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Abstract 

 

The development of Generation IV sodium-cooled fast reactors (SFR) is currently studied by several countries. These new 

type of reactors are intended to use new types of UO2-PuO2 nuclear fuels. In order to produce them, new innovative liquid 

routes are investigated. Among these liquid route processes, some involve at first the preparation of high solid content water-

based suspensions. This key step needs to be investigated in order to obtain highly and easily processable suspensions, 

featuring optimal viscosity and dispersion state. The structures and properties for all intermediate and final products involved 

in such ceramic manufacturing processes are heavily affected by these suspension characteristics. Therefore, they are critical 

to ensure a compliant final product (i.e. fuel pellets) with the required density, homogeneity, mechanical strength and absence 

of defects. In this scope, preparation process of such suspensions was developed by the use of UO2 and PuO2 surrogating (i.e. 

mimicking) powders, TiO2 and Y2O3 respectively.  

 

 

 

1. Introduction / Objectives 

 

 The current manufacturing of UO2-PuO2 MOX fuel pellets is carried out by a dry route process [1], through 

steps involving fine powders (grinding, mixing and pressing). In order to limit dust retention in glove boxes and thus to 

decrease workers dose rates, new liquid routes are investigated. These new processes are also expected to grant a pellet 

microstructure containing less defects (cracks, voids) as well as a more homogenous U-Pu distribution in the final pellets 

compared to the dry process.  

 The key step of these liquid route processes is the preparation of a stable and well-dispersed aqueous powder 

suspension [2] (in the present case UO2 and PuO2 powders), in order to have a charged, yet fluid and settling-resistant 

suspension. From these suspensions, two liquid routes for pellet shaping are considered. The first one is the spray-freeze 

drying [3] of the suspension followed by a granules pressing step and the second one consists in slip casting the suspension 

into porous molds [4]. The research work presented in this paper is focused on the preparation of the powder suspensions, 

mainly through the study of their rheological and electrokinetic (i. e. particle surface charge) properties [5, 6, 7]. Indeed, 

these suspension characteristics have a deep influence on the structures and properties of all intermediate products 

(granulated powders and green pellets) and final products (sintered pellets) involved in such ceramic manufacturing processes 

[8-11]. 

 

In the colloidal processing of ceramic powders, it is essential that the powder particles are completely dispersed so 

that neither agglomerates nor aggregates form [12]. It is these aggregates that give rise to flaws in the final sintered product, 

causing reductions in strength and reliability [13]. These aggregates form in submicron powders due to the attractive Van der 

Waals forces. Traditionally, in colloidal processing those attractive forces can be countered by a greater repulsive force 

separating the particles from one another. This can be achieved in two ways: either i) by the addition of electric charges at the 

particles surface so that they repel one another - termed electrostatic stabilization -, ii) by the addition of a polymeric 

molecule, which when adsorbed onto the powder surface prevents the particles from physically coming close enough for the 

attractive force to cause flocculation; this is termed steric stabilization. A combination of these two effects is termed 

electrosteric stabilization and is the probable stabilization mechanism when polyelectrolytes are adsorbed onto the particles 

[14].  

It is essential to know how much dispersant to add to each system for process optimization purposes (suspension 

flowability and green product debinding step) as well as to avoid problems associated with unadsorbed dispersant in the 

suspension, i.e. compression of the double layer as a polyelectrolyte acts as just like an electrolyte.  

 

 For easier handling and processing during the investigation, experiments were made with surrogate powders, i.e. 

non-radioactive powders which have some physicochemical properties similar to those of the radioactive powders UO2 and 

PuO2. To select each surrogating powder, properties considered are the ones which are relevant of the investigated process or 

application. In the present case, both considered processes (spray-freeze-drying and slip casting) imply powders suspended in 

aqueous media at high concentrations. Thus, the UO2 and PuO2 powders properties to mimic are the following: 

 

- the size and morphology of the powder particles, which are related to the suspension rheology, 

- the Point of Zero Charge (PZC) of the materials, which are related to the electrokinetic properties of the particles in 

suspension (i. e. particle surface charge). 
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Thus, according to these criteria, the surrogating powders chosen for this study were TiO2 and Y2O3, selected for their 

suspension properties (Point of Zero Charge and particle morphology) to surrogate UO2 and PuO2, respectively.  

 The aim of the research reported in this paper is to determine how to prepare, from the raw TiO2 and Y2O3 

powders and some organic additives, aqueous TiO2-Y2O3 suspensions that have the appropriate features and characteristics 

for spray-freeze drying or slip casting processes. The suspension desired features are the following: 

 

- a solid content high enough to grant a fast water removal in order to form the green product fast and with an 

optimal porosity, 

- a viscosity low enough to allow pumping, spraying or slip-casting of the suspension, 

- settling resistance (stability) and dispersion to prevent suspension powders sedimentation and thus grant physical 

and chemical homogeneity of the suspension as well as of the subsequent green and final products. 

 

The surrogate powders TiO2 and Y2O3 were studied both separately and mixed together in proportions of 15 at% Y 

(Y/(Y+Ti)). Such proportions were chosen to represent a trade-off between the atomic percent of Pu in the light water reactor 

MOX fuels (3-10 at% Pu) and in the fuels envisaged for Generation IV fast neutron reactors (20-30 at% Pu). 

 

 

2. Experimental section 

 

  

2.1 Analytical devices and techniques 

 

 

 2.1.1 Raw powders characterization devices 

 

Four main features of the raw powders were characterized: 

- Specific surface areas were assessed with BET (Bruauer, Emett, Teller) N2 sorption method with a Micromeritics 

ASAP 2020 surface area analyzer.  

- Densities were measured with a Micromeritics AccuPyc 1340 helium pycnometer.  

- Particle morphologies were determined using a Cambridge Instruments Stereoscan S 260 Scanning Electron 

Microscope (SEM). 

- Particle size distributions were measured with a Horiba LA-950 liquid granulometer. In order to prevent particle 

agglomeration during measurements, suspensions were ultrasonicated for 30 s prior to the measurements. 

Moreover, 0.5 wt% (based on dry powder weight) of Darvan CN dispersant was added to the Y2O3 powder, given 

its low surface charge in suspension (see Fig. 2). TiO2 powder granulometry was measured without any dispersant 

given its rather high negative surface charge (see Fig. 3). 

 

 

 2.1.2 Rheometer 

 

A Rheolab QC rheometer (Anton Paar) equipped with a CC27 cylindrical geometry and thermostated at 20°C, was used to 

assess suspension viscosity. Prior to the measurements, a constant shear rate of 1500 s-1 was applied for 120 s to bring each 

sample to the same rheological past and thus grant measurement reproducibility. Rheology measurements were conducted 

with a ramp of shear rate from 1 to 1500 s-1 imposed to the sample, with 30 s delay between each point to let time for steady 

state to establish. Each experiment of shear rate ramp lasted 10 min, for a total of 20 points acquired per experiment. 

 

Concentrated suspensions for rheological measurements were prepared with various solid contents in the range 25–40 %v. by 

mixing water with dispersant in a flask and then raw powders were added under mechanical stirring. Eventually, enough 

yttria-stabilized zirconia grinding balls (diameters 3/10/15 mm in volume proportions of 70/10/20) were added to outcrop at 

the suspension surface. Hereafter, the suspension was let to roll for 20 hrs on a roller mixer (RM-5, CAT) at 15 rpm. This 

process is known in literature to yield low viscosity suspensions [15, 16]. Finally, suspension was degassed with a Thinky 

ARE-250 (Intertronics) planetary mixing and degassing machine for 3 min at 1100 rpm to remove air bubbles entrapped in 

the suspension. 

 

 

 2.1.3 Acoustophorometer  

 

Zeta potential measurements were conducted as a function of the pH on the raw materials dispersed at 1.25 %v. in deionized 

water with an ESA analyser (AcoustoSizer II S flow through system, Colloidal Dynamics). The apparatus includes sensors 

for measuring pH, ionic conductivity, and temperature. The zeta potential was obtained from the ESA voltage data treated 

with the AcoustoSizer II operation software by using the Smoluchowski relationship. This relationship is relevant when the 

thickness of the electrical double layer is small compared to the particle radius [5, 17]. Experimental data proved this 

hypothesis to be verified in the present work. Zeta potential measurements at different pH were made with the automated 

AcoustoSizer II pH titration system using 1.0 mol/L sodium hydroxide or 1.0 mol/L hydrochloric acid solutions.  The starting 

pH was the natural pH of the suspension (represented by hollow dots on titration curves) before any acid or base addition. pH 

titrations were made starting from the suspension natural pH to acid or basic pH by adding either hydrochloric acid or sodium 

hydroxide, respectively. All zeta potential measurements were performed with 10-2 mol/L sodium chloride as background 
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electrolyte to keep the ionic strength constant through the whole investigated pH range (3-12). However, pH titrations 

implying Y2O3 powder were restricted to pH range 7-12 due to Y2O3 dissolution occurring below pH 6 [18, 19]. 

All suspensions for acoustophorometric measurements were prepared with 1.25 %v solid content. First, distilled water and 

dispersant (if any) were mixed under magnetic stirring for 60 s, then oxide powders were added while stirring for further 5 

min. Hereafter the suspension was ultrasonicated with an ultrasonic probe (Vibra-cell 75041, BioBlock Scientific) for 2 min 

to break particle agglomerates. Finally, the suspension was let for 15 min on a roller mixer (CAT, RM-5, Germany) operating 

at 15 rpm. 

 

 

 2.1.4 Sedimentation tests 

 

Sedimentation experiments were conducted for pure TiO2 and Y2O3 diluted suspensions and mixed TiO2-Y2O3 diluted 

suspensions.  

The diluted suspensions were prepared following the protocol presented in part 2.1.3. Immediately after preparation, the 

suspensions were allowed to settle in closed tubes for a total of 28 days. In such conditions, a clear supernatant was observed 

and the height of sediment was measured accurately as a function of time. 

 

 

 

2.2 Raw chemicals 

 

Darvan CN (Vanderbilt Minerals LLC) was used as a dispersant, in the form of a ready-to-use 25 wt% aqueous solution. This 

polymer is an ammonium polymethyl methacrylate with an average molar weight of 15,000 g/mol. 

Dispersant concentration will be expressed in wt% of the dry powder present in the considered suspension. 

Sodium hydroxide and hydrochloric acid were purchased from Sigma-Aldrich in the form of 1.0 mol/L solutions and used as-

received. 

 

3. Results and discussion 

 

 

3.1 Raw powders characteristics 

 

The main features of the surrogate and active powders are compared and summarized in Table 1. 

 

 

3.1.1 TiO2 powder characteristics 

 

Custom-made titanium dioxide (Marion Technologies, anatase form, purity 99.9 %) has an average particle size of 100 nm. 

Size distribution of the TiO2 powder (Fig. 1) shows a bimodal distribution with two populations at 70 nm and 0.8 µm. A 

specific surface area of 12 m2/g and a powder density of 3.78 g/mL were assessed. The TiO2 particles are aggregates made of 

nanometer-sized spheres (depicted in Table 1).  

 

 

 

3.1.2 Y2O3 powder characteristics 

 

Yttrium oxide powder (“Grade C” powder, purity 99.95%) was purchased from H.C. Starck. Y2O3 powder showed an 

average particle size of 1.8 µm and a bimodal size distribution (Fig. 1) with populations at 250 nm and 1-7 µm. Moreover, a 

specific surface area of 14 m2/g and a density of 5.01 g/mL were measured for the Y2O3 powder. Its particle morphology 

(depicted in Table 1) was proven to be plate-shaped. 
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Fig. 1: Size distribution obtained by liquid granulometry of the Y2O3 (with 0.5 wt% Darvan CN dispersant) and TiO2 (without dispersant) 

powders. 

 

As one can see in Table 1, the TiO2 and Y2O3 surrogate powders have most of their suspension-relevant characteristics (i. e. 

PZC, particle morphology and size distribution) close to the radioactive powders UO2 and PuO2, respectively. However, the 

surrogate powders densities are 2 to 3 times lower than the active powders densities. The powder density obviously plays an 

important role in particle settling rate (and thus suspension stability) when suspended in liquid media. Indeed, UO2 and PuO2 

powders are very dense and it was practically impossible to find commercial surrogate powders with such high densities, 

while having their other main suspension-relevant properties (i. e. PZC, particle morphology and size distribution) close to 

the ones of the radioactive powders. Thus, TiO2 and Y2O3 powders appeared to be the best trade-off between all the 

suspension-relevant characteristics of the radioactive powders to surrogate. 
  

 

 
 

Table 1: Main characteristics of the active powders UO2, PuO2 and their respective surrogating powders TiO2 and Y2O3. 

 

 

 

3.2 Powder treatments 

 

 3.2.1 Y2O3 powder treatment 
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In diluted suspension (1.25 %v solid content), the raw Y2O3 powder displayed an unusual PZC value of 12 (Fig. 2) rather 

than the value of 9 encountered in the literature [19, 20]. Thus, a washing treatment was applied to the raw Y2O3 powder, 

aiming to modify its PZC. Powder washing was performed by suspending Y2O3 powder in distilled water at a solid 

concentration of 150 g/L and stirring the suspension for 18 hrs. Eventually, the suspension was centrifuged with a Thermo-

Fisher IEC 40 centrifuge. The resulting cake was separated from the supernatant and dried at 120°C for 48 hrs to constant 

mass. The effects of the powder treatment on the Y2O3 diluted suspension (1.25 %v solid content) zeta potential are displayed 

in Fig. 2 and compared with the raw Y2O3 powder zeta potential. The washing process was able to decrease the Y2O3 PZC 

from 12 to 8.7. The suspension natural pH was also decreased from 10 to 7.5 by the washing process. All characteristics 

displayed in part 3.1.2 about the Y2O3 powder were not modified by the washing process. 

 

 
 

Fig. 2: Zeta potential of the as-received and washed Y2O3 powder vs. pH (hollow dots correspond to natural pH). 

 

 

 3.2.2 TiO2 powder treatment 

 

In diluted suspension (1.25 %v solid content), the raw TiO2 powder retains a high negative surface charge on the whole pH 

range investigated (3-12) and does not exhibit any PZC on the pH range 3-12. This result is quite surprising because an 

average PZC of 5-6 is generally given in the literature for most of the TiO2 powders of any crystalline form [12, 21, 20]. 

However, some authors highlighted that the TiO2 PZC is very sensitive to the powder synthesis process and to the presence 

of impurities [22, 24, 28]. Thus, PZC of TiO2 powders encountered in literature may vary widely [22, 23, 24]. Suttiponparnit 

et al. [22] have also proven that primary particle size has a strong influence on TiO2 PZC; the PZC decreases when particle 

size increases, due to the change of the surface/volume ratio. A number of authors [25, 26, 27] even reported only negative 

electrokinetic potentials for TiO2 powders. This would suggest the PZC of TiO2 being positioned at very low pH values.  
Washing or calcination treatments had only minor effects on the TiO2 electrokinetic behavior, reducing its negative surface 

charge, but not enough to let a PZC appear. The surface charge reduction is believed to be caused by the removal of adsorbed 

species by the washing treatment, or the removal of surface hydroxyl groups in the case of the calcination treatments, as 

observed by Cornell et al. [28]. 

Taking these results into account, further experiments conducted in the scope of this paper were made with: 

 

- the washed Y2O3 powder, to ensure for the Y2O3 surrogate powder a PZC of ~ 9 (close to the PZC of PuO2), 

- the as-received (raw) TiO2 powder because washing or calcination had no effect on its PZC value. 

 

 

3.3 Dispersion of pure TiO2 or Y2O3 suspensions 

 

Optimal contents of Darvan CN dispersant were assessed both by acoustophoresis (Fig. 3) and rheology experiments (Fig. 4) 

on pure TiO2 or Y2O3 suspensions. 

 

 

 3.3.1 Pure suspensions electrokinetic properties  

 

Darvan CN has almost no effect on TiO2 particles surface charge, which remains below – 30 mV on the whole pH 

range 3-12, regardless the amount of Darvan CN added (Fig. 3). This is due to the already highly negative-charged particle 

surface, where adding more negative charges with polyelectrolyte adsorption hardly modify the particles zeta potential. 

Adding high amounts (1%) of Darvan CN even slightly worsens the suspension dispersion as the free (unadsorbed) 

polyelectrolyte induces a compression of the electrical double layer and thus decreases the zeta potential.  
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Addition of a small amount (0.1 %) of Darvan CN to the Y2O3 suspensions first shifted the positive zeta potential to 

slightly negative values as it adsorbs on the positive-charged particle surface (Fig. 3). Adding more Darvan CN (0.1 – 0.3 %) 

makes the zeta potential more negative. Further addition of dispersant increases the zeta potential further until a plateau 

region was reached where addition of more dispersant does not affect the zeta potential (0.3 – 0.5 %). Dispersant addition 

beyond this plateau (> 0.5 %) slightly decreases the zeta potential as particle surface is now saturated with adsorbed polymer. 

The increasing free (unadsorbed) polymer concentration causes compression of the particle electrical double layer and 

reduces the zeta potential. Hence, the minimum amount of dispersant required to stabilize the Y2O3 powder is about 0.3 wt% 

(in diluted media). However, the PZC of the Y2O3 suspension containing 0.5 wt% Darvan CN is lower (i. e. more shifted to 

lower pH values) than the one of the Y2O3 suspension containing 0.3 wt% Darvan CN, indicating that the former suspension 

is more dispersed than the latter. Thus, the best amount of Darvan CN to stabilize Y2O3 suspensions is stated to be 0.5 wt%. 

The highly negative plateau value of the obtained zeta potential (- 40 mV) gives an indication of the good suitability of the 

Darvan CN to stabilize the Y2O3 powder.  

The presence of Darvan CN in suspensions tends to increase the pH from 6-7 (natural pH) to about 9-10. Acid-base 

properties of Darvan CN ionic groups (carboxylates and ammonium ions) act like a pH buffer, shifting the suspensions pH to 

values close to the NH4
+/NH3 pKa. At pH 9-10, all carboxylate groups are dissociated (the pKa of these groups is about 5 

[29]), so the polymer chains are fully negatively charged.  

Adsorption mechanisms of polyelectrolytes like Darvan CN and other polycarboxylates have already been extensively 

investigated in the literature, especially by Wisniewska and Chibowski [29, 30, 31]. It occurs mainly through hydrogen bonds 

between particle surface hydroxyl groups (-OH) and polymer carboxylate groups (-CO2H / -CO2
-). These hydrogen bonds can 

be formed not only by non-dissociated polymer carboxylate groups, but also by dissociated ones, so that adsorption of 

polycarboxylates on the metal oxide surface undergoes even under the conditions of adsorbate–adsorbent repulsion [32]. At 

high pH (pH > pHpzc), the polymer carboxylate groups are fully dissociated (-CO2
- form) and the particle surface is also 

negatively charged, which results in a highly negative overall surface charge. At low pH (pH < pHpzc), the particle surface is 

positively charged and the polymer carboxylate groups are more or less negatively ionized, depending on the pH and 

carboxylate pKa (~ 5) relative values. So the overall particle charge is weakly positive or negative depending on the pH 

closeness to the carboxylate pKa. 

 

 
Fig. 3: Zeta potential of 1.25 %v TiO2 and Y2O3 suspensions vs. pH at different Darvan CN concentrations (hollow dots correspond to 

natural pH). 

 

 

 

 3.3.2 Pure suspensions rheological properties 
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about one order of magnitude), especially at low shear rates. This huge difference is believed to arise from three different 

factors: 
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on each other when the suspension is sheared, hindering their movement and thus inducing shear resistance, 

according to Heine et al. [39]. 

 

- The particle size distribution: the Y2O3 particle size distribution is much broader than the TiO2 particle size 

distribution (see Fig. 1). Lowering viscosity with broadening particle size distribution is a phenomenon already 

widely known and studied in the literature by authors such as Greenwood et al. [16] or Luckham et al. [40]. 

 

- The nanoparticle fraction: TiO2 powder contains an important proportion of nanosized (< 100 nm) particles, while 

Y2O3 powder does not (see Fig. 1). Nanosized powders are known in the literature to give (at equal solid content) 

more viscous suspensions compared to micron-sized powders [41, 42, 43]. 

 

For both TiO2 and Y2O3 powders, the results presented in Fig. 4 indicate that the optimal amount of Darvan CN dispersant is 

around 0.5 wt% of the dry powder to obtain the lowest suspension viscosity. This could be attributed to enhancement of the 

zeta potentials of the powders due to the adsorption of dispersant macromolecules on the particles surface. Such a high zeta 

potential induced by dispersant adsorption prevent the particles from flocculating and thus forming three dimensional particle 

networks in the suspension which are responsible for the suspension viscosity increase at low shear rate [37, 44]. In addition 

to simply prevent particle flocculation and agglomeration in the suspension, the layer of dispersant macromolecules absorbed 

on the particles surface also tends to facilitate particles relative movements when close to each other by reducing friction 

forces and thus decreasing the suspension viscosity a high shear rate, as explained by Wang et al. [44]. For dispersant 

amounts higher than 0.5 wt%, the particles surface are fully covered with absorbed dispersant, so the extra amount of 

dispersant remains unadsorbed (free) in the solvent, causing the suspension viscosity to increase slightly [44]. 

 

 

 
Fig. 4: Viscosity of 25 %v TiO2 (a) and 30 %v Y2O3 (b) suspension vs. Darvan CN wt% at different shear rates. 
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Mixed TiO2-Y2O3 suspensions were prepared to assess the yttrium atomic ratio (Y/(Ti + Y)) effect on the suspension 

properties. Acoustophoresis revealed that the yttrium atomic percentage has a great influence on the suspension zeta potential 

(Fig. 5), even in small proportions (5-15 at% Y). This may be due to the Y2O3 particles platelet shape. Such morphology may 

grant the Y2O3 particles an hydrodynamicity different from that of the spherical particles, and/or may induce face-edge 

surface charge heterogeneities, as observed by several authors for various types of solid particles [36, 45, 46]. This 

heterogeneous charge repartition at the particles surface causes the Y2O3 particles to be overrepresented in the computation of 

the TiO2-Y2O3 suspension overall zeta potential. Below pH 9, TiO2 and Y2O3 particles have opposed surface charges. Thus, 

particle heterocoagulation [47] is highly likely to occur in this pH domain. This statement is confirmed by the fact that the 

overall zeta potential of TiO2-Y2O3 mixed suspensions are quite close to zero below pH 9. Above pH 9, the curve overshoots 

between the Y2O3 and mixed TiO2-Y2O3 (10 and 15 at% Y) suspensions are believed to be due to measurement incertitude, 

which could be quite high for particles with low surface charge. 

 

 
Fig. 5: Zeta potential of 1.25 %v TiO2-Y2O3 suspensions of various Ti-Y atomic proportions vs. pH (hollow dots correspond to natural pH). 

 

Sedimentation tests confirmed the role of the Y-Ti proportion on the stability of TiO2-Y2O3 suspensions (see table 2 and Fig. 

6). The higher the yttrium proportion, the higher the sedimentation rate. Fig. 6 also clearly indicates that the TiO2-Y2O3 

suspensions with 10 and 15 at% Y are significantly flocculated after 24 hrs of rest, while TiO2-only and Y2O3-only 

suspensions remain well dispersed. This observation can be related to the suspensions zeta potentials. The ones with high zeta 

potentials (in absolute value) remain dispersed, while those with low zeta potentials (in absolute value) are highly 

flocculated. That phenomenon is caused by heterocoagulation [47] of TiO2 and Y2O3 particles, i.e. flocculation induced by 

electrostatic attraction of these opposite-charged particles. In brief, TiO2-Y2O3 suspensions (containing Y in proportions 5 to 

15 at%) , when prepared without any dispersant, are low viscous when sheared but flocculate and settle quickly when laid to 

rest. 

To dig this way further, a TiO2-Y2O3 (15 at% Y) diluted suspension was observed by environmental SEM (under 700 Pa 

water vapor pressure, i.e. 98 % relative humidity). The resulting SEM micrographs (Fig. 7) shown a good affinity and close 

contact between TiO2 nanospheres and Y2O3 platelets, while no Y2O3 particles agglomerate was noticed. These observations 

correlate the above statement made about the strength of the TiO2-Y2O3 particles attraction from which heterocoagulation 

arises.  

 

 
 

Fig. 6: Visual aspect of TiO2-Y2O3 suspensions (1.25 %v solid content) with various Y proportions after 24 hrs sedimentation. Tube numbers 

refer to table 2. 
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Table 2: Characteristics of TiO2-Y2O3 suspensions (1.25 %v solid content) with various Y proportions after 24 hrs sedimentation, depicted in 
Fig. 6. 

 

 

 

   
 

Fig. 7: Environmental SEM micrographs of a TiO2-Y2O3 diluted suspension. 

 

 

 

3.3.2 Modeling of the particle-particle interaction 

 

Interactions between particles in suspension were modeled using the DLVO (Derjaguin, Landau, Verwey, Overbeek) 

particle-interaction and Hamaker theories [48, 49, 50, 56]. Interaction energy between two particles was calculated using two 

contributions. Equation (1) refers to the electrostatic repulsive energy. Equations in Tab. 3 refer to the attractive (van der 

Walls) energy contributions, for different bodies geometries. When needed, hydrodynamic forces [35] (occurring when 

suspension is sheared) were also taken into account with equation (2). TiO2 particles were modeled by spheres of 100 nm 

diameter and Y2O3 particles were modeled by 1 µm square plates. Surface charges were set at – 45 and +19 mV for TiO2 and 

Y2O3 particles respectively. The ionic strength was set at 10-2 mol/L in agreement with the suspension preparation protocol 

detailed in part 2.1.3. 

  

 

E repulsion = 
              

     
 

     

       
   

      

      
                     (1) 

 

Bodies geometry E attraction 

Two flat surfaces (per 

unit area) 

  

     
 

Sphere of diameter a 

near a flat surface 

   

   
 

Two spheres of 

diameters a1 and a2 

  

   
  

    

     
  

     
Table 3: Van der Walls attractive energy equations for three different bodies geometries 

 

E hydro                          (2) 

 

In the expressions above:   is the water dielectric constant (7.09 x 10-10 C2/J.m at 20°C),   is the particle diameter for a 

sphere/flat surface interaction,      are the particles diameters for a sphere/sphere interaction,    is the particle zeta potential, 

  is the inverse Debye length (calculated with equation (3), where I is the ionic strength),   is the interparticle distance,   is 

the solvent viscosity (1.0 mPa.s for water),    is the shear rate, and   is the particle Hamaker constant. TiO2 and Y2O3 

Hamaker constants were set at 5.35 x10-20 J and 3.03 x10-20 J respectively, according to literature values [58]. For TiO2-Y2O3 

particle interaction, the approximation of equation (4) was used to obtain the global Hamaker constant of that interaction 

configuration. 
 

κ (nm-1)   
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A ≈ √(A1A2) (4) 
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The total energy is then calculated by summing the different contributions according to the different situations considered. 

The results of the modeling (Fig. 8) revealed that TiO2-Y2O3 and TiO2-TiO2 interactions are far more likely to happen (lower 

interaction energy) than Y2O3-Y2O3 interactions. It is also to notice that suspension shear strengthens the repulsion between 

particles at ranges above 20 nm but the previous trend and conclusions remain the same. 

 

These preferential particle interactions highlighted by the modeling correlate the zeta potentials measured for the TiO2-Y2O3 

suspensions (Fig. 5). Indeed, zeta potentials measured for TiO2-Y2O3 suspensions were closer to Y2O3 zeta than TiO2 zeta, in 

spite of Y2O3 being the minor component (15 at% Y). In other words, the fact that TiO2-Y2O3 interactions are stronger than 

Y2O3-Y2O3 interactions explains why Y2O3 is over represented in TiO2-Y2O3 suspensions zeta potentials measurements. The 

preferential particle interactions highlighted by the modeling are also in good agreement with the SEM observation of an 

heterocoagulated TiO2-Y2O3 suspension (Figure 7), where a good affinity and close contact between TiO2 nanospheres and 

Y2O3 platelets has been noticed, while no Y2O3 particles agglomerate was noticed. 

Another particle interaction modeling was also made considering the presence of 0.5 wt% Darvan CN (an ammonium 

polymethacrylate dispersant, see part 3.3) in the suspension (by setting the zeta potentials at – 45 mV for both TiO2 and Y2O3 

particles, see part 3.3.1). The results were almost identical to those obtained in the absence of dispersant reported on Fig. 8. 
 

 
 

Fig. 8: Modeled interparticle interaction energy at rest (solid lines) and under 1000 s-1 shear (dashed lines) vs. interparticle distance.  

 

 

 

3.3.3 Dispersion of TiO2-Y2O3 mixed suspension 

 

Optimal content of Darvan CN dispersant was assessed by acoustophoresis (Fig. 9) and sedimentation tests (Fig. 10 and 

Table 4) for TiO2-Y2O3 (15 at% Y) suspensions. 

Addition of a small amount (0.1 %) of Darvan CN to the suspension first shifted the positive zeta potential to slightly 

negative values. Adding more Darvan CN (0.1 - 0.3 %) makes the zeta potential more negative. A plateau region was reached 

(0.3 %) where addition of more dispersant does not affect the zeta potential any longer. Dispersant addition beyond this 

plateau (0.3 – 0.7 %) hardly alters the zeta potential. These observations were visually confirmed by sedimentation tests (Fig. 

10 and Table 3). Suspensions containing 0.3 % Darvan CN or more remained dispersed after 48 hrs sedimentation, due to the 

highly negative zeta potential induced by Darvan CN. Suspensions with 0.1 % Darvan CN or less were not enough dispersed 

(low zeta potential in absolute value) and thus exhibited a highly flocculated state after 48 hrs of sedimentation. 
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Fig. 9: Zeta potential of 1.25 %v TiO2-Y2O3 (15 at% Y) suspensions vs. pH at different Darvan CN concentrations (hollow dots correspond 

to natural pH). 

 

 

 
 

Fig. 10: Visual aspect of TiO2-Y2O3 suspensions (1.25 %v solid content, 15 at% Y) with various Darvan CN contents after 48 hrs 

sedimentation. Tube numbers refer to table 4. 
 

 

 
 

Table 4: Characteristics of TiO2-Y2O3 suspensions (1.25 %v solid content) with various Darvan CN contents after 48 hrs sedimentation, 

depicted in Fig. 10. 

 

 

TiO2-Y2O3 suspensions of various Ti-Y proportions were prepared in the presence of 0.5 wt% Darvan CN (Fig. 11). The 

progressive evolution of the zeta potential profile from a TiO2-only suspension to an Y2O3-only suspension can clearly be 

noticed, without any curve overshoot. It was not the case previously without Darvan CN (Fig. 5). This difference proves that 

in the presence of 0.5 wt% of Darvan CN, the heterocoagulation phenomenon does not occur any longer. Indeed, at a 

concentration of 0.5 wt%, the Darvan CN is able to give to all particles a surface charge negative enough to repel each other 

efficiently and avoid heterocoagulation. 
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Fig. 11: Zeta potential of 1.25 %v TiO2-Y2O3 suspensions of various Ti-Y atomic proportions (with 0.5 wt% Darvan CN) vs. pH (hollow 

dots correspond to natural pH). 

 

 

The yttrium content ratio has also a great influence on TiO2-Y2O3 suspension rheology (Fig. 12). Indeed, suspensions 

containing both TiO2 and Y2O3 powders are significantly less viscous than suspensions made from the TiO2 powder only. 

This synergistic effect also allowed preparation of TiO2-Y2O3 (15 at% Y) suspensions with higher solid contents (up to 40 

v%) than TiO2-only or Y2O3-only suspensions (up to 25 and 30 v%, respectively). These solid loadings were the highest 

loadings achievable (with the suspensions preparation process detailed in 2.1.2) yielding suspensions that were fluid and 

pourable enough to be analyzed with the rheometer. Above these solid loadings, the obtained suspension was a paste that 

could not be easily poured and analyzed with the aforementioned rheometer. 

The above mentioned phenomenon of an increase in the maximal solid loading or TiO2-Y2O3 suspensions is believed to arise 

from two main factors. Given the TiO2 and Y2O3 particle size distributions (Fig. 1), the size distribution of a 15 %at Y TiO2-

Y2O3 mix is broader than those of each pure powder. Thus, the small particles are able to fit in the spaces between the big 

particles, and so the particle packing efficiency is better. The maximum packing fraction increases (Fig. 13) for the same 

reason. The maximum packing fraction was calculated with the Krieger-Dougherty method [51], which is widely used in the 

literature to study suspensions of solid particles [40, 52, 53]. This increase of the maximum packing fraction leads to a 

decrease in viscosity of the suspension, as it was observed and explained by several authors [40, 52, 53]. Particle shape 

differences could also explain the viscosity reduction. The edge/face charge heterogeneities born by particles of certain 

peculiar shapes (especially platelet-shaped particles) could grant them the ability to disrupt the three dimensional networks 

formed by other particles by agglomeration, and thus reduce the viscosity of suspensions containing such type of objects. 

This phenomenon was observed for kaolinite-halloysite [54] and kaolinite-mica [55] suspensions. 

 

 

 
Fig. 12: Viscosity of TiO2-Y2O3 suspensions with various Y proportions (with 0.5 % Darvan CN, total solid content in brackets) vs. shear 

rate. 
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Fig. 13: TiO2, Y2O3 and TiO2-Y2O3 (15 at% Y) suspensions (with 0.5 wt% Darvan CN) maximal volume fractions determined by the 

Krieger-Dougherty plotting method. 

 

 

The rheology of the TiO2-Y2O3 suspension (15 at% Y) was also assessed to study the effects of Darvan CN on the viscosity 

(Fig. 14). It appears that the optimal concentration of this dispersant is around 0.5 wt% to have the lowest possible viscosity. 

This result is consistent with those obtained previously on the optimal Darvan CN concentration of the single powder 

suspensions (Fig. 4), also assessed at 0.5 wt% Darvan CN for both powders. 

 

 
Fig. 14: Viscosity of TiO2-Y2O3 suspensions (25 %v solid content, 15 at% Y) with various Darvan CN concentrations vs. shear rate. 

 

 

 

 

4. Conclusion and perspectives 
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processability.  
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behavior is believed to arise mainly from the broadening of the particle size distribution when TiO2 and Y2O3 are used 

together in suspension. 

It has also been highlighted that surrogate powders key features like particle morphology, size distribution and surface charge 

have important consequences on the main suspension properties like viscosity, maximal packing fraction and settling 

resistance. In the present case, the key features of the TiO2 and Y2O3 surrogating powders were proven to be close to the 

desired ones (i.e. those of UO2 and PuO2 powders, respectively) with the sole exception of the TiO2 powder PZC which was 

surprisingly quite different from that of UO2. However, the use of a dispersant (Darvan CN in the present case) tends to 

minimize this difference by giving all powders the same strong negative surface charge. 

The results from this work will be used as a basis to investigate suspension shaping processes, like slip-casting or spray-

freeze-drying to manufacture fuel pellets. The outcome of these investigations will be published in a future paper. 
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