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Abstract

Fast resolution of the Boltzmann transport equation over a nuclear reactor core presup-

poses the definition of homogenized and energy collapsed cross sections. In modern sodium

fast reactors that rely on heterogeneous core designs, anisotropy in the neutrons propagation

cannot be neglected so three-dimensional models should be preferred to compute those effec-

tive cross sections. In this paper, the 2D/1D approximation is used to avoid computationally

expensive 3D calculations while preserving consistent angular representations of the neutron

flux. An iterative procedure is defined to solve the 2D/1D equations and produce coarse group

homogenized cross sections that account for 3D transport effects. Accuracy of the algorithm

is tested on a realistic model of the ASTRID core showing very good results against Monte

Carlo simulations for all neutronic parameters (eigenvalue, sodium void worth and fission map

distribution).

Keywords — Neutronics, Transport, 2D/1D method, Homogenization, Energy condensation,

Sodium Fast Reactor
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I. INTRODUCTION

Next generation of nuclear reactors is asked to meet very high safety criteria in order to

prevent as much risk of accident as possible. In the field of neutronics, reaching those standards

presupposes the demonstration of a good understanding of the physical processes that take place in

the reactor core. Given the progress that has been made in computer science, numerical simulation

nowadays provides an efficient tool to perform such a demonstration and is therefore widely used.

Consequently, the research community has concentrated many efforts in providing detailed

and precise solutions to three-dimensional whole-core transport problems. While taking a signifi-

cant step forward in the quest for accuracy, those efforts also showed that obtaining such solutions

often required long hours of calculation over large-scale parallel systems with hundreds and even

thousands of processors. As a result, they are not well adapted to the current industry’s needs

which demand a large number of calculations in a limited amount of time and with limited com-

puter resources [1]. For practical application then, we may assess with confidence that full core

calculations will still be performed for some time over coarse spatial and energy meshes. They will

therefore rely on homogenized multigroup effective cross sections.

Those effective parameters are classically obtained from two-dimensional lattice calculations

in which neutron fluxes are computed over axially infinite and radially periodic assembly patterns

and used to weight the input cross sections. Taking advantage of nearly periodic core designs,

limited axial heterogeneities and neutron’ small mean free paths, the lattice paradigm has proven

its efficiency for pressurized water reactors (PWR) applications.

On the contrary, current tendency for modern sodium-cooled fast reactors (SFR) is to present

strong axial heterogeneities. While allowing a significant reduction of the reactivity void worth

compared to homogeneous designs, this feature however questions the validity of the above men-

tioned procedure for cross sections generation. In particular, the quite large mean free paths of

neutrons in sodium-cooled technologies gives birth to particle exchanges between distinct axial

layers and therefore produces spectrum shifts along the vertical axis and anisotropic structures in

the neutron flux.

More precisely, it has been shown in a previous work [2] that large errors could indeed be

found when two-dimensional lattice parameters were used to compute neutron fluxes over axially

heterogeneous SFR cores such as the French CFV (coeur a faible vidange or low sodium void effect
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core) prototype ASTRID. The conclusion of the analysis was that infinite lattice calculations

were unable to yield consistent effective cross sections because they neglect axial modes of the

angular flux. Moreover, it was proven that biases could be significantly reduced if such modes

were incorporated in the calculation and used in the cross sections weighting process.

A straightforward way to access full angular modes of the flux that are representative of

the core situation is the application of the method of characteristics (MOC) to three-dimensional

transport problems [3]. However, considerable efforts are needed to solve the 3D MOC equations,

making its use rather inappropriate in the scope of cross sections generation were fluxes are used

only as weight functions.

In this paper, consistent information for cross sections generation is retrieved from a 2D/1D

approximation to the 3D transport equation. Based upon the original 2D/1D fusion method [4], its

basic idea is to couple several two-dimensional lattice calculations through axial leakage computed

over one-dimensional models. Taking advantage of the angular information that is contained in

the axial leakage, it is shown that three-dimensional transport effects can be successfully stored in

effective cross sections.

The aim of the paper is to present this 2D/1D cross sections weighting algorithm and to

stress its accuracy in realistic situations. Its organization is as follows: Sec. II addresses the theory

of effective cross sections generation while Sec. III presents the 2D/1D algorithm together with its

practical implementation in the APOLLO3 R© code [5]. In Sec. IV, numerical results are presented

and discussed. The paper ends with a general conclusion and perspectives for future work.

II. EFFECTIVE CROSS SECTIONS GENERATION

In this section, the transport equation is introduced and the theory of cross sections averaging

is discussed.

II.A. The transport equation

The steady state Boltzmann transport equation for the neutron flux ψ reads

(
~Ω · ~∇+ Σ

)
ψ = q (1)
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where Σ is the total macroscopic cross section and q a source term. Equation (1) stands in a geomet-

rical domain D, for all neutron directions and at all energies (i.e. (~r,E, ~Ω) ∈ D × R+ × S4π) pro-

vided that the incoming neutron density at the boundary is known (i.e. ψ = ψin for (~r, ~Ω) ∈ ∂D × S−2π).

In a reactor core, fission and scattering reactions are the main contributors to the neutron

source. Introducing the scattering H and production F operators q reads

q =

(
H +

1

k
F

)
ψ (2)

In that case, equation (1) is casted in the form of an eigenvalue problem. Assuming k is the

largest positive eigenvalue, the eigen-pair (k, ψ) is called fundamental mode. It is the solution that

is handled by most numerical methods and the one we are interested in.

For practical applications, the energy interval is split into Ng bins R+ =
⋃
gJEg;Eg+1K and

continuous energy data are replaced by their group averaged value. Flux ψ is sought under the

form of a vector ψ = (ψg)g∈J1;NgK.

In this well known multigroup formalism, the scattering operator H is written in terms of

the Legendre moments of the scattering cross section (Σg
′→g
s,l )l∈N as

Hψg(~r, ~Ω) =

Ng∑
g′=1

+∞∑
l=0

2l + 1

4π
Σg

′→g
s,l (~r)

+l∑
m=−l

φg
′

lm(~r)Rlm(~Ω) (3)

The production operator F is also developed in terms of a production cross section νΣg
′→g
f

as

Fψg(~r, ~Ω) =
1

4π

Ng∑
g′=1

νΣg
′→g
f (~r)φg

′

00(~r) (4)

Here νΣg
′→g
f is a non-standard but compact notation that will be used throughout this paper

for the sake of simplicity. It stands for the sum over fissile isotopes of the product of fission spectra

χ times multiplicity ν times fission cross section Σf .

Real spherical harmonics (Rlm)
l∈N
m∈J−l;lK have also been used as a projection basis for angular

dependent functions. Angular flux moments are defined as

φglm(~r) =

∫
S4π

d2Ω ψg(~r, ~Ω)Rlm(~Ω) (5)
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II.B. Cross sections averaging

A typical SFR fuel assembly is composed of 250 fuel pins requiring thus at least 600 radial

volumes to discretize fuel, clad, coolant and internal structures. Considering that there are ap-

proximately 500 assemblies in the core and that 100 distinct axial layers are required to catch the

axial variations of the flux, a total of 30 million spatial volumes is a minimum. If we also suppose

that 250 angles are required for the ~Ω variable and that Ng = 2000 is a realistic number of energy

groups (when resonances are accounted for with a self-shielding formalism), we get the digit of

1.5 1013 unknowns for the flux. Assuming a simple precision floating-point storage, the latter

represents a total of 60 terabytes of memory to which must be appended the weight of additional

data such as cross sections, geometry description or transport acceleration factors.

Given that such a huge amount of computer resources is not suited for industrial applications,

cross sections averaging is required to reduce the number of energy groups (energy condensation)

and spatial mesh cells (homogenization) in whole core calculations. Its basic idea is to preserve

reaction and leakage rates between detailed and coarse models of the same transport problem.

In order to derive analytical expressions for effective cross sections, we first introduce compact

notations for spatial integration and group summation

< fg >iG=

∫
Di

d3r
∑
g∈G

fg(~r, ~Ω) (6)

< fg
′→g >iG′G=

∫
Di

d3r
∑
g′∈G′

∑
g∈G

fg
′→g(~r, ~Ω) (7)

where Di ⊂ D is a generic sub-domain and G = {g1, . . . , gp}, G′ = {g1′ , . . . , gp′} are energy group

indexes sets. We then define the following quantities

ΣGi (~Ω) =
< Σgψg >iG
< ψg >iG

(8)

ΣG
′→G

s,lm,i =
< Σg

′→g
s,l φg

′

lm >iG′G

< φg
′

lm >iG′
(9)

νΣG
′→G

f,i =
< νΣg

′→g
f φg

′

00 >iG′G

< φg
′

00 >iG′
(10)
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At first sight, such definitions are good candidates for effective total, scattering and produc-

tion cross sections. They however suffer from two well known limitations that are here recalled:

1. They generally do not preserve exactly the neutronics balance because < ψg >iG differs from

the integral of the coarse-mesh transport solution. Two exceptions might be found, when

only energy collapsing is considered [6] or when a whole space homogenization is performed

with zero net leakage boundary conditions [7]. In all other cases, preservation of leakage

rates is not guaranteed.

2. Averaging equation (8) with the angle dependent function ψ introduces anisotropy in the total

cross section. As a result, ΣGi does not define a transport equation over an isotropic medium

and is thus not compatible with most neutron transport codes. Similarly, the dependence of

the scattering cross section with azimuthal index m in equation (9) is not standard.

To address the first issue, SPH factors have been proposed in the past by Hebert [8] for partial

homogenization and pin-by-pin power reconstruction. In the same time, Smith also introduced

current (and latter flux) discontinuity factors [9] to deal with general boundary conditions (black

box homogenization).

As for the second point, a standard solution is the flux-volume collapsing technique that

consists in replacing angular dependent weights ψ and φlm by the isotropic scalar flux φ00. If this

approximation clearly implies the loss of any angular information, consistency can be recovered in

the framework of diffusion theory because diffusion coefficients can be constructed in such a way

as to preserve linearly anisotropic transport effects. When transport theory is used for whole core

calculations however, high order angular effects should be stored in effective cross sections.

In the generalized energy condensation theory introduced by Rahnema and co-workers [10,

11], the angular dependence of the total cross section is shifted into a variation term and transferred

to the right hand side of the transport equation. Following the same idea, Vidal incorporated this

variation term into the within group scattering rate [6, 12] and used a least-square minimization

technique to define a conventional scattering cross section.

In this paper, we will follow this latter approach and take the following definitions for effective

total and l-th order scattering cross sections:

ΣGi =
< Σgφg00 >iG
< φg00 >iG

(11)
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ΣG
′→G

s,l,i =

+l∑
m=−l

ΣG
′→G

s,lm,i

(
< φg

′

lm >iG′

)2

+l∑
m=−l

(
< φg

′

lm >iG′

)2
+ δG,G′

(
ΣGi − ΣGl,i

)
(12)

where δG,G′ is the Kronecker delta, ΣG
′→G

s,lm,i is taken from equation (9) and ΣGl,i reads

ΣGl,i =

+l∑
m=−l

< φglm >iG< Σgφglm >iG

+l∑
m=−l

(< φglm >iG)
2

(13)

Equation (10) defines a standard cross section and is therefore used for the production prob-

ability.

In the following, the combination of equations (10), (11) and (12) will be referred to as flux

moments weighting. It allows a better conservation of anisotropic transport effects and is therefore

expected to improve the standard (scalar) flux-volume weighting technique.

III. THE 2D/1D METHOD FOR CROSS SECTIONS GENERATION

The 2D/1D terminology refers to a class of computational methods that proposes to solve

the three-dimensional Boltzmann transport equation by resorting to transverse integration in order

to reduce the phase-space dimensions. In this section, we present how the 2D/1D method can be

used in the scope of effective cross sections generation.

The original idea comes from Cho and colleagues that developed a fusion method for the

CRX code coupling two-dimensional radial MOC calculations one to another through axial leakage

retrieved from one-dimensional SN solutions [4]. At the same time, a similar method was also

implemented in the DeCART code by another group of researchers that proposed to embed the

axial leakage calculation into three-dimensional coarse mesh finite difference simulations [13].

In the past few years, a growing interest was found all around the world for the 2D/1D

method [14, 15]. In particular, a mathematical analysis of the 2D/1D equations and their numerical

counter part was provided by the MPACT development team [16] and some of the main limitations,

such as the negative source issue, were recently lifted [17].

A particular feature of the 2D/1D method is that it requires a homogenization procedure
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to produce the one-dimensional calculation mesh and a de-homogenization method to build radial

shapes for axial leakage. In order to get rid of those approximations, some authors proposed

to equalize the number of axial calculations to the number of two-dimensional radial cells [18].

However, it is our opinion that computational advantages can be taken from the homogenization

step so this latter approach will not be considered in this paper.

In the following, the basic theory of the 2D/1D method is presented and choices made for

their practical implementation in the APOLLO3 R© code are discussed.

III.A. General equations

The starting point is the 3D transport equation (1) whose solution is written (k, ψ). For the

sake of clarity, energy group indexes are dropped out in this section.

The geometrical domain D is partitioned into axial Zi and radial Dr sub-domains such as

D =
⋃
i Zi ×

⋃
rDr. The axial partition is chosen so that cross sections are axially invariant in a

given layer Zi i.e.

∀z ∈ Zi, Σ(~r) = Σ(x, y) (14)

Equation (1) is then successively integrated axially over Zi and radially over Dr yielding the

following set of equations (
~Ω · ~∇xy + Σ

)
ψi = qi − Li (15)

(µ∂z + Σr)ψr = qr − Lr (16)

where ψi, ψr are integrated fluxes

ψi(x, y, ~Ω) =

∫
Zi

dz ψ(~r, ~Ω) (17)

ψr(z, ~Ω) =

∫
Dr

dxdy ψ(~r, ~Ω) (18)

and Li, Lr transverse leakage

Li(x, y, ~Ω) = µ

∫
Zi

dz ∂zψ(~r, ~Ω) (19)
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Lr(z, ~Ω) =

∫
Dr

dxdy ~Ω · ~∇xyψ(~r, ~Ω) (20)

∂z symbolizes the partial derivative towards z and µ is the polar cosine.

Applying operators H and F of equation (2) to flux ψi (resp. ψr), one finds the analytical

expression for source qi (resp. qr). Cross section Σ is the one from the original 3D problem because

of assumption (14). On the contrary, the definition of Σr requires a 3D flux homogenization

Σr =
< Σψ >Dr
< ψ >Dr

(21)

Similar expressions also stand for cross sections that are implicit in qr (scattering and pro-

duction).

At this point, the above equations suffer from no approximation except assumption (14).

They however cannot be avoided if the dependence on the 3D flux ψ is to be dropped out in

transverse leakage Li, Lr and in the averaged cross section Σr.

III.B. Approximations for SFRs

This paper addresses the topic of cross sections averaging so geometrical domain D only

needs to be a subdomain of the core suited for computation of representative weight functions

(flux moments). In the following we therefore suppose that D is a radially reflected 3D pattern (a

fuel assembly for instance).

In SFRs neutrons have quite large mean free paths (up to a few centimeters) and it is

possible to assume that neutron fluxes are locally flat. We therefore consider no radial partitioning

of domain D but only an axial splitting i.e. D =
⋃
i Zi ×Dr.

Under those circumstances, the zero net radial leakage boundary condition (radial reflection)

over ∂Dr leads to

Lr = 0 (22)

If we also neglect the radial dependence of leakage Li and integrate equation (19) over Dr,

we get

Li =
µ

Axy

∫
Zi

dz ∂zψr =
µ

Axy
ψr|zi+zi− (23)

with Axy =
∫
Dr
dxdy and Zi = [zi−; zi+].
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Finally, assuming that the change in the radial flux shape is small along Zi, cross section Σr

can be averaged with 2D flux ψi instead of 3D flux ψ i.e.

Σr,i =
< Σψi >Dr
< ψi >Dr

(24)

Most 2D/1D methods neglect the angular dependences in the homogenized cross sections and

use a scalar flux weighting in the above equation. However, the preservation of anisotropic effects

in transport calculations requires higher order methods as it was pointed out in Sec. II.B. In this

paper, the flux moments weighting technique (i.e. equations (10), (11) and (12)) is used. Other

solutions such as polar angle dependent cross sections [19] might also be found in the literature

but their number is limited.

Introducing those approximations in the 2D/1D system, we find that equation (15) becomes

a 2D equation for flux ψi with imposed external source Li while equation (16) becomes a standard

1D eigenvalue problem for flux ψr with homogenized cross section Σr. They form the closed system

of coupled 2D/1D equations.

III.C. Interest for cross sections collapsing

The 2D/1D system of equations defines a natural algorithm for producing effective cross

sections that preserve 3D transport effects at a relatively low computational cost. A schematic

view of this algorithm is presented in Figure 1. It reads:

1. Initialize leakage Li

2. Compute 2D fluxes ψi with eq. (15)

3. Homogenize cross sections Σr,i with eq. (24)

4. Compute 1D flux with eq. (16) and (22)

5. Compute axial leakage Li with eq. (23)

6. Go back to point 2 until convergence

7. Compute effective cross sections
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Initialization
∀i, Li = L0

i

2D calculations

∀i,
(
~Ω · ~∇xy + Σ

)
ψi = qi − Li

Homogenization

∀i, Σr,i =
<Σψi>Dr
<ψi>Dr

1D calculation
(µ∂z + Σr)ψr = qr

Converged? No

Axial leakage

∀i, Li = µ
Axy

ψr|zi+zi−

Yes

Effective cross sections
eqs. (10), (11), (12)

Fig. 1. 2D/1D algorithm for effective cross sections generation

Convergence of the algorithm can be checked on 2D or 1D fluxes, effective cross sections or,

more simply, on the 1D eigenvalue. In Sec. IV, this latter test will be used.

The main interest of the 2D/1D equations for cross sections collapsing is the representation of

the angular variable. In standard 2D patterns (lattice paradigm), high order angular modes of the

flux are often close to zero because anti-symmetric modes with respect to the (xOy) plane do not

exist and reflective boundary conditions also alter radial moments. As a consequence, < φlm >i

is close to 0 for l > 0 and equation (12) cannot be used to collapse high order cross sections. On

the contrary, the 2D/1D framework involve full angular fluxes. So consistent flux moments can be

used to collapse cross sections (if such moments exist in the 3D geometry).

Another interesting feature of the 2D/1D algorithm is that it naturally takes into account

spectrum shifts along the (Oz) axis while it is not the case of standard 2D lattice calculations.

Moreover the algorithm provides a way to compute effective cross sections in media that

have a low (or null) intrinsic neutron source (e.g. fertile blankets or shields) and avoids thus the

construction of ad-hoc sources or cluster geometries.

Finally, the 2D/1D approximation avoids full 3D simulations and offers flexibility in two

dimensional simulations that can be performed independently. In addition, axially non-conformal

geometries can be treated without any restriction.
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III.D. Practical implementation

The previous algorithm has been implemented in the APOLLO3 R© code to test its validity.

In their most general form, equations (15) and (16) involve 3D angular representations of

fluxes ψi and ψr. However, the trajectory sweeping in standard 2D and 1D solvers is done accord-

ingly to the symmetries present in the geometry. As a consequence some angular moments are

automatically set to 0 and the 3D angular information is lost. So particular solvers are required.

III.D.1. 2D solver

A special version of the TDT MOC solver [20] was recently developed in APOLLO3 R© to

solve the heterogeneous B equations in 2D geometries. Those equations come from the theory of

neutron leakage in infinite lattices [21] and read

(
~Ω · ~∇+ Σ + i ~B · ~Ω

)
ψ = q (25)

The TDT-B solver sweeps polar angles in the full [0;π] range so 3D angular representations

are allowed for the flux. If the buckling vector ~B is set to 0, equation (25) is formally identical to

equation (15) so the TDT-B solver can be used to solve the 2D equations.

III.D.2. 1D solver

When approximations of Sec. III.B are made, radial leakage are set to zero in equation (16).

So the right hand side of the equation is not impacted by 3D angular effects. In addition, the

moments weighting technique does not introduce particular angular dependences in the homoge-

nized 1D cross sections. As a result, a standard 1D solver can be used. In this paper, the short

characteristics IDT solver [22] of APOLLO3 R© is chosen.

III.D.3. 2D/1D coupling

Axial leakage Li are computed from 1D interface angular fluxes with equation (23). They are

then projected over Legendre polynomials Pl and identified to rotationally (Oz)-invariant angular
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moments for 2D calculations

Li,lm =


1

Axy

∫ +1

µ=−1

dµ Pl(µ)µ [ψr(z, µ)]
zi+
zi− if m = 0

0 otherwise

(26)

III.D.4. Fix-up for negative sources

There is no guarantee that the total source in the right hand side of equation (15) is positive.

As a result, instabilities and even negative fluxes can be found when axial leakage are strong

enough. In reference [17], this issue is addressed with transverse leakage splitting and the negative

source is turned into an additional absorption term.

In this work however, it has been chosen to avoid intrusions in flux solvers so the positiveness

of qi−Li is never tested. Stability of the algorithm is nevertheless guaranteed by neglecting physical

leakage i.e.

Li = 0 when − Li < 0 (27)

In sub-critical and non multiplicative 2D layers Zi ×Dr (shields or fertile blankets), approxi-

mation (27) does not affect the stability of the algorithm because the existence of a neutron source

qi − Li is ensured for all energy groups: −Li > 0 at high energies (arrival of high energy neutrons

from main fissile zones) and qi > 0 at low energies (down-scattering effect).

For over-critical 2D layers (fuel) on the contrary, approximation (27) creates the condition

of an over-critical pattern with positive external source. In such a situation, no solution of the

transport equation exists so any iterative resolution of equation (15) is condemned to diverge. The

physical interpretation is that leakage cannot be neglected in over-critical layers. If positiveness

of the source qi − Li does not want to be tested, an artifact must then be used to replace real

leakage by fictitious ones. The arbitrary choice we made in this paper is to use the heterogeneous

B equations (25) to account for leakage out of 2D overcritical layers. In other words, real leakage

are replaced by a buckling vector ~B in such patterns. Because ~B accounts for axial leakage, we

choose its orientation along (Oz). Its amplitude B2 is also adjusted to ensure k(B2) = 1. If those

choices are purely arbitrary, they considerably simplify the 2D/1D algorithm since they imply that

overcritical layers can be calculated once and for all at the beginning of the iterative strategy.
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Reflections are currently under consideration to mitigate those rather crude approximations.

Despite all, we shall see in the next section that quite good results could be obtained.

IV. NUMERICAL RESULTS FOR A SFR ASSEMBLY CALCULATION

IV.A. Problem description

The benchmark chosen for analysis of the 2D/1D algorithm is a hexagonal SFR fuel assembly

representative of the ASTRID core. The geometry shows strong axial heterogeneities (CFV design)

so axial flux gradients are expected.

The axial layout of the core is depicted in Figure 2.a. C1 stands for fissile (U,Pu)O2 material

while FCA is for fertile UO2 media. PLN and PNS are French acronyms for sodium plenum and

axial neutronic protection respectively. Radial mesh of the fuel pins lattice is presented in Figure

2.b while plenum is shown in Figure 2.c. Dimensions and compositions of the benchmark are

available in reference [2] except for the axial protection (Figure 2.d) that was not modeled is that

former work. The latter is composed of a lower plug and a 57.5 cm height column of B4C absorber

material (7.5 cm 90% 10B enriched + 50 cm natural boron).

The axial partition of domain D for the 2D/1D algorithm follows the axial layout of the

assembly leading to thirteen 2D layers (TDT calculations). In IDT 1D calculations, the axial

mesh is refined to ensure a converged flux solution (sub-plane scheme). Taking advantage of the

algorithm flexibility, all radial heterogeneities are explicitly described in 2D layers.

Nuclear data are taken from the JEFF-3.1.1 evaluation and prepared into a 1968 group

energy structure using the dedicated GALILEE processing tool [23]. A P3 angular order is chosen

for the scattering kernel.

Before any flux calculation, cross sections are self-shielded over the exact 2D geometries using

the Tone method of APOLLO3 R©, which has proven to give very good results for SFR calculations

and even comparable with reference subgroup methods [2, 24].

Results of the 2D/1D algorithm are compared to reference Monte Carlo simulations that

have been performed with the TRIPOLI4 R© code. A very large number of neutron histories have

been sampled over the exact 3D geometry description and with continuous representations of the

angle and energy variables. To ensure consistency of nuclear data, mathematical probability tables

have been used in the unresolved resonances region.
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Fig. 2. ASTRID internal fuel assembly: (a) axial layout, (b) fuel pins mesh, (c) sodium plenum
mesh, (d) axial protection mesh

IV.B. Algorithm validation

Before considering the generation of effective cross sections, the behavior of the 2D/1D

algorithm itself is tested. In particular, convergence is checked on the 1D eigenvalue k and the

influence of initialization is discussed.

IV.B.1. Convergence

Table I shows the reactivity error towards reference value

∆ρ = 105

(
1

kref
− 1

k

)
(28)

as a function of the number of iterations in the 2D/1D algorithm. An iteration, identified in the

following with superscript n, is defined as a complete loop in Figure 1 starting from 2D calculations.
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For overcritical layers we recall that the B equations (25) are solved once and for all in the

first iteration. The B leakage rate is used as an initialization source L
(0)
i for all other planes (FCA,

PLN. . . ). 1D cross sections Σ
(n)
r,i are homogenized with 2D flux moments i.e. with equations (10),

(11) and (12).

Reference k = 1.08183± 1 pcm

2D/1D
Iteration no

1 2 3
∆ρ (pcm) +164 +69 +69

TABLE I
Convergence of the 1D eigenvalue in 2D/1D algorithm

We see that the algorithm converges quickly and that the reactivity discrepancy towards

reference Monte Carlo results is limited (∆ρ = 69 pcm). More precisely, we observe that only

two iterations are necessary before matching convergence: ∆ρ(3) = ∆ρ(2). The interpretation is

that 1D homogenized cross sections Σr,i are in fact not affected by small variations in the sources

Li that are used for computation of 2D homogenization fluxes ψi. In other words, the first 1D

calculation contains enough information to compute accurate-for-homogenization sources Li.

Furthermore, it has been observed that non-multiplicative and sub-critical layers flux calcu-

lations are not even necessary in first iteration. In fact, cross sections Σ
(1)
r,i can be homogenized

with a constant flux shape (ψ
(1)
i = 1) without impacting the final results. This fact can be formally

checked in the second line of Table II that shows the reactivity error when only overcritical layers

are computed in iteration 1.

Computed in Iteration no

iteration 1 1 2 3
All layers +164 +69 +69

Only over-critical -6 +69 +69

TABLE II
Influence of initialization in 2D calculations

IV.B.2. Influence of buckling normalization for over-critical layers

As mentioned in Sec. III.D, the 2D/1D equations are not used for overcritical layers but

equation (25) is solved at the beginning of the iterative process. The buckling ~B is directed along

the (Oz) axis and its modulus | ~B| adjusted so that k(B2) = 1.
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However, this choice is purely arbitrary and it could as well be decided to adjust more subtly

| ~B|, for instance scaling k(B2) to the current iteration 1D eigenvalue . This dynamic scaling has

been tested but it was found that its impact on the final result was negligible (less than 5 pcm)

compared to the increased number of 2D flux calculations it required.

IV.B.3. Optimization

With the above considerations, a significant number of flux calculations can be avoided

without impacting accuracy of the final results. In fact, we are able to define an algorithm in

which only one flux calculation is performed for each 2D layer. It reads:

1. Solve B equations (25) for overcritical layers imposing k(B2) = 1

2. Initialize ψi = 1 for all other 2D layers

3. Homogenize cross sections Σr,i with eq. (24)

4. Compute 1D flux with eq. (16) and (22)

5. Compute axial leakage Li with eq. (23)

6. Compute 2D fluxes ψi with eq. (15)

7. Compute effective cross sections

In this optimized version of the 2D/1D algorithm, 2D fluxes ψi are used to weight cross

sections in point 7. Equations (10) (11) and (12) are used.

IV.C. Assembly calculation with effective cross sections

In this section, the optimized algorithm is used to produce effective cross sections. The 1968

group energy structure is condensed into 33 groups and homogenization is performed over each

axial layer Zi. A library with thirteen sets of 33 group homogenized cross sections is therefore

built.

With this library, we are capable of defining a simplified model of the initial benchmark over

which the transport equation (1) can be solved. This model is chosen to stress the 2D/1D averaged

cross sections against reference continuous energy heterogeneous 3D Monte Carlo simulations.
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The SN MINARET solver [25] of APOLLO3 R© is used to solve the transport equation over

the simplified fuel assembly model. Fine spatial and angular discretizations (2.5 cm axial mesh

and 144 angle directions) ensure that the flux is converged.

Results for eigenvalues and fission rate distributions, in nominal and voided conditions, are

presented in Table III and Figure 3. Equation (28) is used for the reactivity discrepancy between

APOLLO3 R© and TRIPOLI4 R© .

To show the need for high order angular moments, results with (scalar) flux volume weighted

cross sections are also reported in the second line of Table III. This is done using the same 2D/1D

flux distribution but replacing φlm by φ00 in equation (12) to obtain the standard flux volume

weighting formula.

Nominal Voided Void worth
Reference k ± 105δk k ± 105δk ∆ρNa (pcm)

Monte Carlo 1.08183± 1 1.06399± 1 −1550± 2
2D/1D ∆ρ (pcm) ∆ρ (pcm) ∆(∆ρNa)
φlm -58 -39 +19
φ00 +288 +625 +337

TABLE III
Results for fuel assembly calculation in nominal and voided situations. Reference eigenvalue /
sodium void worth and reactivity discrepancy (towards reference) using 33 group homogenized
cross sections generated with 2D/1D algorithm. φlm (resp. φ00) stands for flux moments (resp.
scalar flux) averaged XS.

It is seen that very good performances are obtained with 2D/1D cross sections when high

order angular modes of the flux (moments φlm) are used. The results reproduce the Monte Carlo

ones within a 60 pcm range for reactivity and within a 1% relative discrepancy for the fission rate

distribution. A slightly larger error is found in coolant voided fertile material but in such regions

the fission rate is relatively low.

As for the 127 pcm reactivity difference that is found between the 33 group MINARET

calculation (∆ρ = −58 pcm) and the 1968 group IDT results (∆ρ = +69 pcm in Sec. IV.B), it

mainly accounts for the reduction in the number of energy groups and, to a lesser extent, for

differences in flux solvers.

In the other hand, we observe that very large errors arise when only the isotropic component

of the flux (φ00) is used to weight cross sections. In particular, a +625 pcm reactivity discrepancy

is found in voided conditions leading to a +337 pcm error in the sodium void worth. This last
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value is comparable to typical SFR delayed neutron fractions β ≈ 360 pcm and thus far from being

compatible with safety requirements.
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Fig. 3. Fission rate distribution (top) and relative error with reference results using 33 group
homogenized cross sections generated with 2D/1D algorithm (bottom). φlm (resp. φ00) stands for
flux moments (resp. scalar flux) averaged XS.

Therefore, the conclusion is that neutron transport physics in SFRs and even CFV-like de-

signs can be accurately modeled with 33 group homogenized cross sections. Consistent information

is however required for high angular order data else results strongly deteriorate.

Looking at the computational efficiency of the 2D/1D algorithm, a gain of a factor 5 to 10 was

found on both calculation time and memory requirements compared to full 3D MOC simulations

(with axial polynomial expansion [3]). We however point out that results are not fully comparable

because acceleration methods for the TDT-B solver are still under development, making it possible

to expect a greater gain in the time needed to solve the 2D/1D equations. All calculations have

been run with OMP parallelism on a 4 threads cluster node with Intel(R) Xeon(R) CPU E5-2630

v4 @ 2.20 GHz.
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V. CONCLUSION

This paper presents an efficient algorithm to produce effective cross sections for SFR whole

core transport calculations.

The 2D/1D method is used to approximate the 3D Boltzmann transport equation while

preserving consistent representation of angular fluxes. The stability of the algorithm is numerically

checked and the accuracy of the effective cross sections verified against reference Monte Carlo

simulations.

The benchmark chosen for application is a radially reflected fuel assembly representative

of the ASTRID CFV core. It is shown that very good accuracy is achieved with the 33 group

homogenized 2D/1D cross sections, both in nominal and voided situations. It is also proven that

high order angular information must absolutely by stored in the effective cross sections.

The algorithm presented in this paper is subject to two main sources of errors that should

be commented. The first one is the flat flux approximation that is used to compute transverse

leakage and homogenize 2D cross sections. If consequences of this assumption are likely to be

limited in SFRs where neutrons have large mean free paths, it should be used with caution for

other applications such as PWR calculations.

The second source of error is the fix-up used for negative sources. Because it replaces physical

leakage by empirical ones and even neglects them in sub-critical layers, it breaks the neutronics

balance in 2D calculations. Further work shall investigate quantitatively the impact of this ap-

proximation on effective cross sections to state whether it should be mitigated or not (for instance

with a transverse leakage splitting technique).

Finally, undergoing work tends at confirming that the 2D/1D algorithm produces accurate

effective cross sections for realistic industrial applications i.e. full core calculations with radial

reflector, control rods. . . As for reactor cycle calculations, the algorithm provides a natural way to

parametrize cross sections with realistic local burn-ups: the 3D fuel assembly power (thermohy-

draulics data) can be used to normalize 1D fluxes and run the isotopic depletion calculations for

each axial evolving layer. Future work shall also investigate this possibility.

21



ACKNOWLEDGMENTS

The authors acknowledge the CEA of Cadarache for funding this work and AREVA and

EDF for their long term support. They also thank the APOLLO3 R© development team for their

effort in developing the code. One of the authors (B.F.) would like to address many thanks to S.

Santandrea and E. Masiello for their great help while developing the methods presented in this

paper.

22



REFERENCES

[1] R. Sanchez, “Prospects in deterministic three-dimensional whole-core transport calcula-

tions,” Nuclear Engineering and Technology, 44, 2, 113 (2012).

[2] B. Faure, P. Archier, J.-F. Vidal, J. M. Palau, and L. Buiron, “Neutronic calculation

of an axially heterogeneous ASTRID fuel assembly with APOLLO3 R©: Analysis of biases and

foreseen improvements,” Annals of Nuclear Energy, 115, 88 (2018).

[3] S. Santandrea, L. Graziano, and D. Sciannandrone, “Accelerated polynomial axial

expansions for full 3D neutron transport MOC in the APOLLO3 code system as applied to

the ASTRID fast breeder reactor,” Annals of Nuclear Energy, 113, 194 (2018).

[4] N. Z. Cho, G. S. Lee, and C. J. Park, “A fusion technique of 2D/1D methods for three-

dimensional whole-core transport calculations,” Proc. Korean Nuclear Society (2002).

[5] D. Schneider, F. Dolci, F. Gabriel, J. Palau, M. Guillo, and B. Pothet,

“APOLLO3: CEA/DEN deterministic multi-purpose code for reactor physics analysis,” Proc.

Int. Conf. PHYSOR 2016 - Unifying Theory and Experiments in the 21st Century, American

Nuclear Society, Sun Valley, Idaho, United States (2016).

[6] J. Vidal, P. Archier, A. Calloo, P. Jacquet, J. Tommasi, and R. Le Tellier, “An

improved energy-collapsing method for core-reflector modelization in SFR core calculations

using the PARIS platform,” PHYSOR 2012 - Advances in Reactor Physics - Linking Research,

Industry and Education, American Nuclear Society (2012).

[7] R. Sanchez, “Assembly homogenization techniques for core calculations,” Progress in Nu-

clear Energy, 51, 1, 14 (2009).
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