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Abstract 26 

The radionuclide 129I is a long-lived fission product that decays to 129Xe by beta-particle 27 

emission. It is an important tracer in geological and biological processes and is 28 

considered one of the most important radionuclides to be assessed in studies of global 29 
circulation. It is also one of the major contributors to radiation dose from nuclear waste 30 
in a deep geological repository. Its half-life has been obtained by a combination of 31 
activity and mass concentration measurements in the frame of a cooperation of 6 32 

European metrology institutes. The value obtained for the half-life of 129I is 16.14 (12) × 33 
106 a, in good agreement with recommended data but with a significant improvement in 34 
the uncertainty. 35 
 36 
 37 
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1 Introduction 1 

 2 
The radionuclide 129I, a long-lived fission product, decays to 129Xe via two beta 3 
branches, one containing 99.5% of all disintegrations to an excited level at 39.578 keV 4 

in the daughter nuclide and a second with 0.5% to the ground level. The gamma 5 
transition depopulating the excited level is converted, with a total conversion coefficient 6 

T=12.41(13) [1]. Its decay scheme is presented in Figure 1. Small amounts of this 7 
nuclide are produced in nature, but natural levels have been altered in the past by 8 
nuclear weapons testing that released large amounts into the atmosphere. At present, it 9 
is mainly produced by the nuclear fission of 235U and 239Pu and released as a 10 

consequence of the operation of nuclear power plants and fuel reprocessing centres [2].  11 
 12 
Iodine-129 is an important tracer in geological and biological processes and is 13 
considered to be one of the most important radionuclides to be assessed in studies of 14 
global circulation [3]. It is also one of the major contributors to the radiation dose from 15 

nuclear waste in a deep geological repository. Its transmutation has been suggested as a 16 
possible method to destroy it, as its immobilization in repositories poses difficult 17 
problems [4]. 18 

  19 

FIGURE 1 20 
 21 
The recommended value1 for the half-life of 129I is 16.1 (7) × 106 a. It was obtained by 22 

Chechev and Sergeev in 2004 [1] as the weighted mean of a set of 4 results with a 23 
significant dispersion (from 1.56 (6) × 107 a to 1.97 (14) × 107 a). For this reason, it was 24 

selected for half-life determination in the frame of the coordinated research project 25 
“ENV09 /Metrology for Radioactive Waste Management” of the European Metrology 26 
Research Programme [5] with the aim of reducing its uncertainty. 27 

  28 
 29 

Given its long half-life, the determination by following the decay rate had to be 30 
discarded and its value has been obtained using the relationship:  31 

 32 

𝑇1/2  =  
ln(2).𝑁

𝐴
         (1) 33 

 34 

where A is the activity and N is the number of atoms in a source of a nuclide whose 35 
half-life is T1/2. For this determination, a combination of measurements of activity and 36 

mass concentrations of the same solution was carried out by the participants. Five 37 
European Metrology laboratories (CIEMAT, CMI, JRC, LNE-LNHB, PTB) performed 38 
activity concentration measurements whereas mass spectrometry measurements were 39 

carried out at CEA-LANIE (Laboratory of Analytical development for isotopic and 40 
elemental analysis) and CIEMAT. 41 

 42 

 43 

2. Material procurement and initial measurements 44 
 45 
The 129I solution used for the comparison, with an approximate massic activity of 30 46 

kBqg-1, was purchased by CIEMAT from CERCA-LEA. Its chemical composition was 47 

                                                           
1 Unless otherwise indicated, uncertainties stated in this work are given as standard 

uncertainties (k=1) 
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NaI-NH4OH-Na2S2O3. Upon reception, the solution was tested at CIEMAT by gamma 1 

spectrometry to assess the purity and was found to be free of detectable radioactive 2 
contaminants. Preliminary mass spectrometry measurements indicated a 127I/129I mass 3 
ratio higher than 5.  4 

 5 
Aliquots of the solution were dispensed into 5 mL penicillin-type vials previously 6 
treated with a carrier solution of similar composition to that of the radioactive solution. 7 
Since the original solution already contained a certain (unknown) amount of 127I, a 8 
possible addition of that isotope coming from lixiviation of the vial wall cannot be a 9 

problem for mass determination, given that it would be included in the 127I/129I 10 
measured isotopic ratio. Furthermore, no difference was found between the isotopic 11 
ratio measured in a sample contained in a vial saturated with the carrier solution (CEA-12 
LANIE) and another contained in a vial not treated in this way (CIEMAT). Therefore, 13 
the incorporation of 127I from the walls can be considered negligible or not detectable by 14 

ICP-MS. 15 

 16 

An amount of 1.5 g of the solution was dispatched to each of the laboratories 17 
participating only in activity measurements: CMI, JRC and PTB; LNE-LNHB received 18 
2 grams of solution, as this laboratory, through other CEA units, was also involved in 19 
mass spectrometry measurements. Given the low energy of the gamma emissions from 20 

this radionuclide, homogeneity tests could not be performed either by ionization 21 
chamber measurements or by gamma-ray spectrometry. In the latter case, differences in 22 

the structure of the vials combined with the gamma-ray attenuation would make the 23 
analysis unreliable. The hypothesis of homogeneity of the material was adopted based 24 
on the fact that all vials were treated before dispensing the material using the same 25 

procedure (vial saturation with a carrier solution) and dispensing was done within a 26 
short period of time. 27 

 28 

 29 

3. Massic activity measurements 30 
 31 
The massic activity of the solution was determined using the methods presented in 32 

Table I. Since there was no previous comparison of massic activity for this nuclide in 33 
the frame of EURAMET or the Consultative Committee for Ionizing Radiation, Section 34 

II: Measurement of radionuclides, CCRI(II), an intercomparison was agreed; after 35 
acceptance it was registered as EURAMET.RI(II)- S6.I-129 Supplementary 36 
Comparison. The technical protocol for the comparison was agreed between partners; it 37 

included the recommendation of using nuclear data from the NUCLEIDE database [1]. 38 
According to it, the half-life value is T1/2 = 16.1 (7) ×106 a. This value was used by all 39 
participants, excluding PTB that used its own reference with T1/2 = 15.7 (5) ×106 a. 40 
Neither the absolute value, nor the difference between both references had significant 41 
influence on the activity measurements. The reference date was established as 1st July 42 

2013, 0:00 UTC. Complete details about the methods used by participating laboratories 43 
as well as detailed uncertainty budgets and inter-comparison results are presented 44 

elsewhere [6]. 45 

  46 
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 1 

 2 
Table I. Participanting laboratories and techniques used for the determination of the massic 3 
activity of the 129I solution 4 
 5 
 Liquid Scintillation 

Counting 
 counting Coincidence counting 

CIEMAT CIEMAT/NIST NaI well detector  

CMI   4- coincidence 

counting with proportional 

counter 

JRC TDCR, 

CIEMAT/NIST 

  

LNE-

LNHB 

TDCR  4- anti-coincidence 

counting with TDCR 

PTB TDCR, 

CIEMAT/NIST 

  

 6 
 7 

 8 
3.1 Impurities 9 
 10 
Radionuclidic impurity assessment was done by gamma-ray spectrometry by all 11 

participants. The nuclide 129I is a fission product and the potential contaminants of 12 
interest are all iodine isotopes. HPGe detectors of various types (n-type coaxial with Be 13 
window, extended-range p-type coaxial with carbon-epoxy window and planar) were 14 

used with good counting efficiency at low energies. No evidence of gamma-ray emitting 15 
contaminants was found in the measurements of any of the participating laboratories. 16 

 17 

Adsorption tests made by JRC reported negligible values. All participants measured the 18 

original solution without dilution. The pycnometer method was adopted for all source 19 
preparations. 20 

  21 
 22 

3.2 Measurements by Liquid Scintillation Counting 23 
 24 
Two LSC-based methods were used to determine the activity per unit mass: The 25 

CIEMAT/NIST method [7, 8] and the Triple to Double Coincidence Ratio method 26 
(TDCR) [9,10]. 27 
 28 

The CIEMAT/NIST efficiency tracing method was used by CIEMAT, JRC and PTB. 29 
All measurements were done using commercial counters with two photomultiplier tubes 30 

(PMT). Tritium activity standards required by the method were from different origin: 31 

CIEMAT used a 3H standard from NIST whereas JRC and PTB used their own 32 

standards. All participants used samples with Ultima Gold as scintillation cocktail, and 33 
some participants used in addition samples with Instagel Plus or Hisafe 3. Samples were 34 
prepared in glass vials. At JRC and PTB, about 1 mL water was added to some of the 35 
samples. Low-level counting options (i.e. guard mode), when available, were 36 
disconnected because photon emission from the source can interact with the guard 37 
detector, thus making the application of this method impossible. Typical counting 38 
efficiencies for 129I samples were higher than 94% in all counters.  39 
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 1 

The TDCR method was applied at JRC, PTB and LNE-LNHB. In all cases, participants 2 
used their custom-built counters with 3 PMTs. Ultima Gold was selected as scintillation 3 
cocktail by PTB and JRC (that also used samples with Instagel Plus). LNE-LNHB 4 

preferred Hionic Fluor. All participants used glass vials. PTB also prepared some 5 
samples with polyethylene (PE) vials. As for CIEMAT/NIST measurements, JRC and 6 
PTB added about 1 mL water to some samples (0.5 mL for PTB to samples in PE vials). 7 
Typical counting efficiencies were also high, in the order of 95%.   8 
 9 

Results for each laboratory and technique are given in Table II and typical uncertainty 10 
budgets from both methods are presented in Table III. Additional details are given in 11 
ref. [6]. 12 
 13 

3.3 Measurements by coincidence and anti-coincidence counting 14 
 15 

Coincidence and anti-coincidence counting was performed at CMI and LNE-LNHB. At 16 

CMI, the 4πβ-γ coincidence counting method was used with a proportional counter and 17 
two gamma-ray detectors. Samples were prepared on Mylar foils with thickness from 18 

350 μgcm-2 to 25 μgcm-2 attached to metallic rings. They were covered by Al foils (2 19 

μgcm-2) on both sides and placed in a pill-box-type 4π proportional counter at 20 
atmospheric pressure in gas-flow mode using methane as counting gas. The 21 

discrimination threshold was set at 0.7 keV. A non-extending dead time of 5.995(5) μs 22 
was used. The gamma channel comprises two NaI crystals with 76.2 mm diameter and a 23 
height of 76.2 mm each. Non-extending dead times of 6.031(5) μs and 6.113(5) μs, 24 

respectively were used in the NaI detectors. In order to implement the efficiency 25 
extrapolation procedure, the counting efficiency was varied by adding Al foils to the 26 

sources. The highest counting efficiency reached in the proportional counter was 88 %. 27 
 28 
The LNHB applied the 4πβ-γ anti-coincidence counting using liquid scintillation 29 

sources prepared with Hionic Fluor. A TDCR counter based on 3 PMTs was used in the 30 

channel and a HPGe semiconductor detector in thechannel. The extrapolation 31 
method was carried out by PMT defocusing. The maximum detection efficiency in the 32 

-channel was 94%. Dead time control was carried out by a live-time technique based 33 
on home-made modules.  34 
 35 

Results and uncertainties from both laboratories are presented in Tables II and III 36 
respectively. 37 

 38 
 39 

3.4 Measurements by 4 gamma counting 40 
 41 
This method, also known as integral gamma counting was used only at CIEMAT. The 42 

basis of the method has been described by Winkler and Pavlik [11]. Its application to 43 
the standardization of some nuclides with complex decay schemes is described by 44 
García-Toraño et al. [12], and an overview of uncertainty calculation has been discussed 45 

by Thiam et al. [13]. The detection efficiency for this specific nuclide was close to 58%. 46 
It was calculated by Monte Carlo simulation with the PENELOPE package [14]. Results 47 
are given in Table II.  48 

3.5 Results of the massic activity measurements 49 
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 1 
Table II shows the results of the measurements obtained by the laboratories. Only one 2 
final value was reported for each laboratory, in most cases obtained by combination of 3 
two methods. Final results from each laboratory are presented in graphical form in 4 

Figure 2. 5 
 6 
The final value was obtained as the power-moderated mean [15] of 4 final laboratory 7 
results, excluding the CIEMAT contribution as outlier. The reason for the discrepancy 8 

is, for the moment, unknown. The final value is 33.10 (5) kBqg–1. The stated 9 
uncertainty corresponds to the standard deviation of the 4 results. 10 

 11 

FIGURE 2 12 
 13 
 14 
  15 
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Table II 1 
Final results for the massic activity A, and its uncertainty u, as reported by the participants in the 2 
EURAMET.RI(II)- S6.I- 129 Supplementary Comparison.  3 
 4 

Laboratory 
A  

kBqg– 

u(A) 

kBqg–1 

 

Method to obtain the final 

value 

Results from each 

measurement technique 

CIEMAT 32.14 0.11 Mean value of results obtained 

with two techniques. 

Uncertainty obtained 

combining both uncertainties 

with the expression 1/u2 = 

1/u1
2 + 1/u2

2 

32.15 (13)  CIEMAT/NIST 

 

32.13 (23) Gamma Counting 

CMI 33.10 0.57 Only one result 33.10 (57) coincidence 

JRC 33.0 0.1 Mean value of results obtained 

with two techniques. The 

uncertainty obtained with a 

single method is kept as more 

realistic 

33.0 (5) CIEMAT/NIST 

 

33.0 (1) TDCR 

LNE- LNHB 33.16 0.06 Result from anticoincidence 

counting 

33.1 (11) TDCR 

33.16 (6) Anticoincidence  

PTB 33.003 0.099 Weighted mean of the results 

obtained with two techniques. 

32.90 (50) CIEMAT/NIST 

33.007 (99) TDCR 

 5 

  6 
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 1 

Table III. Typical uncertainty budgets associated to each technique. Only major components are 2 
indicated. Since uncertainties declared by participants for a given technique were similar, only 3 
results from one laboratory are given. Additional details can be found in ref. [6]. 4 
 5 
 6 
Laboratory JRC PTB CIEMAT CMI LNE 

Measurement 

technique 

CIEMAT/NIST TDCR 4 counting Coincidence 

Counting 

Anti-coincidence 

Counting 

 
Contribution 

due to 

u(a)/a in % 

Counting 

statistics 

0.04 0.04 0.2 0.2 0.05 

Weighing 0.12 0.03 0.1 0.01 0.05 

Background 0.01 0.03 0.02 0.02 0.1 

Dead time  0.03    

Resolving time  -   0.01  

Decay data 0.13 0.22 0.2   

Half-life  0.01    

Quenching 0.1     

Interpolation/ 

extrapolation of 

efficiency curve 

0.02  0.1 0.50 0.13 

Impurities  0.03 0.01 0.1  

Adsorption 0.04 0.05 0.01 0.1  

PMT asymmetry  0.02    

Counting time  0.01    

Ionization 

quenching and kB 

0.02 0.11    

LS spectrometer 

dependence 

0.2     

Calculation code 

dependence 

0.16     

Shape factor 

dependence 

0.15     

TDCR value  0.13    

Numerical model   0.2   

Monte Carlo 

statistics 

  0.2   

Escape from 

sample 

   1.6  

Combined 

relative 

standard 

uncertainty 

0.38 0.30 0.43 1.7 0.18 

 7 

  8 
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 1 

 2 
 3 
 4 
4. Mass concentration measurements 5 

 6 
The number of 129I atoms per gram of solution was determined at CEA-LANIE and 7 
CIEMAT by mass spectrometric measurements combined with the isotope dilution (ID) 8 
technique.  9 

4.1 Analytical strategy 10 

Isotope dilution is a method of determining the quantity of chemical substances and is 11 
regarded among the chemistry measurement methods of the highest metrological 12 
standing. This method [16] was associated to mass spectrometric measurements in order 13 
to obtain high accuracy on mass concentration and has been used in the past for half-life 14 

determinations [17-19].  15 
 16 
The 129I mass concentration was determined by isotope dilution using certified 127I 17 

solutions according to the ID equation (2): 18 
 19 

𝑪 𝑰𝟏𝟐𝟗 = | 𝑰𝟏𝟐𝟗 |
𝑺

× 𝑪𝑺𝒑 ×
𝒎𝑺𝒑

𝒎𝑺
×

𝑴𝑺

𝑴𝑺𝒑
×

𝟏

( 𝑰𝟏𝟐𝟕 )
𝑺

×

(
𝑰𝟏𝟐𝟗

𝑰𝟏𝟐𝟕 )

𝑴𝒊𝒙

(
𝑰𝟏𝟐𝟗

𝑰𝟏𝟐𝟕 )

𝑺

−(
𝑰𝟏𝟐𝟗

𝑰𝟏𝟐𝟕 )

𝑴𝒊𝒙

  (2) 20 

 21 

where Mix, S and Sp stand for mixture, sample and spike, respectively; mSp and mS are 22 

the masses used to prepare the blends (in g), MSp and MS are the respective atomic 23 

weights (in gmol-1) for the spike and the sample, (127I)S is the 127I abundance (in 24 

atom%) in the sample, and |129I|S is the 129I abundance (w%) in the sample.  25 

The two laboratories have used two different mass spectrometers and two different 26 

spike solutions. Details are given below. 27 

4.1.1 Mass spectrometry instrumentation 28 

The main difference between the work carried out by LANIE and CIEMAT refers to the 29 

instrumentation, a Multicollector Inductively Coupled Plasma Mass Spectrometer (MC-30 

ICPMS) and a Quadrupole based Inductively Coupled Plasma Mass Spectrometer (Q-31 

ICPMS), respectively. Regarding the operation mode this implies: (i) the mass analyzer, 32 

a magnetic/electrostatic sector (flat-topped peaks) in the case of the MC-ICPMS 33 

equipment and a quadrupole (Gaussian peaks) in the Q-ICPMS instrument and (ii) the 34 

detection system, multiple high stability Faraday cup detectors to simultaneously 35 

measure several isotopes (MC-ICPMS) and single electron-multiplier detector that 36 

measures the ions (Q-ICPMS).  37 

Technical information regarding the measurements performed at LANIE by MC-38 

ICPMS is presented in a recent work [20]. The mass bias corrections related to the 39 
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enhanced extraction and transmission of the heaviest ions [21] were performed by both 1 

laboratories applying the exponential law fractionation [22] and using tellurium as an 2 

internal standard. The instruments used by both laboratories are presented in Table IV 3 

together with other relevant details as the media of analysis and the ratios used for 4 

normalization. 5 

Table IV. Instrumentation, media of analysis and strategy for mass bias correction performed by 6 
CIEMAT and LANIE laboratories in charge of mass spectrometric measurements. 7 
 8 

 Instrument 

Media of 

analysis 
Mass bias 

correction 

Ratio(s) used for 

mass bias 

correction [23] 

CIEMAT 

ICPMS Q 

(iCap Q, Thermo 

Instruments) 

NH4OH 3.4M 
Internal correction 

(tellurium) 

126Te/130Te and 
128Te/130Te 

LANIE 

MC-ICPMS 

(Isoprobe, GV 

Instrument) 

Dilution of the 

sample in 

HNO3% 

Internal correction 

(tellurium) 
126Te/130Te 

 9 

 10 

4.1.2 127I Spike 11 

Laboratories have used independent spikes. LANIE has used a 127I spike provided by 12 

the National Institute of Standards and Technology (NIST SRM 3180). The presence of 13 

other elements is indicated in the certificate and no trace of 129I is mentioned. This was 14 

confirmed by qualitative Q-ICPMS measurements. It was sent in five independent 15 

closed vials in Na2SO3 and NaOH media to ensure the stability and conservation of 16 

these solutions. The concentration for each vial was certified at 1.0006 (12) mgg-1. 17 

CIEMAT has used a spike that was gravimetrically prepared from potassium iodide 18 

(99.995% minimum purity, Merck Suprapur), assuming that 100% of the iodine was 19 
127I. The concentration of the solution used as spike was 1.5155 (25) µgg-1. The 20 

uncertainty of the spike was calculated taking into account all components of weighing 21 

and purity.  22 

4.2 Results of the mass concentration measurements 23 

Table V presents the values of the 129I mass concentration obtained by both laboratories. 24 

Each one has carried out the determinations on a set of mixtures, prepared 25 

independently from the sample and spike. 26 

  27 
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 1 

Table V. Final results for the mass concentration, as reported by the participants. 2 
 3 

Laboratory [129I] atomg-1 u([129I]) atomg-1 Method to obtain the final value 

CIEMAT 2.450 × 1019 0.018 × 1019 Mean of five sample-spike mixtures 

LANIE 2.415 × 1019 0.017 × 1019 Mean of six sample-spike mixtures 

 4 

The uncertainty was calculated in accordance with the ISO Guidelines for the 5 

Expression of Uncertainty in Measurement [24]. For uncertainty propagation 6 

calculations, the numerical method of Kragten [25, 26] was applied. Uncertainty 7 

contributions of the major component of the ID equation evaluated by the two 8 

laboratories are indicated in Table VI. The (129I/127I) Mix and (129I/127I)S ratios were 9 

corrected for mass bias by tellurium isotope ratios and their uncertainties have been 10 

taken into account in the uncertainty budget. Figure 3 presents graphically the main 11 

sources of uncertainty in the measurements of the two laboratories. 12 

Table VI. Typical uncertainty budgets associated to each technique by CIEMAT and LANIE 13 
 14 

Laboratory CIEMAT LANIE 

Measurement 

technique 

Isotope dilution associated to 

ICPMS Q measurements 

Isotope dilution associated to MC- 

ICPMS measurements 

Uncertainty 

component 
Uncertainty contribution in % 

(127I/129I)S 0.22 0.02 

[127I]Sp 0.12 0.12 

mSp 0.08 0.09 

mS 0.1 0.08 
126Te/130Te 
128Te/130Te 

0.66 0.67 

(127I/129I)Mix 0.15 0.12 

Combined relative 

standard 

uncertainty 

0.73 0.70 

 15 

 16 

As can be seen in Table VI, the main sources of uncertainty in the CIEMAT 17 
measurements come from the concentration of the spike solution and the measured 18 
isotope ratio of sample and mixtures. The uncertainty of the absolute 126Te/130Te and 19 
128Te/130Te isotope ratios used for mass bias correction has already been considered in 20 
the calculation of the 127I/129I ratios involved in the equation. Note that the weighing of 21 
sample and spike has a very small contribution. The major source of uncertainty for 22 

CIEMAT and LANIE comes from the 126Te/130Te and 128Te/130Te IUPAC ratios [23] 23 
used for instrumental mass bias correction. The IUPAC uncertainty associated with this 24 
representative tellurium isotopic composition includes the overall range of variations 25 
that are likely to be encountered in both natural materials and chemicals. Since this 26 

component dominates the uncertainty budgets from the two mass determinations, the 27 
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final relative uncertainty of the whole process was conservatively estimated as equal to 1 

that of CIEMAT (0.73 %). 2 

 3 

FIGURE 3 4 

The final value of the mass concentration was obtained as the average of values 5 
obtained by CEA and CIEMAT which is: 6 

2.432 (18)×1019 atomsg-1. 7 

 8 

5. The half-life of 129I 9 
 10 

 11 
As indicated in Section 1, the half-life of 129I is obtained from Eq. 1, using the values 12 
determined in this work. 13 

 14 
T1/2 (

129I) = 16.14 (12) × 106 a 15 
 16 
 17 

Its relative standard uncertainty was evaluated using the expression: 18 
 19 

𝑢𝑟 (𝑇1
2

) =   √(
𝑢𝐴

𝐴
)

2

+  (
𝑢𝑁

𝑁
)

2

  = 7.× 10−3  20 

 21 

from which the mass determination is the major component.   22 

The result is in good agreement with the evaluated value of 16.1 (7) × 106 a [1], but 23 

carrying an uncertainty that is more than 5 times lower. 24 
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Figure 1. Simplified decay scheme of 129I. Data have been taken from [1]. 4 
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Figure 2 3 

Final laboratory results for the massic activity of aliquots of the same 129I solution. 4 

The horizontal line corresponds to the value of the power-moderated mean of the 4 5 

consistent values. 6 
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Figure 3: Relative contribution of the major sources of uncertainty in the 3 

determination of the 129I concentration at LANIE (upper) and CIEMAT. 4 
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