 1986. Extraction of alkali metal cation with crown ethers and
- 465 HDEHP. J. Korean Chem. Soc. 30, 359–368.
- 466 Leybros, A., Grandjean, A., Segond, N., Messalier, M., Boutin, O., 2016. Cesium removal
- 467 from contaminated sand by supercritical CO₂ extraction. J. Environ. Chem. Eng. 4, 1076–
- 468 1080. <u>http://dx.doi.org/10.1016/j.jece.2016.01.009</u>
- 469 Leybros, A., Hung, L., Hertz, A., Hartmann, D., Grandjean, A., Boutin, O., 2017.
- 470 Supercritical CO₂ extraction of uranium from natural ore using organophosphorus extractants.
- 471 Chem. Eng. J. 316, 196–203. <u>http://dx.doi.org/10.1016/j.cej.2017.01.101</u>
- 472 Lin, F., Liu, D., Das, S. M., Prempeh, N., Hua, Y., Lu, J., 2014. Recent progress in heavy
- 473 metals extraction by supercritical CO_2 fluids. Ind. Eng. Chem. Res. 53, 1866–1877.
- 474 <u>http://dx.doi.org/10.1021/ie4035708</u>
- 475 McHugh, M.A., Krukonis, V. J., 1994. Supercritical fluid extraction: Principles and Practice,
- 476 second ed., Butterworth-Heinemann, Boston.
- 477 Meguro, Y., Iso, S., Sasaki, T., Yoshida, Z., 1998. Solubility of organophosphorus metal
- 478 extractants in supercritical carbon dioxide. Anal. Chem. 70, 774–779.
- 479 <u>http://dx.doi.org/10.1021/ac9707390</u>

- 480 Mochizuki, S., Wada, N., Smith Jr., R., Inomata, H., 1999. Perfluorocarboxylic acid counter
- 481 ion enhanced extraction of aqueous alkali metal ions with supercritical carbon dioxide.
- 482 Analyst. 124, 1507–1511. http://dx.doi.org/10.1039/A904873A
- 483 Parajuli, D., Tanaka, H., Hakuta, Y., Minami, S., Fukuda, K., Umeoka, R., Kamimura, Y.,
- 484 Hayashi, Y., Ouchi, M., Kawamoto, T., 2013. Dealing with the aftermath of Fukushima
- 485 Daiichi nuclear accident: decontamination of radioactive cesium enriched ash. Environ. Sci.
- 486 Technol. 47, 3800–3806. <u>http://dx.doi.org/10.1021/es303467n</u>
- 487 Park, J., Park, K., Kim, H., 2015. Decontamination techniques of metal ions in soil by
- 488 supercritical fluid with synthetic ligands in: Proceedings of Global 2015, Paris, pp.2114-2121.
- 489 Rao, A., Rathod, N., Malkhede, D., Raut, V., Ramakumar, K., 2013. Supercritical carbon
- 490 dioxide extraction of uranium from acidic medium employing calixarenes. Sep. Sci. Technol.
- 491 48, 644–651. <u>http://dx.doi.org/10.1080/01496395.2012.707731</u>
- 492 Rathod, N., Rao, A., Kumar, P., Ramakumar, K, Malkhede, D., 2014. Complexation with
- 493 calixarenes and efficient supercritical CO₂ extraction of Pb(II) from acidic medium. New J.
- 494 Chem. 38, 5331–5340. <u>http://dx.doi.org/10.1039/C4NJ00927D</u>
- 495 Rathod, N., Rao, A., Kumar, P., Ramakumar, K., Malkhede, D., 2015. Studies on
- 496 complexation and supercritical fluid extraction of Cd^{2+} with calixarenes. Ind. Eng. Chem. Res.
- 497 54, 3933–3941. <u>http://dx.doi.org/10.1021/ie5045583</u>
- 498 Rais, J., Tachimori, S., Yoo, E., Alexova, J., Bubenikova, M., 2015. Extraction of radioactive
- 499 Cs and Sr from nitric acid solutions with 25,27-Bis(1-octyloxy)calix[4]-26,28-Crown-6 and
- 500 Dicyclohexyl-18-Crown-6: Effect of nature of the organic solvent. Sep. Sci. Technol. 20,
- 501 1202–1212. http://dx.doi.org/10.1080/01496395.2014.978464
- 502 Real, J., Persin, F., Camaras-Claret, C., 2002. Mechanisms of desorption of ¹³⁴Cs and ⁸⁵Sr
- 503 aerosols deposited on urban surfaces. J. Environ. Radioact. 62, 1–15.
- 504 <u>http://dx.doi.org/10.1016/S0265-931X(01)00136-9</u>

- 505 Reynier, N., Lastra, R., Laviolette, C., Fiset, J., Bouzoubaa, N., Chapman, M., 2015.
- 506 Uranium, cesium and mercury leaching and recovery from cemented radioactive wastes in
- 507 sulfuric acid and iodide media. Minerals. 5, 744–757. http://dx.doi.org/10.3390/min5040522
- 508 Samuleev, P., Andrews, W., Creber, K., Azmi, P., Velicogna, D., Kuang, W., Volchek, K.,
- 509 2013. Decontamination of radionuclides on construction materials. J. Radioanal. Nucl. Chem.
- 510 296, 811-815. http://dx.doi.org/10.1007/s10967-012-2146-7
- 511 Sandalls, F., 1987. Removal of radiocaesium from urban surfaces. Radiat. Prot. Dosimetry.
- 512 21, 137–140. http://dx.doi.org/10.1093/oxfordjournals.rpd.a080066
- 513 Schurhammer, R., Berny, F., Wipff, G., 2001. Importance of interfacial phenomena in
- 514 assisted ion extraction by supercritical CO₂: a molecular dynamics investigation. Phys. Chem.
- 515 Chem. Phys. 3, 647–656. <u>http://dx.doi.org/10.1039/B007238I</u>
- 516 Shimizu, R., Sawada, K., Enokida, Y., Yamamoto, I., 2006, Decontamination of radioactive
- 517 contaminants from iron pipes using reactive microemulsion of organic acid in supercritical
- 518 carbon dioxide. J. Nucl. Sci. Technol. 43, 694–698.
- 519 <u>http://dx.doi.org/10.1080/18811248.2006.9711150</u>
- 520 Sieffert, N., Wipff, G., 2006. Alkali cation extraction by calix[4]crown-6 to room-temperature
- 521 ionic liquids. The effect of solvent anion and humidity investigated by Molecular Dynamics
- 522 Simulations. J. Phys. Chem. A. 110, 1106–1117. <u>http://dx.doi.org/10.1021/jp054990s</u>
- 523 Smart, N., Carleson, T., Kast, T., Clifford, A., Burford, M., Wai, C, 1997. Solubility of
- 524 chelating agents and metal containing compounds in supercritical fluid carbon dioxide.
- 525 Talanta. 44, 137–150. <u>http://dx.doi.org/10.1016/S0039-9140(96)02008-5</u>
- 526 Smyth, T., Zytner, R., Stiver, W., 1999. Influence of water on the supercritical fluid extraction
- 527 of naphthalene from soil. J. Hazard. Mater. 67, 183–196. <u>http://dx.doi.org/10.1016/S0304-</u>
- 528 <u>3894(99)00043-6</u>
- 529 Vance, K., Falzone, G., Pignatelli, I., Bauchy, M., Balonis, M., Sant, G., 2015. Direct
- 530 carbonation of Ca(OH)₂ using liquid and supercritical CO₂: Implication for carbon-neutral

- 531 cementation. Ind. Eng. Chem. Res. 54, 8908-
- 532 8918. <u>http://dx.doi.org/10.1021/acs.iecr.5b02356</u>
- 533 Villagran-Zaccardi, Y., Eguez-Alava, H., De Buysser, K., Gruyaert, E., De Belie, N., 2017.
- 534 Calibrated quantitative thermogravimetric analysis for the determination of portlandite and
- 535 calcite content in hydrated cementitious systems. Mater. Struct. 50, 179-189.
- 536 <u>https://dx.doi.org/10.1617/s11527-017-1046-2</u>
- 537 Wai, C., Kulyako, Y., Myasoedov, B., 1999. Supercritical carbon dioxide extraction of
- 538 caesium from aqueous solutions in the presence of macrocyclic and fluorinated compounds.
- 539 Mendeleev Commun. 9, 80–81. <u>https://doi.org/10.1070/MC1999v009n05ABEH001117</u>
- 540 Wang, S., Elshani, J., Wai, C., 1995. Selective extraction of mercury with ionizable crown
- 541 ethers in supercritical carbon dioxide. Anal. Chem. 67, 919–923.
- 542 <u>http://dx.doi.org/10.1021/ac00101a019</u>
- 543 Wang, T., Li, M., Teng, S., 2010. Desorption of cesium from granite under various aqueous
- 544 conditions. Appl. Radiat. Isot. 68, 2140–2146.
- 545 <u>http://dx.doi.org/10.1016/j.apradiso.2010.07.005</u>
- 546