

Precise U and Pu isotope ratio measurements in nuclear samples by hyphenating capillary electrophoresis and MC-ICPMS

B. Martelat, H. Isnard, L. Vio, E. Dupuis, T. Cornet, A. Nonell, F. Chartier

► To cite this version:

B. Martelat, H. Isnard, L. Vio, E. Dupuis, T. Cornet, et al.. Precise U and Pu isotope ratio measurements in nuclear samples by hyphenating capillary electrophoresis and MC-ICPMS. Analytical Chemistry, 2018, 90, pp.8622-8628. cea-02339670

HAL Id: cea-02339670 https://cea.hal.science/cea-02339670v1

Submitted on 4 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Precise U and Pu isotope ratio measurements in nuclear samples by hyphenating capillary electrophoresis and MC-ICPMS

Journal:	Analytical Chemistry
Manuscript ID	ac-2018-01884j
Manuscript Type:	Article
Date Submitted by the Author:	26-Apr-2018
Complete List of Authors:	MARTELAT, Benoit; Laboratoire d'Analyses Nucléaires Isotopiques et Elémentaires, Physico Chemistry Isnard, Helene; Laboratoire d'Analyses Nucléaires Isotopiques et Elémentaires, Physico Chemistry Vio, Laurent; CEA Saclay DUPUIS, Erwan; Laboratoire d'Analyses Nucléaires Isotopiques et Elémentaires, Physico Chemistry CORNET, Terence; Laboratoire d'Analyses Nucléaires Isotopiques et Elémentaires, Physico Chemistry Nonell, Anthony; CEA, DEN/DPC/SEARS/LANIE Chartier, Frederic; CEA, DEN/DPC

SCHOLARONE[™] Manuscripts

Precise U and Pu isotope ratio measurements in nuclear samples by hyphenating capillary electrophoresis and MC-ICPMS

Benoit Martelat¹, Hélène Isnard^{*1}, Laurent Vio¹, Erwan Dupuis¹, Terence Cornet¹, Anthony Nonell¹, Frédéric Chartier²

1. Den – Service d'Etudes Analytiques et de Réactivité des Surfaces (SEARS), CEA, Université Paris-Saclay, F-91191, Gif sur Yvette, France

2. Den – Département de Physico-Chimie (DPC), CEA, Université Paris-Saclay, F-91191, Gif sur Yvette, France

* Corresponding Author: Hélène Isnard, helene.isnard@cea.fr

Abstract

Precise isotopic and elemental characterization of spent nuclear fuel is a major concern for the validation of the neutronic calculation codes and waste management strategy in the nuclear industry. Generally, the elements of interest, particularly U and Pu which are the two major elements present in spent fuel, are purified by ion exchange or extractant resins before off-line measurements by thermal ionization mass spectrometry. The aim of the present work was to develop a new analytical approach based on capillary electrophoresis (CE) hyphenated to a multicollector inductively coupled plasma mass spectrometer (MC-ICPMS) for online isotope ratio measurements. An electrophoretic separation protocol of U, Pu and the fraction containing fission products and minor actinides (Am and Cm) was developed using acetic acid as the electrolyte and complexing agent. The instrumentation for CE was designed to be used in a glove box and a laboratory-built interface was developed for hyphenation with MC-ICPMS. The separation was realized with only a few nL of a solution of spent nuclear fuel and the reproducibilities obtained on the U and Pu isotope ratios were on the order of a few ‰ which is comparable to those obtained by thermal ionization mass spectrometer (TIMS). This innovative protocol allowed a tremendous reduction of the sample amounts classically required for analysis: sample masses from up to ng and sample volumes from uL to nL. also a drastic reduction of the liquid waste production from mL to μ L. In addition, the measurement process was shorted by at least three orders of magnitude. All of these improved parameters are of major interest for nuclear applications.

1. Introduction

The precise knowledge of actinides and fission products in spent nuclear fuels is mandatory in order to qualify and validate neutronic calculation codes. These codes are used to improve nuclear fuel performances, waste management and associated safety-related applications.¹ The major analytical requirement for such topics is to obtain the best uncertainties when it comes to the concentration measurements and isotopic compositions in the spent fuel samples.² These samples are characterized by a complex matrix with a large diversity of elements produced by neutron capture, fission or activation reactions. Diluted nuclear fuel sample solutions contain uranium (more than 95% of the elements present) and transuranium radioelements (Np, Pu, Am, Cm) as well as a variety of fission products (FP) consisting mainly of lanthanides (La, Nd, Sm, Eu, Gd, ...), alkali and alkaline earth metals (Cs, Sr ...) as well as transition metals (Ag, Ru, Pd,...).

Mass spectrometric techniques involving multi-collection systems have the capacity to measure isotope ratios in a very precise and accurate way. However, prior to measurements, two steps of chromatographic separation ³⁻⁶ are in most cases required to prevent spectral (isobaric, polyatomic or doubly charged) or non-spectral (matrix effects) interferences on the isotopes of interest. The first step leads to the chemical purification of U and Pu by isolating them from the FP and minor actinides (Am) collected in a third fraction (FP+ Am). This purification is generally achieved by using ion exchange or extraction resins.^{7,8} The second step by High Performance Liquid Chromatography (HPLC) aims to separate certain elements of interest (for example Nd and Cs) from the complex FP fraction.³ These complex protocols

are required in order to isolate each element of interest prior to its isotopic characterization.³, 9,10

Apart from their complexity and duration, these protocols also present drawbacks such as the increased handling time of radioactive samples, the production of radioactive waste and the risk of natural contamination. Several analytical developments were designed in order to significantly limit the sample handling duration, the amount of sample required for accurate measurements and the amount of waste produced. For example, the use of ICPMS with collision or reaction cells allows the *in-situ* resolution of spectral interferences by using an appropriate gas selected on the basis of both thermodynamic and kinetic considerations.¹¹⁻¹⁵ These systems, based on collision-induced processes and reaction chemistry in a gas-filled multipole device, avoid time-consuming chemical separation of the interfering elements and reduce risks of sample contamination.

Another improvement consists in the hyphenation of HPLC with MC-ICPMS, which has also been widely developed during the last two decades.¹⁶ In the particular case of nuclear fuel samples, several studies have evaluated the performance of HPLC-MC-ICPMS for isotope ratio measurements of U, Pu, Nd, Eu, Gd, Sm in nuclear fuel samples or simulated solutions.¹⁷⁻²⁰ After taking into account the drift phenomenon occurring when transient signals are acquired ²¹⁻²³, isotope ratios are measured with uncertainties on the order of or lower than 1‰. This approach is particularly attractive for reducing the analysis time and consequently the analyst's exposure to ionizing radiation. Nevertheless, considering the typical flow rates of the chromatographic systems which are usually on the order of several hundreds of microliters per minute, further developments are required to reduce the associated liquid waste volumes. Since electrokinetic methods only involve ion migration under the influence

Analytical Chemistry

of an electric field, they enable a significant reduction of liquid waste production as well as sample consumption in the nano- or microliter range.

Very few studies have addressed the hyphenation of electrokinetic separations with ICPMS for isotope ratio measurements. Pitois et al.²⁴ hyphenated a capillary electrophoresis (CE) device with a quadrupole ICPMS or a magnetic sector ICPMS to perform isotope ratios at 1% uncertainty of 14 lanthanides in less than 15 min with a liquid production as low as 4 μ L.min⁻¹ and quantification limits of a few tens of ng.mL⁻¹. Vio et al.²⁵ developed a method to separate lanthanides by isotachophoresis, an electrophoretic technique used to preconcentrate the sample while separating the analytes at the same time. In this study, 13 lanthanides were separated with a sample volume of 1.3 μ L containing 6.5 ng of each lanthanide. This separation was then transposed on an ITP microchip and hyphenated to an MC-ICPMS for Sm and Nd isotopic measurements.²⁶ The approach was extended in order to perform multielemental Nd, Sm, Eu, Gd isotope ratio measurements by stop-flow isotachophoresis. This analytical development enabled the isotope ratio measurements, within a single analytical run, of 4 elements and up to 23 isotopes with only 20 ng injected per element with isotope ratio reproducibilities better than 0.4% (k=2) and accuracies better than 0.2%²⁷ In addition, Martelat et al.²⁸ investigated the isotopic fractionation and evaluated the analytical performances of electrokinetic separations hyphenated with MC-ICPMS for Nd isotope ratio measurements. The reproducibility obtained was lower than 0.2 % regardless of the Nd isotope ratio and with 0.5 ng of sample injected for each analysis. This reproducibility was similar to that obtained with the hyphenation of LC to MC-ICPMS¹⁹ but with significantly reduced sample volumes and liquid waste quantities.

Analytical Chemistry

Concerning U and Pu, CE is not commonly used to separate and purify these two elements for isotope ratio measurements by mass spectrometry, but several studies have been dedicated to the speciation of actinides and lanthanides in environmental or nuclear samples. In these studies the separation of lanthanides and actinides have been achieved using different types of electrolytes.²⁹⁻³⁴ The separation of different Pu oxidation states was optimized by Kuczewski et al. ³² using La(III), Th(IV), Np(V) and U(VI). The background electrolyte was 1 mol.L⁻¹ acetic acid at a pH of 2.4 (yielding a free acetate concentration of approximately 7 mmol.L⁻¹). Subsequently, the same electrolyte was used to separate different Pu species, i.e., Pu(III), Pu(IV), Pu(V) and Pu(VI).

The first objective of this study was to develop the separation by capillary electrophoresis of U and Pu from the FP fraction also containing minor actinides (Am, Cm). The background electrolyte was chosen in order to obtain the highest difference of electrophoretic mobility between U, Pu and the FP and minor actinide fractions. The change in migration time as a function of the oxidation state of Pu was studied in order to obtain the best resolution between the U and Pu peaks and to resolve the main isobaric interference ²³⁸U/²³⁸Pu encountered in nuclear fuel samples.

The second objective was the hyphenation of CE with MC-ICPMS in order to obtain precise and accurate isotope ratios for U and Pu within a single analytical run. A mass bias correction approach was developed and validated with the use of certified isotope reference materials of uranium.

The third objective was the application of this new analytical protocol to irradiated fuel samples. The direct measurement of U and Pu by CE-MC-ICPMS was performed on several

Page 7 of 25

Analytical Chemistry

nL of a solution of mixed oxide (MOx) spent fuel. The reproducibility obtained on the U and Pu isotope ratios by this new CE-MC-ICPMS analytical approach are then compared to reference values determined by Thermal Ionization Mass Spectrometry (TIMS).

2. Materials and methods

2.1. Reagents and reference materials

2.1.1. Electrolyte solutions

For CE analysis, the background electrolyte (BGE) was prepared daily by diluting a solution of acetic acid (99.9% purity) in ultra-pure water (Millipore, Guyancourt, France). The pH was adjusted to 3.0 using an ammonia solution (25% v/v). In order to modify the electrolyte conductivity, ammonium chloride was added for the measurements performed on the spent nuclear fuel sample. For the oxidation step of Pu, a solution of concentrated perchloric acid (70%) was diluted in ultra-pure water. All chemicals were purchased from Sigma Aldrich (Saint Quentin Fallavier, France), and all the reagents used were of ultrapure analytical grade.

Prior to each analysis the capillary was successively flushed with H_2O , HNO_3 (0.3 mol L⁻¹), H_2O , NaOH (0.1 mol L⁻¹), H_2O and the BGE in the given order for 5 min each at a pressure of 1 bar. Sample plugs of 1 cm and 5 cm were injected. The injection parameters were determined by using a small plug of a standard solution of uranium pushed at 100 mbar through the capillary to ICPMS by the background electrolyte. Once the injection step was completed, the capillary inlet was immersed in a vial containing the BGE.

2.1.2. Samples and isotope reference materials

Three certified isotope reference materials of uranium (IRMM 184, IRMM 186 and IRMM 187) were employed in this study. IRMM 184 and IRMM 187 were used to evaluate the analytical performances and to validate the mass bias correction approach proposed in this work. IRMM 186 was the U isotopic standard used to perform external mass bias correction and its ²³⁵U/²³⁸U certified ratio (0.0307711(92)) was used as a reference. The standard solutions were prepared by evaporating aliquots of the IRMM 184 and 187 stock solutions and the dry extract was dissolved in adequate volumes of BGE. For IRMM 186, used for mass bias correction, the dry extract was dissolved in 2% nitric acid solution. The standard solution of IRMM 186 was used for signal optimization prior to analysis.

Two solutions of plutonium were used, one for the preliminary separation tests and one for the validation of the mass bias correction approach. The former was an enriched ²⁴²Pu solution (97.61%) conditioned in ultrapure 4M nitric acid. The second was a reference solution conditioned in the same media and used in the laboratory for quality control. Isotope ratios were qualified by TIMS using the total evaporation technique.

The spent nuclear fuel sample was solution of a MOx fuel diluted in nitric acid (8 M) and sent from a dedicated facility to the Laboratory of Analytical development for Nuclear Isotopic and Elemental Analysis in Saclay for isotopic and elemental characterization.

2.2. Instrumentation

A schematic description of the complete instrumental system and all the instrumental settings for CE and the interface with MC-ICPMS are presented in the Supporting information section S1. The electrophoretic system was composed of a high-voltage generator applying the

Analytical Chemistry

electric field to the capillary and a laboratory-built CE module adapted for manipulation in a glove box. In order to pressurize the CE module during the injection and separation steps, an MFC was used. A schematic description of this specially designed CE module setup for the separation is presented in Supporting information section S1. The hyphenation to the MC-ICPMS was achieved using a Mira Mist CE nebulizer (Burgener, Mississauga, Ontario, Canada). The MFC was used to deliver the makeup solution at a flow rate of 10 μ L min⁻¹. A specifically designed low volume cyclonic spray chamber (20 mL) was used at the interface. It was composed of 2 nebulizer inlets with an angle of 45° between them ²⁷: one for the Mira Mist CE nebulizer and one for a Micro Mist nebulizer, with a nominal flow rate of 100 μ L.min⁻¹ used to inject a standard during the separation in order to perform mass bias correction.

The isotope ratios were determined using a Neptune Plus MC-ICPMS (Thermo Scientific, Bremen, Germany) modified to accommodate a glove box around the ion source. The operating parameters and Faraday cup configuration are detailed in the Supporting information section S1. A special configuration was used for analysis of the spent nuclear fuel sample with a first setup used for the acquisition of the Pu isotope signals and a second setup used for the acquisition of the U isotope signals. Mass bias was corrected using the Intra Injection Sample Standard Bracketing (IISSB) approach, first introduced for Nd isotope ratio measurements by dual inlet Liquid Chromatography-MC-ICPMS.¹⁹

3. Results and discussion

3.1. Development of U-Pu separation

A simulated nuclear fuel sample containing La (III), Lu(III), Am(III), U(VI) and Pu in different oxidation states was used in order to determine the migration time for each species and to establish the optimal concentration of acetic acid in the electrolyte. This sample was prepared by evaporation of two solutions: a solution containing La, Lu, U and Pu in nitric acid and a Pu solution treated with perchloric acid in order to oxidize Pu in its Pu(VI) state. Am was found as ²⁴¹Am, produced by β^{-} decay of ²⁴¹Pu present in the Pu solutions used for these tests. After evaporation the residues of the two solutions were dissolved in 0.25M acetic acid and mixed to obtain a concentration of approximately 50 µg.g⁻¹ for each element. Migration of all the species occurred in less than 70 minutes using a concentration of acetic acid lying between 0.25 and 0.5 M at a pH of 3.

Figure 1 presents the electropherogram obtained after injecting the simulated nuclear fuel sample. Four different Pu species were observed on the electropherogram. Plutonium is known to reach equilibrium with several oxidations states coexisting in solution, the relative abundance of the oxidation states depending on the chemical conditions.³⁵ In our case, the four different species observed could be species containing Pu(III), Pu(IV), Pu(V) and Pu(VI). The migration time of La(III), Lu(III), Am(III) and Pu(III) was around 35 minutes. Pu(III) comigrated with the lanthanides, in accordance with the similarity between the chemical behavior of An(III) and Ln(III). It was only present at a very low concentration and was formed by disproportionation and/or reduction of Pu(IV). The migration time for Pu(VI) was around 42 minutes. Pu(VI) migrated before U(VI) which appeared around 50 minutes. The behavior of the hexavalent state of Pu was similar to the one observed by Gräser et al.³⁶ Another Pu species with a migration time equal to U(VI) and a low concentration was also observed. This species was probably Pu(V), formed by alpha reduction of Pu(VI). Finally,

ACS Paragon Plus Environment

Analytical Chemistry

Pu(IV) migrated last with a migration time of 60 minutes. A deformation of the Pu(IV) peak was also seen and was believed to be caused by plutonium hydrolysis.

The migration order observed here was Pu(III)>Pu(VI)>Pu(V)>Pu(IV). This migration order was interpreted by calculating the degree of complexation of Pu, knowing the pH, the total acetic acid concentration and the reviewed stability constants of Pu(III), Pu(IV) and Pu(VI) with acetate from the literature.^{37,38} The stability constants of Np(V) were used for Pu(V) as they were expected to be of the same order of magnitude. It was found that the speciation in our system was remarkably close to the one calculated by Kuckzewski et al.³², owing to the very small difference in the free acetate concentration between the two studies. As the complexation was controlled by the free ligand concentration, the migration order was the same in both studies.

After the optimization of the electrolyte composition using the simulated sample, separation and resolution of isobaric interferences between Am, Pu and U in a MOx fuel sample was performed. The separation between Pu and Am, for which isobaric interferences occur at m/z=241, 242 and 244 in nuclear fuel samples, can be realized if Pu is present as Pu(IV) or Pu(VI). For the major interference in nuclear fuel samples between ²³⁸Pu and ²³⁸U, with a ²³⁸U/²³⁸Pu ratio generally higher than 500 in nuclear fuel samples, Pu(VI) is the most adapted oxidation state to totally resolve this isobaric interference and to avoid the peak tailing of ²³⁸U on ²³⁸Pu. An oxidation step was therefore performed prior to the injection. The sample solution was evaporated and the dry extract was dissolved in 1-M perchloric acid and heated to evaporate the latter, in order to oxidize the Pu into its Pu(VI) state.³⁶ This process was repeated twice to ensure complete oxidation. The sample was finally dissolved in diluted perchloric acid (0.002 M) to preserve its stability over time.

Analytical Chemistry

Subsequently, the concentration of acetic acid in the electrolyte was increased in order to obtain a time difference between the migration peaks of Pu(VI) and U(VI) larger than 5 min. This was a mandatory step because the Faraday cups in our instrument could not be configured to detect all Pu and U isotopes with a single configuration. The time required to switch between Pu and U configurations was around 3 min. Therefore, the electrolyte concentration was increased to 0.4M in order to obtain a sufficient difference of migration time between Pu(VI) and U(VI), rendering it possible to change the detector configuration between Pu and U peak migration.

Figure 2 presents the electropherogram obtained after injecting a nuclear fuel sample solution. 50 μ l of a 8M HNO₃ solution of MOx nuclear fuel was evaporated to dryness, treated with perchloric acid and after two steps of evaporation finally diluted in 50 μ L of 0.002M perchloric acid before injection. The injection volume was around 5nL which corresponded to injected quantities of U, Pu and Am of approximately 0.7, 0.05, and 0.003 ng, respectively. The electropherogram shows that the separation of Am(III), Pu(VI) and U(VI) was sufficient to perform direct measurements of U and Pu isotope ratios with a gap time between the Pu and U migration times of approximately 8 min, thus allowing the Faraday cups configuration to be switched from C2 to C3 at the end of the Pu migration peak.

3.2. Mass bias correction approach and validation

In this part, the validation of the analytical approach for mass bias correction was performed on certified isotopic standards. In LC-MC-ICPMS, the introduction of the reference isotopic standard to perform IISSB mass bias correction was performed using a Tjunction located between the separation column and the ICPMS interface. In CE-MC-ICPMS,

Analytical Chemistry

this configuration is not possible due to the fact that a specific nebulizer is used to perform the separation until the extreme end of the capillary. Therefore, a cyclonic spray chamber with two nebulizer inlets was utilized in this study to allow the injection of the reference isotopic standards while the CE separation was running.²⁶ The injection of the standard could be performed at any time during the separation.

The uranium isotopic standard (IRMM 186) solution was introduced five minutes before the injection of the sample, i.e., before the migration peak of Am. The second standard was injected at the end of the separation when the contribution of the baseline of the last migration peak was negligible. The data treatment methods were evaluated by injection of reference isotopic standard as samples. Different methods of data treatment have been intensively compared including point by point (PbP), linear regression slope (LRS)³⁹ and peak area integration (PAI).^{39,40} The LRS and PAI methods are used for transient signals because they correct the isotope ratio drift.^{39,40} These methods have been used and compared in our particular case. In the PAI method the background was taken into account by subtracting the baseline 30s before the migration peak and an integration window of 95% was chosen.^{19,40} As the LRS method does not require the selection of a specific percentage of the peak area ³⁹, 100% of the peak zone was considered.

Table 1 presents the results obtained on five injections of IRMM 184 reference isotopic standard and five injections of IRMM 187 reference isotopic standard. The injection volume was around 230 nL which corresponds to a quantity of injected U around 35 ng. Mass bias was corrected with the IISSB approach for all ratios using the ²³⁵U/²³⁸U ratio value of the IRMM 186 standard and using an exponential law. Data on the bracketing standard and simulated sample were evaluated using the same data treatment method. Comparing the different data treatment methods, better reproducibilities were obtained with the LRS method,

particularly when the signal intensity was lower than 5 mV. This observation is in agreement with previous studies performed by hyphenating separative techniques and MC-ICPMS.^{20,27}

The ²³⁵U/²³⁸U and ²³⁴U/²³⁸U isotope ratio values for IRMM 184 and IRMM 187 obtained with the LRS method were in agreement within uncertainty with the certified ratio value of the isotopic standard. For the IRMM 184 standard ²³⁶U/²³⁸U ratio was not evaluated considering the very low abundance of ²³⁶U. For the ²³⁶U/²³⁸U isotope ratio of the IRMM187 standard, abundance sensitivity and hydrides rate are taken into account. They were evaluated at the beginning of the analytical session and were equal to $2x10^{-6}$ (²³⁷U/²³⁸U) and $5.6x10^{-6}$ (239/²³⁸U) respectively. The relative difference between corrected ²³⁶U/²³⁸U ratio value obtained with the LRS method and the certified value was around 6‰. The usefulness of the IISSB approach using the LRS method of data treatment was thus demonstrated for CE-MC-ICPMS applications in the nuclear field.

In order to minimize the number of standards injected during the separation we evaluated the possibility to correct Pu isotope ratios using the mass bias factor determined from U certified isotopic standards. A Pu sample with known 239 Pu/ 240 Pu= 0.2864(3), previously evaluated in the laboratory by TIMS using the total evaporation technique was injected in the capillary. The separation conditions were the same as those previously defined for the U-Pu separation by CE. Six independent injections were performed and the average 239 Pu/ 240 Pu ratio corrected using β -values of the IRMM 186 injected before and after the Pu peaks was equal to 0.2863 with a relative standard deviation of 0.01% at k=2. This value was in very good agreement with the reference value obtained by TIMS. The strategy to correct the Pu isotope ratio using the β -value of a uranium standard was therefore demonstrated to be consistent to obtain U and Pu isotope ratios values with an uncertainty around 1‰ required for nuclear application.⁴²

Page 15 of 25

3.3. U and Pu measurements on an irradiated nuclear fuel sample

The developed analytical procedure was applied to a MOx spent nuclear fuel sample solution. The 8M HNO₃ solution was evaporated and treated with perchloric acid as previously described and then diluted in order to obtain a solution in 0.002M perchloric acid. The injection volume was around 20 nl which corresponded to injected quantities of U, Pu and Am around 4, 0.3 and 0.02 ng, respectively. The quantities were chosen in order to obtain signals higher than 1 mV on all isotopes of U and Pu. Mass bias correction was performed using the IISSB approach with the ²³⁵U/²³⁸U ratio value of the IRMM 186 reference isotopic standard.

3.3.1. U isotope ratio measurements

Table 2 presents the results obtained on U isotope ratios along with the values of Apex signals for U isotope migration peaks. The reproducibilities evaluated as the standard deviation expressed at k=2 were equal to 1.6‰, 6.2‰ and 3.8‰ for $^{235}U/^{238}U$, $^{234}U/^{238}U$ and $^{236}U/^{238}U$ ratios, respectively. The major $^{235}U/^{238}U$ was in agreement with the ratio obtained by TIMS after chemical separation with relative difference between the two methods of 1.5‰. The $^{234}U/^{238}U$ ratio was also in agreement within uncertainty with the ratio obtained by TIMS with relative difference of -7.7‰. For the $^{236}U/^{238}U$ ratio there was a bias around 13‰ between the two methods due to the fact that abundance sensitivity and hydride formation were not evaluated for each injection but at the beginning of the analytical session. Abundance sensitivity is the major source of correction for such ratio and must be more properly corrected. This will be investigated in future work.

3.3.2. Pu isotope ratio measurements

Table 2 presents the results obtained on Pu isotope ratios along with the values of Apex signals for Pu isotope migration peaks. The reproducibility evaluated as the standard deviation expressed at k=2 was better than 1‰ for ²⁴⁰Pu/²³⁹Pu, ²⁴¹Pu/²³⁹Pu and ²⁴²Pu/²³⁹Pu ratios and around 4‰ for the ²³⁸Pu/²³⁹Pu ratio in relation to intensity lower than 15 mV on the ²³⁸Pu isotope. The bias between the value obtained with this new protocol and the values acquired by TIMS after chemical separation by anion exchange resin ³ is presented in Table 2 and is lower than 3.5‰ for all ratios. All Pu isotope ratios values were in agreement within uncertainties between the two methods and no significant bias was detected in particular for the two interfered ²³⁸Pu/²³⁹Pu and ²⁴¹Pu/²³⁹Pu ratios demonstrating the satisfactory separation obtained between ²³⁸Pu and ²³⁸U, and between ²⁴¹Pu and ²⁴¹Am.

3.3.3. Comparison with an off-line analytical protocol

The reproducibilities obtained on U and Pu isotope ratios were on the order of a few ‰ and comparable with those obtained with the conventional analytical protocol after chemical separation by ion exchange resin and off-line thermal ionization mass spectrometric measurements. Table 3 compares the present on-line analytical approach with the "conventional" off-line protocol in terms of waste quantity, element masses required per analysis, sample volumes and times of analysis. The conventional protocol was developed in our laboratory for analysis of nuclear fuel samples ³ and the values presented here are comparable with those obtained by similar analytical protocols in other nuclear laboratories.⁴³⁻

Analytical Chemistry

⁴⁵ We observed a very significant decrease in term of analyzed quantities (from μ g to ng), liquid waste volumes (from mL to μ L) and sample volumes (from μ L to nL). Moreover, the time of analysis was three times shorter. These reductions are very significant for nuclear applications.

4. Conclusion

This study aimed to demonstrate the capability of capillary electrophoresis hyphenated to MC-ICPMS to perform isotope ratio measurements of both U and Pu in nuclear fuel samples at sub-nanogram amounts of material per element and in a single analytical run. Instrumental developments were carried out to design a laboratory built module for CE that could be easily used in a glove box. Furthermore, a laboratory-developed interface was also used for hyphenation with MC-ICPMS.

The first part of the study was dedicated to the development of the separation of Am, U and Pu in order to prevent isobaric interferences for U and Pu isotope ratio measurements. A study of the migration time of all Pu states was performed. The concentration of the electrolyte was chosen in order to have time between the migration peaks of U and Pu to change the detector configuration of the MC-ICPMS necessary to detect every U and Pu isotope.

In the second part of the study, the method of Intra Injection Sample Standard Bracketing (IISSB) was adapted with the use of a home made spray chamber with two nebulizer inlets. One inlet was dedicated to the MiraMist nebulizer containing the separation capillary and the second one to a Microflow nebulizer for the injection of a reference isotopic standard during the separation. The reproducibilities obtained on the U and Pu isotope ratios were on the order of a few ‰ which is comparable to those obtained by TIMS.

Analytical Chemistry

These analytical developments demonstrated that considerable gains could be obtained in terms of sample amounts, handling time, and waste production in the case of elemental and isotopic characterization in irradiated nuclear fuel samples. Further perspectives of this work include the adaptation of the analytical procedure to other fission products and actinides of interest present in nuclear samples as well as the application of isotope dilution for elemental characterization. These analytical developments could be of interest other fields where isotope ratio measurements are required.

1	
2	
3	Defenement
4	Kelerences
5 6 7 8 9 10 11	 (1) Spent nuclear fuel assay data for isotopic validation. State-of-the-art Report. Nuclear Energy Agency, Nuclear Science, NEA/NSC/WPNCS/DOC (2011) 5, 2011. (2) San-Felice, L.; Eschbach, R.; Bourdot, P. Nucl. Technol. 2013, 184, 217–232. (3) Chartier, F.; Aubert, M.; Pilier, M. Fresenius J. Anal. Chem. 1999, 364, 320-327. (4) Garcia Alonso, J.I.; Sena, P.; Arbore, P.; Betti, M.; Koch, L. Fresenius J. Anal. Chem. 1995, 10, 381-393.
12 13	(5) Kim, J.S.; Jeon, Y.S.; Park, S.D.; Ha, Y.K.; Song, K. Nuclear Eng. Technol., 2015, 47, 924-933
14 15 16	(6) Sharp, N.; Ticknor, B.W.; Bronikowski, M.; Nichols, T.; McDonough, W.F.; Mignerey, A.; Beals, D. J. Radioanal, Nucl. Chem. 2017, 311, 801-808.
17 18 19 20	 (7) Kim, C.S.; Kim, C.K.; Martin P.; Sansone U. J. Anal. Atom. Spectrom. 2007, 22, 827-841. (8) Vadja, N.; Törvenyi, A.; Kis-Nenedek, G.; Kim, C.K. Radiochim. Acta 2009, 97, 9-16. (9) Isnard, H.; Brennetot, R.; Caussignac, C.; Caussignac, N.; Chartier, F. Int. J. Mass Spectrom 2005, 246, 66-73.
21 22	(10) Isnard, H.; Granet, M.; Caussignac, C.; Ducarme, E.; Nonell, A.; Tran, B.; Chartier F. Spectrochim Acta Part B 2009 64 1280–1286
23 24 25 26	 (11) Gourgiotis, A.; Granet, M.; Isnard, H.; Nonell, A.; Gautier, C.; Stadelmann, G.; Aubert, M.; Durand, D.; Legand, S.; Chartier, F. J. Anal. At. Spectrom., 2010, 25, 1939-1945. (12) Granet, M.; Nonell, A.; Favre, G.; Chartier, F.; Isnard, H.; Moureau, J.; Caussignac, C.;
27 28	 (13) Isnard, H.; Aubert, M.; Blanchet, P.; Brennetot, R.; Chartier, F.; Geertsen, V.;
29	Manuguerra F. Spectrochim. Acta B 2006, 61, 150-156.
30 31	Spectrom 2008 23 1538-1544
32	(15) Guéguen, F.; Nonell, A.; Granet, M.; Favre, G.; Isnard, H.; Chartier, F.; J. Anal. At.
33	Spectrom. 2010, 25, 201-205.
34 35	(16) Rodriguez-Gonzalez, P.; Epov, V.N.; Pecheyran, C.; Amouroux, D.; Donard, O.F.X. Mass Speatrom, Pay. 2012, 21, 504, 521
36	(17) Gunther-Leopold, L: Kivel, N.: Waldis, J.K.: Wernli B. Anal. Bioanal. Chem 2008, 390.
37	503-510
38	(18) Günther-Leopold, I.; Kobler Waldis, J.; Wernli, B.; Kopajtic, Z. Int. J. Mass Spectrom.
40	2005, 242, 197-202.
41	(19) Guéguen, F.; Nonell, A.; Isnard, H.; Vio, L.; Vercouter, T.; Chartier, F. J. Anal. At.
42	Spectrom. 2015, 50, 445-452. (20) Guéguen F : Nonell A : Isnard H : Vio I : Chartier F Talanta 2017 162 278-284
43 44	(21) Gourgiotis A · Manhès G · Louvat P · Moureau J · Gaillardet J J Anal At Spectrom
45	2015, 30, 1582-1589.
46	(22) Krupp, E.M.; Donard, O.F.X. Int. J. Mass Spectrom 2005, 242, 233-242.
47	(23) Tanner, M.; Gunther, D. Anal. Chim. Acta 2009, 633, 19-28.
48	(24) Pitois, A.; De las Heras, L.A.; Betti, M. Int. J. Mass Spectrom. 2008, 270, 118-126.
49 50	(25) Vio, L.; Crétier G.; Chartier, F.; Geertsen, V.; Gourgiotis, A.; Isnard, H.; Morin P.;
50 51	Rocca, J.L. J. Anal. At. Spectrom. 2012, 27, 850-856.
52	(26) Vio, L.; Crétier, G.; Chartier, F.; Geertsen, V.; Gourgiotis, A.; Isnard, H.; Rocca, J.L.
53	Talanta 2012, 99, 586-593. (27) Vi = L = M + 1 + D = L = 1 + L = N = 1 + A = Cl = 1 = 1 + 2018 + 176 - 592 - 598
54	(27) VIO, L.; Martelat, B.; Isnard, H.; Nonell, A.; Chartier, F. Ialanta 2018, 176, 582-588.
55	(20) Ivianciai, D., VIO, L., Isharu, H., Simonnet, J., Cornet, T., Nonell, A., Chartler, F. J.
56 57	19
57 58	
59	
60	ACS Paragon Plus Environment

Anal. At. Spectrom. 2017, 32, 2271-2280.

- (29) Liu, B.F.; Liu, L.B.; Cheng, J.K. Talanta 1998, 47, 291–299.
- (30) Macka, M.; Nesterenko, P.; Andersson, P.; Haddad, P.R. J. Chromatogr. A 1998, 803, 279-290.
- (31) Janos, P. Electrophoresis 2003, 24, 1982-1992.
- (32) Kuczewski, B.; Marquardt, C.M.; Seibert, A.; Geckeis, H.; Volker Kratz, J.; Trautmann N. Anal. Chem. 2003, 75, 6769–6774.
- (33) Ambard, C.; Delorme, A.; Baglan, N.; Aupiais, J.; Pointurier, F.; Madic, C. Radiochim. Acta 2005, 93, 665-673.
- (34) Shiri-Yekta, Z.; Nilchi, A.; Yaftian, M.R.; Yousefnia, H. J. Radioanal. Nucl. Chem. 2014, 302, 1143-1150.
- (35) Cleveland, J.M. The Chemistry of Plutonium, 2nd ed, American Nuclear Society, 1979.
- (36) Graser, C.H.; Banik, N.I.; Bender, K.A.; Lagos, M.; Marquardt, C.M.; Marsac, R.; Montoya, V.; Geckeis, H. Anal. Chem. 2015, 87, 9786-9794.
- (37) NIST Standard Reference Database 46 v8, NIST Critically Selected Stability Constants of Metal Complexes Database, U.S. Department of Commerce, Washington, DC, 2004.
- (38) Nebel, E.; Schwabe, K. Phys. Chem., 1969, 224, 29-50.
- (39) Fietzke, J.; Liebetrau, V.; Günther, D.; Gürs, K.; Hametner, K.; Zumholz, K.; Hansteen, T.H.; Eisenhauer, A. J. Anal. At. Spectrom. 2008, 23, 955-961.
 - (40) Epov, V.N.; Berail, S.; Jimenez-Moreno, M.; Perrot, V.; Pecheyran, C.; Amouroux, D.; Donard, O.F.X. Anal. Chem. 2010, 82, 5652-5662.
 - (41) Rodriguez-Gonzalez, P.; Epov, V.N.; Pecheyran C.; Amouroux, D.; Donard, O.F.X. Mass. Spectrom. Rev. 2012, 31, 504-521.
 - (42) Boulyga, S.; Konegger-Kappel, S.; Richter, S.; Sangely, L. J. Anal. At. Spectrom. 2015, 30, 1469-1489.
 - (43) Jakopic, R.; Aregbe, Y.; Richter, S.; Zuleger, E.; Mialle, S.; Balsley, S.D.; Repinc, U.; Hiess, J. J. Radioanal. Nucl. Chem. 2017, 311, 1781-1791.
 - (44) Morgenstern, A.; Apostolidis, C.; Carlos-Marquez, R.; Mayer, K.; Molinet, R. Radiochim. Acta 2002, 90, 81-85.
 - (45) Vadja, N.; Törvenyi, A.; Kis-Nenedek, G.; Kim, C.K. Radiochim. Acta 2009, 97, 9-16.

	²³⁵ U/ ²³⁸ U	²³⁴ U/ ²³⁸ U	²³⁶ U/ ²³⁸ U	
IRMM 184				
Certified value	0.0072623(22)	0.0000528(31)	0.000002	
Apex signals	40 - 42 mV	0.15 - 0.19 mV	-	
SLR (2σ ‰, a* ‰) n=5	0.0072559 (0.6‰, -0.9‰)	0,0000530 (19.2‰, 3.7‰)	-	
PAI (2σ ‰, a* ‰) n=5	0.0072559 (0.6‰, -0.9‰)	0.0000263 (770‰, 50‰)	-	
IRMM 187				
Certified value	0.047325(14)	0.00038700(16)	0.000071965(39)	
Apex signals	480 - 680 mV	3.9 - 5.4 mV	0.8 - 1.1 mV	
SLR (2σ ‰, a* ‰) n=5	0.047329 (1.2‰, 0.08‰)	0.0003875 (1.2‰, 1.2‰)	0.0000715 (6.6‰, 6.0‰)	
PAI (2σ ‰, a* ‰) n=5	0.047345 (1.2‰, 0.4‰)	0.0003838 (2.0‰, 8.2‰)	0.0000603 (67.4‰, -162‰)	

Table1: ${}^{235}\text{U}/{}^{238}\text{U}$, ${}^{234}\text{U}/{}^{238}\text{U}$ and ${}^{236}\text{U}/{}^{238}\text{U}$ isotope ratios obtained on two uranium isotopic standards (IRMM 184 and 187) by CE-MC-ICPMS. Two different methods of data treatment (linear slope regression (LRS) and peak area integration (PAI)) are compared. Mass bias is corrected with the IISSB method using the IRMM 186 reference standard solution. Apex signals of ${}^{235}\text{U}$, ${}^{234}\text{U}$ and ${}^{236}\text{U}$ are indicated. Standard deviations of the n measurements are expressed at k=2. *a represents the accuracy evaluated by the relative difference between the measured and the reference values of the isotopic standard. Standard deviation of the n measurements are expressed at k=2.

ACS Paragon Plus Environment

	²³⁵ U/ ²³⁸ U	²³⁴ U/ ²³⁸ U	²³⁶ U/ ²³⁸ U
Spent fuel MOX			
TIMS value (uncertainty)	0.001320(3)	0.000261(2)	0.000331(2)
Apex signals	100 - 236 mV	2.0 - 4.5 mV	2.6 - 6.1 mV
CE-MC-ICPMS, LRS (2σ, ‰, b*‰) n=4	0.001318 (1.6‰, -1.5‰)	0.000259 (6.2‰, -7.7‰)	0.000335 (2.6‰, 13‰)

	²³⁸ Pu/ ²³⁹ Pu	²⁴⁰ Pu/ ²³⁹ Pu	²⁴¹ Pu/ ²³⁹ Pu	²⁴² Pu/ ²³⁹ Pu
Spent fuel MOX				
TIMS value (uncertainty)	0.1164(4)	0.9122(18)	0.3600(8)	0.3543(7)
Apex signals	9 - 14 mV	70 - 105 mV	27 - 42 mV	27 - 42 mV
CE-MC-ICPMS, LRS (2σ ‰, b*‰) n=5	0.1160 (4.2‰, 3.4‰)	0.9122 (0.4‰, 0.04‰)	0.3592 (1.0‰, -2.2‰)	0.3543 (0.8‰, 0.08‰)

Table 2 : Results of uranium and plutonium isotope ratios obtained by CE-MC-ICPMS on a spent nuclear fuel sample. Apex signals for 238 Pu, 240 Pu, 241 Pu, 242 Pu, 235 U, 234 U and 236 U are indicated. *b represents the bias evaluated by the relative difference with the reference values obtained by TIMS after ion exchange resin separation.

1	
1	
2	
3	
4	
-	
5	
6	
7	
0	
0	
9	
10	
11	
11	
12	
13	
14	
1 -	
15	
16	
17	
10	
10	
19	
20	
21	
21	
22	
23	
24	
25	
25	
26	
27	
28	
20	
29	
30	
31	
22	
32	
33	
34	
25	
22	
36	
37	
20	
50	
39	
40	
41	
40	
42	
43	
44	
15	
45	
46	
47	
<u>4</u> 8	
-10	
49	
50	
51	
51 E2	
52	
53	
54	
55	
55	
56	

60

		"Conventional" protocol ^{*1}	New analytical approach by EC- ICPMS-MC
Liquid waste volume		20-50 ml	500 μl
Quantity of elements for one	U	2 µg	4 ng
analysis	Pu	500 ng	300 pg
Volume of sample injected ^{*2}		25 µl	19 nl
Analysis time (hours) *3		20	6

*1 the conventional protocol consist of a separation step by anion exchange chromatography and off-line measurements by TIMS.⁴
 *2 for concentration of U and Pu in a solution of MOx nuclear fuel samples around 250 ppm and 18 ppm of U and Pu respectively.
 *3 including redox cycle, separation and isotope ratio measurements.

Table 3: Comparison of the "conventional" protocol with the new analytical approach developed in this work in terms of waste, quantity of elements, sample volume and analysis time.

