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Abstract 
A thermodynamic description of the Fe-Te system needs to be developed in order to model internal 

corrosion by fission products in fuel pins of Generation IV nuclear reactors. In preparation for a 

thermodynamic assessment of the system, an experimental study has been performed in order to 

clarify some unknown or conflicting phase diagram data. New phase diagram data have been 

obtained using Differential Thermal Analysis and isothermal heat treatments followed by electron 

microscopy with EDS and WDS analysis. The DTA analysis revealed new phase boundary data, and 

confirmed a very steep Fe-rich liquidus, supporting the possibility of a liquid miscibility gap in the Fe-

FeTe region. The analyses also confirmed the probable eutectoid reaction        at 523   . The 

invariant arrests of the unknown   phase were consistent with information available in literature, but 

the phase was not identified via XRD of samples at its postulated composition. However, 

metallography of the samples revealed an unexpected microstructure pertaining to the   phase, 

which might be the   phase, and is discussed in this paper. The monoclinic space group      is 

proposed for the   phase based on XRD. The collected data will be used together with that available 

in literature to perform a thermodynamic Calphad assessment in a subsequent paper Part II: 

Thermodynamic modelling. 

Keywords: “nuclear reactor materials”, “thermal analysis”, “scanning electron microscopy, SEM”, 

“metallography”, “X-ray diffraction”, “phase transitions” 

1. Introduction 
Most commercial light water reactors (LWR) operate in a thermal neutron spectrum, with zirconium 

alloys as the fuel encapsulation (cladding). Among Generation IV nuclear reactors currently under 

development are the Sodium cooled Fast neutron Reactors (SFR), operating with a fast-neutron 

spectrum and a liquid sodium coolant. The MOX fuel (mixed oxide of uranium and plutonium) pellets 

are contained in stainless steel cladding. Post irradiation examination of MOX fuel pins from SFR 

reactors have revealed an internal corrosion process where some fission products initiate Fuel-

Cladding Chemical Interaction (FCCI) and Fission-Product induced Liquid Metal Embrittlement 

(FPLME) [1-3]. This corrosion is facilitated by the release and migration of these volatile fission 
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products from the fuel, into the fuel pin gap, and cesium and tellurium are key elements in this 

process. 

Thermodynamic studies of the effect of Cs and Te on stainless steel have concluded that the hyper-

stoichiometry of the oxide fuel during burnup results in a sufficiently high tellurium potential to 

enable corrosion [4-6]. Pulham and Richards [7-11] made experimental studies on the corrosion of 

Cs, Te and (Cs,Te) mixtures with varying oxygen potential on the candidate cladding alloys Nimonic 

PE16, austenitic M316 and ferritic FV448 and DT2203Y05. They concluded that the corrosion process, 

including steel matrix attack and inter-granular corrosion, is sensitive to different Cs/Te ratios and 

oxygen potentials, which change the mode of corrosion. In most cases, transition metal tellurides 

and oxides were formed, deposited in scales composed mainly of Cr-Cs and Cr-Te compounds at low 

oxygen potentials, and Fe-Te, Cs-Fe-O and Cs-Cr-O compounds at high potentials. 

In order to predict whether or not this internal corrosion of the fuel pins during operation will be a 

life-limiting factor of the reactor, a corrosion model has to be implemented. As input data for that 

model, a thermodynamic database of the Fe-Cr-Ni-Cs-Te-O system must be developed. In order to 

assess such a complex system, all the binary, ternary and higher-order sub-systems need to be 

assessed. 

This paper presents an experimental study of the Fe-Te phase diagram, to be included in the 

thermodynamic assessment presented in Part II: Thermodynamic modelling. Section 2 summarizes 

the state of the art of the Fe-Te system. Section 3 then describes the experimental methods used, 

followed by a discussion of the results of metallographic studies on annealed samples in section 4.1, 

and an analysis of heat curves from DTA in section 4.2. Finally, section 5 summarizes the main 

conclusions and gives suggestions for future work. 

2. State of the art on the Fe-Te system 
In their work, Grønvold et al. [12] characterized most known phases of the iron-tellurium system, i.e. 

the  ,  ,    and   phases. This was later completed with the discovery of another high-temperature 

phase,   , by Røst and Webjørnsen [13]. A number of researchers then published experimental phase 

diagrams and homogeneity ranges of the Fe-Te system [14-18]. Ipser et al. [19] observed 

inconsistencies between those diagrams, and revised the phase diagram based on isopiestic, Thermal 

Analysis (TA), Differential Thermal Analysis (DTA) and X-ray diffraction (XRD) measurements, as 

shown in Figure 1a. Chattopadhyay and Bharadwaj [20] reviewed the system  and accepted the 

phase diagram by Ipser et al., adding a liquid miscibility gap suggested by Mann and Van Vlack [21] in 

their partial diagram shown in Figure 1b. Okamoto and Tanner [22] published a separate review, 

accepting a similar phase diagram including an austenite loop. 



 

Figures 1a and 1b: Fe-Te phase diagrams by Ipser et al. [19] (1a) and Mann and Van Vlack [21] (1b). 

Table 1 presents the available crystallographic data of the system, as well as their approximate 

chemical formulae. The designation of Greek letters by Grønvold et al. will be used throughout this 

text. Several XRD studies are available on the crystal structures of the  ,   and   phases [12,19,23-

25]. As shown in Figure 1a, Ipser et al. proposed the existence of   and  ’ single-phase regions with 

an intermediate two-phase region. The CdI2-type ordering of the hexagonal    phase was confirmed 

by Mössbauer and neutron diffraction studies [26,27]. While the monoclinic   phase is related to the 

NiAs structure family, the exact space group remains unknown. In the Ni-Te system, the Ni-rich   

phase is of the NiAs structure, experiencing a 2nd order transition into the CdI2-type with increased 

Te-content [28,29]. Modelling has supported the possibility of a      order-disorder 

transformation in the Fe-Te system, but it has not been experimentally confirmed [30]. 

The ordered nature of the   phase has been confirmed by neutron diffraction studies as an 

intermediate state between the Cu2Sb and PbO type structures, with half of the tetrahedral sites 

filled with Fe atoms, and excess Fe in the octahedral sites [31,32]. The high-temperature    phase 

was observed by Røst and Webjørnsen as similar to the      (160) Fe1.5Ni1.5Te2 phase found by 

Stevels [33], a ternary phase that was later re-characterized as     (166) by Åkesson and Røst, 

known as Fe0.28Ni0.28Te0.44 [13,34]. Only a few reflections were noted, with qualitative intensities, but 

all shared with the Fe0.28Ni0.28Te0.44 structure. 

Reflections of a phase of unknown crystal structure were found between the   and   phase, called 

the   phase, believed to exist at 54.2 at% Te (Figures 1) [12,19]. 

  



Table 1: Crystallographic data of Fe-Te phases. Lattice parameters available in literature is given for phases relevant to this 
work. lt: low-temperature phase, ht: high-temperature phase, hp: high-pressure phase. *: Crystal structure not confirmed. 
**: Suggested by Chevreton [35], without evidence; this work later finds that the phase may be of this space group, however 
not this prototype. 

Phase 
Pearson 
symbol Space group 

Lattice parameters 

Prototype Ref. a b c   

                  W  

                Cu  

  -        * (ht)          4.013 - 20.96 - Fe0.28Ni0.28Te0.44 [34] 

           4.013 - 20.96 -  [13] 

 -         (lt)              3.82 - 6.28 - Cu2Sb [12,31] 

              3.82 - 6.28 - PbO [12,31] 

(  -          lt)             [31,32] 

 -         * (ht) N/A N/A N/A N/A [12] 

 -        * (ht2)     N/A 3.846 - 5.641 90.2 N/A [12,19] 

Suggested:           This work   
              This work Cr3S4** [22] 

  -         (ht1)            3.80 - 5.662 - CdI2 [26,36] 

 (            3.80 - 5.662 - NiAs) [12] 

 -      (lt)          5.26 6.268 3.876 - FeS2 (Marcasite) [18] 

( -      hp)            FeS2 (Pyrite) [37] 

             4.466 - 5.919 -  -Se [38] 

 

Although much work has been done to study the Fe-Te system, some questions remain that may 

significantly affect the thermodynamic modeling of the system. Mann and Van Vlack [21] suggested a 

liquid miscibility gap in the Fe-FeTe region (Figure 1b) which was accepted by Okamoto and Tanner 

[22], while no Fe-rich liquidus data nor activity data exist to support this. The Te-rich phase boundary 

of the   phase remains largely uncertain, as well as the        transformation and the solvus 

lines of the   and    phases. 

In the present work, we performed isothermal heat treatments with metallographic studies and DTA 

in order to determine these unknown or uncertain phase boundaries of the Fe-Te system, as well as 

gain more insight into the nature of the   and   phases. An explanation of the experimental methods 

employed follows in section 3. 

3. Experimental methods 

3.1. Materials preparation 
The samples were prepared using 99.9 % pure iron wire pieces from Balzers whose surfaces were 

polished to remove any surface oxide, rinsed with ethanol, dried, cut and weighed before being 

collected in silica ampoules together with 99.999 % pure nuggets of tellurium from Goodfellow 

Cambridge Ltd. Before filling, ampoules were cleaned in an ultrasonic bath, rinsed with ethanol and 

dried. 

Samples for isothermal heat treatments had a total mass of around 1 gram and samples for DTA-TGA 

studies had a total mass of around 80-110 mg to ensure a strong signal of weak thermal arrests. 

Ampoules were then backfilled with argon and sealed under primary vacuum. Further details of the 

isothermal heat treatments and DTA procedures follow in paragraphs 3.2-3.3. 



3.2. Isothermal heat treatments and sample characterization 
For the isothermal heat treatments, an array of two to four sealed ampoules was rested at an incline 

inside a horizontal tube furnace (           ). The sample batch was held for two to four hours 

above the predicted melting temperature of the alloy, then held for one to four weeks at a selected 

temperature (    to        . At the end of the treatment, the sample array was pulled out of the 

furnace and quenched in cold water. A decision was made not to crush the ampoules upon retrieval 

in order to a) avoid destroying the microstructure of the very brittle samples, b) limit oxidation; with 

these factors in mind, the possibility of a non-equilibrium state was considered during analysis. 

Retrieved samples were cold set in resin pellets, which after polishing were coated with a thin carbon 

layer by carbon fiber wire flash pulse prior to Scanning Electron Microscopy (SEM) analysis. The 

polishing was done with grit 800, 1200 and 2000 SiC paper, followed by diamond suspensions of 9, 6 

and finally 1 µm particle size. 

Samples were then studied via Light Optical Microscopy (LOM) and SEM (Zeiss LEO 1450VP), and 

phase compositions were measured with Energy Dispersive Spectroscopy (EDS). More accurate tie-

line determination was performed using a Cameca SX50 microprobe with Wavelength Dispersive 

Spectroscopy (WDS) detectors. When the solid phase composition seems uniform, it is regarded as 

equilibrated and the average of the flat bulk composition is taken as the solubility limit. In case the 

composition profile has a linear shape, it is not at equilibrium, but treated as a diffusion couple and 

the phase boundary evaluated from extrapolation of the composition to the interface. Most samples 

showed no to slight reaction with the silica ampoules, which is expected from liquid tellurium, and 

the alloys held isothermally in equilibrium with liquid had clearly reacted. Therefore, in all WDS 

analyses oxygen and silicon contaminations were also searched for; silicon contamination above the 

detection limit was never found. When uniform oxygen traces were observed, the composition was 

normalized to the Fe-Te content to best approximate the binary solubility. 

3.3. Differential Thermal Analysis 
A Setaram Setsys 16/18 DTA-TGA machine was used to confirm phase boundaries of the Fe-Te 

system, support a study of the nature of the gamma phase, and to find the believed to be eutectoid 

decomposition of  -         into   -        . Since the Fe-rich liquidus had not yet been found, a 

sample was prepared to attempt identifying that as well. 

The temperature was calibrated using the melting points of lead, zinc, silver and gold standards from 

SETARAM placed in alumina crucibles. For silver and zinc, platinum lids covered the crucibles to limit 

mass loss. For each run with alloys, sealed silica ampoules were placed in the bottom of open 

alumina crucibles: one containing an Fe-Te sample, and one an empty reference ampoule. To check 

the delay in heat conduction through the silica ampoule to the bottom of the alumina crucible, a 

measurement was performed on gold at 5, 3 and 1 K/min; a rather constant temperature offset from 

the calibration measurement of 0.4 K was found and thus subtracted from all subsequent 

measurements on alloy samples. 

All alloy samples were melted in the machine for 30 to 40 minutes followed by cycles of heating and 

cooling programmed at rates of 5, 3 and 2 or 1 K/min. Argon was used as the carrier- and furnace 

protection gas together with a closed coolant circuit of water kept at 20 °C. Due to a lack of 

calibration standards that do not experience significant supercooling, the apparatus was not 

calibrated for cooling cycles. The methodology recommended by Boettinger et al. was followed for 

the sampling of onsets and offsets of reactions [39]. 



3.4. X-ray Diffraction and structure refinement 
X-ray Diffraction (XRD) was performed on some of the samples in order to verify present phases, as 

well as attempt to identify the crystal structure of the   phase and the space group of the   phase. 

FT51_T2, FT54_S and FT55_X were machine-milled and the others milled by mortar and pestle. 

Powders were then filtered using a 20µm test sieve. A Brucker D8 Advance and a PANalytical X’Pert 

PRO diffractometer were used with a  -   setup. Samples were spinned in order to improve the 

measurement statistics of the XRD patterns. For the first few samples a Cu X-ray tube was used. A 

knife was placed by the sample to mitigate diffusion at low angle, and the 1-dimensional linear 

Lynxeye detector cutoff energy was set above the energy of the Fe    fluorescence line. 

Subsequently, a Co X-ray tube was used with an X’Celerator 1-dimensional detector. Both X-ray 

sources had a         intensity ratio of 2:1. 

Rietveld refinement was performed using the MAUD software [40,41], with an isotropic size 

(Gaussian distribution)-strain (lorentzian contribution) model considering a Pseudo-Voigt line profile-

function with axial divergence [42]. Due to absorption by Te, the peak intensity decreases with higher 

angle; therefore, Fe site fractions could not be well refined, and were instead fixed at probable 

compositions particularly deduced by structure relaxation via DFT computation. Moreover, due to 

residual texturing effects including the observation of platelet phases, the Le Bail method [43] was 

used as structure factor model. 

4. Results and discussion 

4.1. Phase diagram data from heat treatments 
Table 2 presents the prepared compositions and expected phases of the samples for isothermal heat 

treatments. The sample names identify two things: first, FT# implies an Fe-Te sample of # at% Te. 

Second, suffixes denote purpose: T for tie-line determination, S for single-phase composition and X 

for crystal structure determination via XRD. A final number was added if several samples of the same 

composition were prepared. As can be seen in Table 2, some samples were heat treated for 4 weeks 

to ensure thermodynamic equilibrium at such low temperatures. Table 3 summarizes phase 

boundaries of two-phase samples evaluated from the composition analyses via EDS and WDS. The 

respective tie-lines are shown in Figure 2, imposed on the calculated phase diagram compared with 

published phase boundary data (see Part II: Thermodynamic modelling). Filled symbols represent the 

prepared average sample compositions (Table 2), and empty symbols represent the evaluated phase 

boundary compositions (Table 3). The tie-lines are overall consistent with available solubility data. 

Most heat treated samples showed no to small interaction with the silica ampoule. Samples treated 

in equilibrium with liquid showed a thin, soot-like, dark layer on the inner wall of the ampoule; while 

a reaction had clearly taken place, the extent was deemed small enough to not affect the state of the 

bulk sample and the ampoules remained intact. The largest extent of reaction was seen in sample 

FT58_S2, being cratered with large semi-spherical bubbles. The outer rim of the sample showed a 

clear and uniform, about 5 µm thick, region of   phase composition. Analysis of the deposits on the 

ampoule revealed tellurium oxide particles. In all two-phase samples, oxygen was concentrated in 

the most Fe-rich phase, i.e. the phase with more vacant interstitial sites. 

A discussion of the composition analysis of the individual heat treated samples follows, divided into 

different regions of the phase diagram with descending tellurium content. 

4.1.1. Samples of 77 to 65 at% Te 
As seen in Figure 5, sample FT77_T consists of primary   phase precipitates and a quenched liquid 

phase that solidified into   dendrites and tellurium, in agreement with the phase diagram. A lack of 



grain boundaries in the quenched matrix phase signifies a possibly retained amorphous state. 

Precipitates of pure tellurium <0.4 µm in size were also observed embedded in the matrix. FT77_T 

showed slightly more reaction with the silica than other samples, with the exception of FT58_S2, due 

to both the higher tellurium content, and the partially liquid state of FT77_T during heat treatment. 

The sample-ampoule reaction resulted in a tellurium depletion about 10 µm into the sample, which 

was deemed not to have significantly affected the average solid phase composition. The XRD powder 

pattern could not be refined due to very high noise as well as an oscillating background, possibly 

from amorphous tellurium. Reflections from   phase and traces of pure Te were identified, but also 

traces of   phase, the reason of which cannot be readily explained; it could be due to the interaction 

between liquid solution and the ampoule. 

As seen in Figure 8, FT65_T contained large bands of pores as well as cracks delineating almost all 

     phase boundaries. The   areas were completely smooth while    was cratered with surface 

damage from polishing (Figure 5 and Figure 8). 

In both samples, EDS and WDS showed on average flat composition profiles in the phase interfaces, 

and they were regarded as equilibrated with a maximum data spread of ±0.5 at% Te for the    phase 

and ±0.3 at% Te for the   phase (Table 3). No oxygen was found in the   phase but there were 

detectable levels in   ; oxygen signal peaks were mostly related to surface damage, which might 

explain the larger error in equilibrium bulk concentration of   . 

4.1.2. Samples of 54 to 51 at% Te 
FT54_S was prepared with the aim to obtain a pure   phase; instead, what seemed to be a two-

phase equilibrium of     was obtained. This may be due to the difficulty of nucleating  , as has 

been noted before [19]. However, a foreign microstructure was observed in the phase region with 

composition consistent with the   phase, shown in back-scattered electron imaging of Figure 3. The 

stripes seem to be aligned along the grain orientation (See Figure S1, Supplementary material), and 

were about 1 µm wide, as can be seen in Figure S2. Due to a stripe width of about the same size as 

the affected zone of EDS and WDS analysis (1 µm), discrete composition differences between the 

regions could not be accurately determined, but the minimum and maximum compositions found 

from 36 points in EDS were 55.3 at% Te and 59.7 at% Te; the former is close to the   phase (54.2 at% 

Te), the latter seems consistent with the    phase. The formation of    on quenching is possible since 

the   phase has previously been found to easily decompose into   and    on cooling [19]. FT51_T2 

was prepared at a higher temperature in the     region, but again no phase region with a 

composition of the   phase was found. Here the   phase fraction was much smaller, with fewer and 

finer Te-rich stripes, appearing to precipitate in and emanate from the     phase boundaries 

(Figure 4). No such stripes were found in the two samples FT58_S1 and FT58_S2, prepared to be pure 

  phase. This absence means that the striped microstructure may not merely be the partial 

decomposition of   into   , since that would also have been observed in FT58_S1 and FT58_S2. 

It is interesting to note that the   phases in samples FT54_S and FT51_T2 grow in µm size sheets, 

similarly to what is usually called 2D crystals (see Figures S3-S8, Supplementary material). This is 

common for the NiAs structure family of transition metal-chalcogenides that tend to grow in layers 

[44,45]. The actual crystal thickness cannot be deduced from the SEM images, since they may be 

thinner than is visible (See Figure S9 for magnification). The BSE image of Figure S10 shows that the 

striped structure discussed above is not related to individual layers of   phase, since they are here 

seen to cross over several crystals. This indicates that the stripes probably formed later than the 

precipitation of   phase. With the above discussion in mind, it is possible that the   phase is a NiAs-

related structure, and forms by diffusion over short distances in the   phase. This could explain the 

preferred formation of the structure only in   phase regions, and the parallel orientation. 



The high average oxygen content of FT54_S, shown in Table 3 to be about twice the detection limit of 

around 0.2 wt%, is not negligible. Indeed, oxygen seems associated with the   phase. All strong 

oxygen signals are found at surface effects, e.g. cracks, pits, and scratches. The composition analyses 

of the     interfaces of both FT54_S and FT51_T2 showed a small composition gradient 5-10 µm into 

the   phase followed by a flattening of the profile into the bulk of the phase, with a spread of ±0.5 

at% Te. This gradient may have two explanations; either it is a result of iron diffusion during 

precipitation of the observed striped microstructure, or the sample never reached thermodynamic 

equilibrium. The normalized average of the flat portion of the profile was used as the phase 

boundary of the   phase, with large accepted error, and they were rather consistent with the tie-

lines by Ipser et al. [19]. 

The diffraction patterns of these samples showed high levels of noise, peak broadening and decaying 

peak intensity due to absorption by Te (see figures S11 and S12, Supplementary material). Rietveld 

refinement could match most reflections with the   and   phases, with rather low accuracy due to 

the broadening (see Table 4 for the results). The a parameter of the   phase is consistent with 

literature [12], while the c parameter deviates. The space group of   was deduced from the rietveld 

refinement of sample FT55_X, as will be detailed below. Broadening was not completely accounted 

for in FT54_S, since crystal size would not converge well given the tricky distribution of data points in 

the pattern. Additional low-angle peaks were found at 22.6   and 24.9  , exclusively present in all 

machine-milled samples. They seem to be a convolution of both discrete and broad peaks. The 

structure that best matches the additional peaks is         of space group         (Figure S12); 

the sample was probably oxidized during milling. One small peak at 27.5   remains unmatched. 

Sample FT54_S had one abnormally intense peak associated with the (200) reflection of the   phase. 

4.1.3. Sample of 55 at% Te 
Sample FT55_X, of a composition in the     region close to the tentative   phase boundary, was 

treated isothermally at 575    for 4 weeks, in order to deduce if the sample contains hexagonal    or 

monoclinic   phase. This sample was more efficiently quenched by breaking the ampoule on 

retrieval. 

WDS analysis of the sample was inconclusive due to bad focus resulting in a very low sum of wt%. As 

seen in Table 3 this gave a standard deviation of 5 at% Te. The tie-line, as shown in Figure 2, can 

therefore not be trusted. Such a shape of the phase diagram could be explained if the invariant of   

phase formation were in fact the eutectoid        transition; however, Ipser et al found the   

phase to be stable below this temperature. 

The XRD analysis showed mostly   phase, and a possible trace amount of   phase, as also seen in the 

LOM image of Figure 9. A possible monoclinic modification of the hexagonal NiAs type structure is 

the    space group, and an initial refinement found that an ordered superstructure of the      

space group can also fit the pattern. The latter unit cell was relaxed via DFT, as further detailed in the 

modelling Part II, resulting in more realistic atomic positions. This structure was further refined via 

rietveld analysis, and compared with the    and         space groups as shown in Figure A1 

(Appendix); space group        fit identically well as        , and is therefore left out. While    

and         can equally well fit the same peaks,      accounts for additionally two otherwise 

unmatched peaks, one of which is the one at 27.5   also found in FT51_T2 and FT54_S. As seen in 

Table 4, the weighted profile R-factors (   ) show that although the space groups fit the pattern 

almost equally well,      gives the better fit. Note that the high noise, and the large unmatched 

peaks makes the Rwp less useful than a simple qualitative comparison. The final crystallographic data 

on the   phase of sample FT55_X are detailed in (Table A1, Appendix). 



4.1.4. Samples of 47 to 25 at% Te 

FT25_T1 and FT25_T2 were prepared in the  -     region. As seen in Figure 6 and Figure 10, the 

analyzed samples showed cores of pure iron with thick   phase layers. With the assumed limited 

diffusion of Te through Fe, the samples have not reached uniform composition, and are therefore not 

at equilibrium. Although the   phase has not reached an equilibrium iron content, the sample may 

be treated as a diffusion couple for the determination of Te solubility in  -  . The last points in the 

 -   phase of the composition profiles before the  -     interface were rather consistent over 

several line scans, and taken as the solubility limit, consistent with the tie-line published by Ipser et al 

(Figure 2). 

In addition to these samples, FT47_S1 and FT47_S2 were prepared in the  ’ single-phase region. 

Retaining some    phase was attempted, even though failure was expected. Judging by the EDS 

analysis FT47_S1 had a uniform composition. These samples also contained sheet crystals of µm size, 

similarly to the   phases, which is expected from PbO structure chalcogenides [46]. SEM and LOM 

images revealed layered growth in the entire sample, as shown in Figure 7. Both samples showed 

parallel cracks in the metallographic analyses, probably aligned with the 2D crystal planes since the 

ordered   phase should have weak bonds between the Te-Te layers lacking interstitial iron. 

Metallography of FT47_S2 showed a similar appearance and uniform composition. As seen in Figure 

S13 (Supplementary material), XRD analysis of FT47_S2 showed complete decomposition into the   

phase, as expected. The lattice parameters deduced from rietveld refinement (Table 4) correspond 

well with available literature [12].  



Table 2: A priori properties of isothermally heat treated Fe-Te samples. *: Rounding error in prepared composition are all 
<0.007 at% Te. 

 Prepared composition Heat treatment  

Sample ID at% Te* wt% Te Mass [mg] T [K] Time [h] Expected phase(s) 

FT77_T 76.83 88.34 1093 866 672    Liq 

FT65_T 65.33 81.15 1125 866 672      

FT58_S1 58.37 76.21 1167 954 331   

FT58_S2 58.41 76.24 1118 1043 330   

FT55_X 55.13 73.74 1588 848 672     

FT54_S 54.09 72.92 928 954 331   

FT51_T1 50.99 70.39 865 1142 336     Liq 

FT51_T2 51.01 70.41 888 1043 330     

FT47_S1 47.05 67.00 1083 1142 336    

FT47_S2 47.12 67.06 1047 1142 168    

FT25_T1 25.58 43.99 918 954 331        

FT25_T2 24.80 42.97 911 1043 330        

 

Table 3: Condensed results of WDS composition analysis for tie-line determination. *: Sample machine milled and partially 
oxidized, probably into Fe3O4 and Fe2O6Te 

Sample ID Region Boundary: composition [at% Te] 

WDS wt% oxygen 

mean sum-wt
1
% 

Phases found 
by XRD mean max 

FT77_T        : 68.3±0.3  : N/A
2
 0 0.24 100.44     , trace   

FT65_T        : 63.3±0.5  : 66.8±0.3 0.04 0.28 99.79 Not analyzed 

FT55_X       : 49.43±5  : 59.88±5 0.2 0.44 93.82  , trace  * 

FT54_S      : 48.5±0.5  : 57.0±0.73 0.41 1.52 101.27       * 

FT51_T2      : 48.4±0.5  : 55.2±0.5
3
 0.22 1.11 101.3       * 

FT25_T1         -  : 0.3±0.05  : N/E
4
 0.22 1.43 102.04 Not analyzed 

FT25_T2         -  : 0.7±0.4  : N/E 0.10 1 102.85 Not analyzed 

 

Table 4: Results of powder pattern refinement on selected samples, with optimized lattice parameters and weighted profile 
R-factor (Rwp).   angles were fixed, since the parameter does not converge with the given quality of measurement. 

Sample ID, 
target Space group a [Å] b [Å] c [Å]   [ ]     % 

FT47_S2, Cu          3.821 ±2E-4 - 6.266 ±2E-4 - 48.8 
FT51_T2, Co          3.84 ±6E-4 - 6.33 ±0.002 - 40.1 

         6.70 ±0.005 4.10 ±6E-4 10.94 ±0.006 90.65  
         4.66 ±0.001 - 9.39 ±0.004   

FT54_S, Co          3.82 ±0.002 - 6.45 ±0.005 - 92.1 
         6.70 ±0.003 4.08 ±8e-4 10.94 ±0.006 90.65  
         4.67 ±7E-4 - 9.39 ±0.006   

FT55_X, Co         6.70 ±0.007 3.86 ±0.005 11.23 ±0.005 90.65 42.3 
       3.876 ±4E-4 6.648 ±6E-4 5.585 ±2E-6 90.2 44.4 
         3.851 ±0.001 - 5.603 ±0.003 - 44.5 
         4.65 ±0.001  9.36 ±0.006   

 

                                                           
1
 The sum includes Fe, Te, Si and O 

2
 The dendritic region, was not analyzed in FT77_T. 

3
 Average composition of two-phase microstructure that used to be   phase 

4
 Not in equilibrium. 



 

Figure 2: Calculated Fe-Te phase diagram from Part II: Thermodynamic modelling, compared with tie-lines from isothermal 
heat treatments, phase boundaries from DTA, and selected published data 

 

Figure 3: BSE image of the striped microstructure in 
sample FT54_S. Image shows stripes of varying direction 
in different grains around a pore. 

 

Figure 4: BSE image of boundary between   (dark gray) 
and   (light gray) phases in sample FT51_T2. Here the 
stripe precipitates seem to emanate from the phase 
boundary. 



 

Figure 5: BSE image of a corner of sample FT77_T.   
phase has been in equilibrium with liquid, which has on 
cooling solidified into   dendrites and tellurium. 

 

Figure 6: BSE image of FT25_T1, magnified on the 
boundary between the iron core and the surrounding 
scale of   phase. 

 

Figure 7: SEM image taken between precipitates in 
sample FT47_S1, showing the layers of the   phase. 

 

Figure 8: LOM image of sample FT65_T. The   phase has 
precipitated between bands of   phase, with significant 
porosity and intergranular cracking. 

 

Figure 9: LOM image of FT55_X. Bright regions are   or 
   phase, small gray precipitates   phase. 

 

Figure 10: SEM image of sample FT25_T2. A piece of iron 
wire is surrounded by   phase, and a separate piece 
entirely consists of   phase. 

 

 

  



4.2. Phase transition data from DTA 
Thermograms of Fe-Te alloys, normalized to linear baselines, are presented in Figure 11 

superimposed over the calculated phase diagram. The baselines are positioned roughly at the 

corresponding sample compositions, and red markers indicate where the onset of reaction (deviation 

from baseline) or end of reaction (local maximum of heat curve) were sampled. All invariant 

reactions are consistently found a few degrees lower than previous DTA studies. This could be due to 

changing standards of sampling; earlier it was common to use the extrapolated onset of reaction, as 

is done for pure elements, while presently it is accepted to sample the first deviation from the 

baseline as the onset of reaction [39], as was done in this work. 

Table 5 shows the observed reactions from the DTA measurements. All measurements show good 

agreement with the phase diagram proposed by Ipser et al. (Figure 1a), indicating that the sample 

compositions were successfully prepared. Chemical analysis found no silicon dissolved in the 

samples; the results however over-predicted the composition by 1.56-4.37 at% Te with a relative 

error of 3 %. Those compositions are highly improbable, since the very clear thermal effects would 

not have been observed if the chemical analyses had been accurate, indicating a possible 

contaminant or anomaly during the analyses. If this contaminant were oxygen, either from remaining 

oxide of the pure materials or reaction with the silica ampoules, the good agreement with previous 

experiments indicate that it does not significantly offset the reaction temperatures from the binary 

phase diagram boundaries. 

While Ipser et al. did not find the iron rich liquidus, this work raised the studied temperature of 

sample FT47_D; thus a small but clear local maximum was observed before returning to the baseline, 

i.e. the liquidus (for a magnification, See Figure S14 in Supplementary material). Thermal effects on 

heating were found consistent with the β’ phase peritectoid formation, solvus and peritectic melting. 

The solidus could not be clearly determined, since the diffuse onset of melting was difficult to 

quantify (labeled too weak in Table 5). This experiment, and all subsequent ones, showed periodic 

oscillations in the TG and heat curves, effectively hiding any small thermal effect in thermograms of 

cycles at 1 K/min. Modification of the setup to use tap water to cool the furnace mitigated the issue. 

This change of setup was not found detrimental to the calibration. 

FT51_D experienced several weak steps and bumps in the baseline on heating and cooling, one of 

which was consistent with the suggested formation of the γ phase [19]. This roughly lambda-shaped 

peak was clear in FT54_D. Chiba believed that this peak, found in FeTe and FeTe1.08, was an anomaly 

related to the strange shape of the   phase solvus (Peak B in [14]). Chiba related the peak in FeTe1.33 

to this anomaly, but it was actually the solvus line. The invariant arrests of γ phase and δ phase 

decomposition were not separated on heating in FT51_D, although after several runs peak 

separation was observed on cooling. They separated inconsistently between cycles, and therefore 

the additional peaks could be irreversible artifacts. The FT54_D measurements were also focused on 

finding the δ’ to δ transition without success. As a result, FT58_D was prepared at the hypothesized 

eutectoid composition of said reaction, but the baseline was completely flat in the region. It was, 

however, noted that all samples at lower compositions than the predicted        eutectoid 

showed a second onset in the peak assigned to the just mentioned reaction. 

Returning to the analysis of reactions above and below the   phase, customized silica ampoules were 

created to fit directly to the DTA thermocouples in order to obtain a more highly resolved signal, and 

FT54_D2 was thusly analyzed. Figure 12 shows the slowest cycle of heating and cooling, normalized 

to linear baselines. It can be seen in Figure 12 that the final local maximum on heating, and the first 

onset of reaction on cooling, i.e. the liquidus, coincide well. Subsequent reactions on cooling, 



however, do not coincide, thus indicating supercooling; all DTA samples exhibited this, at least to 

some extent. The second onset is very clearly seen, on peak (1), as well as the heat of   phase 

formation, peak (2); the higher-temperature peaks were now separated into the decomposition of   

and   phases on heating (Figure 13). The apparatus was not yet calibrated for these crucibles, so in 

order to identify the separated peaks, the heating spectrum was normalized between four well 

known reactions in the phase diagram: onset (1) in Figure 12 was fixed to the known        

invariant; onset (2) was fixed to the       invariant; onset (3) in Figure 13 was fixed to the 

       eutectoid reaction; and local maximum (7) was fixed to the liquidus. This normalization 

was sufficient to give an approximate linear correlation between measured and real temperature. As 

a result, peak (6) lined up approximately with the invariant       , and peak (5) aligned with our 

other measurements of the        invariant. The respective magnitudes of peak (5) and (6) also 

support this finding. This leaves offset (4) unassigned to any presently known reaction; while it is 

small, it is clearly preceded by a short interval at baseline level, then turning into a linear slope that 

may be extrapolated towards the local maximum of the liquidus (see dashed line, Figure 13). This 

looks characteristic of going from a single-phase region, through a series of two-phase regions 

divided by two invariant arrests, before eventually completely melting. This may suggest that the   

phase is not stoichiometric, but has a narrow homogeneity range, and that this sample happens to 

pass through a single-phase region between peak (3) and (4), after which one briefly passes through 

a     two-phase region before   decomposes at peak (5). Another possible explanation is that the 

  phase somehow extends to be stable above the   phase. This is not probable, however, since a 

rather high-temperature   phase solvus was found in FT58_D. One should note how weak the   

formation peak (2) is, which also supports the possibility that the   phase is similar to the   phase. 

FT58_D, FT61_D, FT63_D and FT64_D were consistent with the liquidus, solidus and peritectic 

invariants found by Ipser et al. [19]. The rightmost solvus of the δ phase was found in FT63_D and 

FT64_D, while the onset was very weak in FT61_D, and therefore ignored. These data agree more 

with the tie-line determined by Ipser et al. and the tie-line of sample FT65_T than the phase 

boundary determined by Chiba [14]. 

  



Table 5: Thermal effects of the Fe-Te system found in this work via DTA. Reference composition only shown when different 
from that of this work; irrelevant for invariant reactions. *: Two invariant reactions very close together, peaks not separated. 
**: Maximum rounding error in prepared composition. 

Sample ID at% Te** 
Measured 

T±1 [K] 
Ref. T [K] 

(at% Te) [19] 
Type of 
reaction 

Phase transformation 
on cooling 

FT47_D 47.65±0.07 1345 N/A Liquidus        

  1191 1187 Peritectic           

  1092 1093 (47.6) Solvus      

  1071 1073 Eutectoid        

FT51_D 51.64±0.10 1165 1161 (51.65) Liquidus      

  1081 1082 Peritectoid*        

  1072 1073 Eutectoid        

  910 909 Eutectoid       

  797 N/A Eutectoid        

  790 792 Eutectoid        

FT54_D 54.83±0.10 1089 1090 (54.90) Liquidus      

  1078 1082 Peritectoid        

  909 909 Eutectoid       

  795 N/A Eutectoid        

  789 792 Eutectoid        

FT58_D 58.84±0.06 1075 1075 (59.05) Liquidus     

  1037 Not comparable Solidus     

  787 792 Eutectoid        

FT61_D 60.81±0.08 1062 1061 (61.25) Liquidus     

  1037 1039 Peritectic        

  1020 1020 (61.25) Solidus      

  787 792 Eutectoid        

FT63_D 63.25±0.14 1047 1052 (62.45) Liquidus     

  1038 1039 Peritectic        

  996 994 (62.45) Solidus      

  856 N/A Solvus      

  790 792 Eutectoid        

FT64_D 64.28±0.07 1033 1038 (64.50) Liquidus      

  961 N/A Solidus      

  886 N/A Solvus      

  789 792 Eutectoid        

 



 

Figure 11: Calculated Fe-Te phase diagram with superimposed thermograms from the DTA heating cycles. Flat baselines 
mark sample compositions. Red marks show the average sampled temperature of reactions. 
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Figure 12: Thermogram of the slowest heating and cooling cycle of FT54_D2, normalized to a linear baseline. The liquidus 
aligns well while solidus and solid state reactions are supercooled. Note the clear second onset of reaction on peak 
numbered (1) that may pertain to the        reaction. Peak (2) believed to belong to the   phase is weak but clear. 



 

 

Figure 13: Magnification of the last group of heat signals during heating of FT54_D2 at 2 K/min. Dashed blue line is to aid 
heat curve interpretation. Probable reactions: (3)       . (4) Unknown. (5)       . (6)       . (7)       . 

5. Conclusions 
Tie-lines of the Fe-Te phase diagram have been determined by EDS and WDS measurements on 

isothermally heat-treated samples. Phase boundaries have been quantified from DTA measurements. 

Rietveld refinement of XRD powder patterns corroborated with DFT calculations (Part II: 

Thermodynamic Modelling) lead us to propose a new space group      of the   phase. 

With these new DTA and tie-line data, this work has contributed to an improved characterization of 

the phase boundaries of the Fe-Te system. We lowered most invariant arrests by a few degrees, 

found a point on the Fe-rich liquidus, found the probable eutectoid reaction between the   and    

phases to lie very close to the eutectoid    formation temperature, as well as adding   and   phase 

boundaries. We showed indications that the   phase may have a narrow homogeneity range, and 

metallographic studies note that the   phase may have a crystal structure related to the   phase. If 

the striped microstructures found in our samples do relate to the   phase, the phase seems to form 

either in cooperative growth with the   phase, or out of a parent   phase. Regardless of the nature 

of the   phase, the related invariant arrests certainly exist. We highlight some key points for future 

studies of the system. 

1) The phase boundaries of the    phase were approximated from DTA measurements of 

invariant arrests [19], while less accurate solubility data estimated from XRD [13] suggest a 

congruent transition. We recommend for future studies to confirm the Fe-rich phase 

boundaries of the    and   phases, with rigorous sample preparation ensuring equilibrium. In 

addition, we recommend performing In-situ high-temperature XRD to confirm if the    phase 

is indeed the same crystal structure as the ternary phase                   , as has been 

proposed in this work. 

2) It would be useful to further verify that the space group of the   phase is      using better, 

high-energy diffraction methods, or for example Raman spectroscopy or EBSD. 

3) The   phase seems to be related to the NiAs ( ) structure family. It could be useful to use Ab 

initio methods to suggest a stable crystal structure. In addition, a large number of samples 



for isothermal heat treatment can be prepared in order to metallographically analyze the 

striped microstructure further, e.g. via EBSD. 

4) Furthermore, it would be useful to the modeling to design experiments to identify the 

presence of a liquid miscibility gap in the Fe-FeTe composition interval. This might prove 

challenging, since samples need to be contained in vessels that can withstand the reactive 

tellurium as well as up to 10-100 kPa of vapor pressure. 

The data gathered in this paper will be used in our subsequent publication Part II: Thermodynamic 

modelling for a critical thermodynamic assessment of the system. 
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Appendix 

 

Figure A1: Comparison of rietveld refinement of space groups C2/m, Cc and P63/mmc on the XRD powder pattern of FT55_X. 

Table A1: Fractional atomic coordinates of   phase of space group         derived from rietveld refinement of sample 
FT55_X and structure relaxation with DFT computations (Part II: Thermodynamic Modelling). *: Could not be refined with 
the given XRD pattern. Calculated to correspond to approximately 58 at% Te. 

Lattice parameters [Å]  

a 6.702       
b 3.856       
c 11.228       

   90.65         

Fractional atomic coordinates 

atom x y z B Occupation Wyckoff Symmetry 

Fe1 0.00517 0 0.23777 2 1 4i m 
Fe2 0 0 0 2 0.9* 2a 2/m 
Te1 0.34112 0 0.36366 1 1 4i m 
Te2 0.33025 0 0.87855 1 1 4i m 

 


