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Abstract. — Fuel pins are the first containment barriers of a sodium fast reactor, and their integrities have to be 
preserved during a dynamical load. Pins are included in an assembly with mounting gaps, to allow them to swell 
during the life cycle of the reactor; so they are subjected to shock and contact at the early ages. A numerical 
method has been chosen with the aim to determine the dynamical behavior of a large system with a lot of 
contacts. The validity of the method is confronted for a basic issue to semi-analytical solution. Then, dynamical 
behavior of an isolated pin has been studied experimentally and numerically, with a non-linear representative 
contact law. Numerical method is appropriate to assess contact forces caused for pins. 
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Nomenclature 

Nomenclature 

𝑈: Deflection vector m : Mass of the beam 

𝐹𝑠: Impact forces 𝑴, 𝑪, 𝑲 : Mass, damping and stiffness matrices – physical basis 

𝐹: External forces �̅�, �̅�, �̅� ∶ Mass, damping and stiffness matrices – modal basis 

𝛿: Contact deflection 𝜉𝑖  : Structural damping – mode i 

𝑑𝑡 : Time step 𝑘𝑠 : Shock stiffness  

𝑑𝑡𝑠: Contact time 𝑘𝑏 ∶ Bending stiffness 

Φ𝑖: Mode shape – mode i 𝑅𝑘 : Ratio of shock and bending stiffness. (𝑘𝑠/𝑘𝑏) 

𝑄𝑖 : Modal displacement – mode i 𝑓𝑡𝑟𝑢𝑛𝑐: Frequency truncation of numerical computation 

𝜔𝑖: Pulsation – mode i 𝑅𝑓𝑡𝑟𝑢𝑛𝑐: Ratio of 𝑓𝑡𝑟𝑢𝑛𝑐 and first natural mode frequency 

E : Young’s Modulus 𝐸𝑟𝑟, 𝐸𝑟𝑟𝐹: Error indicator on PSD and forces 

I : Inertia 𝑢0, �̇�0: Initial displacement and velocity  

L : Length  𝑑1: Release amplitude 

Γ: Power spectral density  

 

I. Introduction 

I.1 Industrial context 
 

In sodium fast reactor (SFR), the fuel is enclosed in pins, composed of slender steel tubes (the clad) and a spacer 

wire coiled into a helix around the clad (Figure 1-a). The pin has a very heterogeneous distribution of mass since 

fuel pellets represent 70% of the total mass. Details on design are given by (Beck et al., 2017). 

 

  

Figure 1 – ASTRID fuel pin (a) and sectional view of the pins bundle in its wrapper tube (b) 

a) b) 
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Fuel pins are arranged in a bundle enclosed inside a hexagonal tube (Figure 1-b). Many hundreds assemblies are 

main constituents of the reactor core. These assemblies are maintained by their spikes (Figure 2) at the bottom of 

the core in a lattice. During a dynamic loading, the core lattice shakes assemblies which will bend and impact 

each other locally on spacer pads. The shock will generate acceleration on pins and cause dynamic stresses. 

Then, a high number of pin-to-pin collisions, up to 15000, will occur in the bundle between the spacer wire of a 

pin and the clad of a nearby one. 

 

 

Figure 2 - Schematic of two assemblies 

The industrial aim is to develop a calculation methodology to identify contact force on pins caused by 

dynamic loads (earthquake, handling or transportation), throughout the life of the assembly. Then, a local model 

will allow assessing maximum stresses in pins and sizing them. The accuracy of the calculation methodology has 

to be approved by analytical and experimental reference. This work differs from the other ones on the dynamic 

of fuel assemblies (Broc et al., 2014; Moussallam et al., 2011) because the study is focused on the pins bundle 

without fluid. 

I.2 Contact dynamics modelling 
 

Multibody collisions are one of the strongest non-linearity in mechanics. Contact modelling is an ancient 

topic, which starts with works of  (Hertz and al., 1896) on the contact between two optical lenses. Many authors 

have expanded thereafter this theory by introducing friction, tangential force and dynamic effects (Johnson, 

1985; Stronge, 2004). But, the numeric implementation of a contact remains very complex, whereas it is usually 

met in industrial context. Impacts occur during very brief time, and cause high forces and accelerations (Gilardi 

and Sharf, 2002). Standard numerical methods struggle to converge or to remain stable, leading to inaccurate or 

very slow calculation (Bathe, 2006). Several dedicated integration scheme have been created to solve contact 

problem, using a time-step cutting (Bathe, 2007), energy consistency (Chawla and Laursen, 1998) or high 

frequency damping (Tchamwa and al., 1999). There are two main kinds of integration scheme, implicit ones for 

which is an iterative process minimizing the error, and the explicit ones where the calculation is direct. In most 

cases, explicit schemes are more relevant to deal with contact issue, because they are way faster than implicit 

ones and remain stable as long as time step is short (less than a millisecond) (Bathe, 2006). But implicit schemes 

are sometimes used when it is preferable to use a larger time step (Khenous and al., 2006; Thenint, 2011). 

The integration scheme choice and the manner to model contact are closely linked so they have to be chosen in 

accordance. Location of contact is usually founded with a dedicated algorithm but it’s not necessary in the 

bundle because contact zones are known. There are several ways to model the contact  in structural dynamic, 

summarized by (Gilardi and Sharf, 2002). There are two major categories: non-smooth laws, for which the 

contact is instantaneous and the velocity is discontinuous, versus smooth laws for which solids in contact will be 

able to interpenetrate each other. In non-smooth dynamics, a restitution parameter is introduced to model the 

damping (Jean, 1999; Schindler and Acary, 2014; Thornton, 1997), the ratio between absolute values of velocity 

before and after the shock. In smooth dynamic, a non-linear force is introduced with a penalty method depending 

on the distance between reference points of solids in contact (Goldsmith, 1960). Several formulations of the 

contact laws can be found in literature (Gilardi and Sharf, 2002), from the expression of  (Hertz et al., 1896) or 

more complex formulation such as (Thornton, 1997). These laws have been confronted to solve the Newton’s 

cradle (Donahue and al., 2008). In order to assess contact forces, a smooth law is best suited  and can be 

introduced in a computation with an explicit integration scheme (Gilardi and Sharf, 2002). 
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Dynamic simulations involving contacts require vast computing power, because of the necessity to use short 

time-step. There are several ways to simplify the problem, for instance modal analysis which can be used for 

non-linear calculation (Antunes, 1991) even if it’s not commonly done. If the modal truncation is chosen 

efficiently (Rieger, 1986), it allows to reduce drastically degrees of freedom of the model and thus lower 

computation time, allowing the simulation of whole system. 

 

 

II. Numerical model and computation methodology 
 

All calculations shown in the follow-up have been made with the finite-element software CAST3M for 

numerical aspects and Scilab for reference computations. The final goal of the study is to be able to assess the 

dynamical behavior of the full bundle of 217 pins, with 15000 contact zones and thus it is needed to choose a 

suitable numerical methodology.  

 

 

Figure 3 – a) Sub-assembly section. b) Schema of contacts 

 

Contact points are known, they are located between a wire and a clad (Figure 3-a) or a wire and one surface of 

the wrapper tube (Figure 3-b), depending on the orientation of the wires. Due to the large size of the issue, shell 

or three dimensional elements are unsuitable. The slenderness ratio between contact points is less than 10, so 

shear effects are not negligible. Therefore it has been chosen to use Timoshenko beams, with a shear coefficient 

linked to the pin’s geometry equal to 0,5 (Cowper, 1966).  

The objective is to define a numerical method suitable for the whole sub-assembly, but in this paper, only the 

behavior of a single pin with its contact is studied to assess the validity of the method. Numerical goal is to solve 

the equation of dynamics with non-linear contact forces, with 𝑴,𝑪 and 𝑲 respectively matrices of mass, damping 

and stiffness of the pin, 𝐹𝑠 non-linear contact forces and 𝑈 the deflection vector. Contact force at a contact point 

𝑓𝑠𝑖 depends on the contact stiffness 𝑘𝑠 and deflection at this point 𝛿𝑖. 

 

 𝑴�̈� + 𝑪�̇� + 𝑲𝑈 = 𝐹𝑠(𝑈), (1) 

 {
𝑓𝑠𝑖

= 𝑘𝑠𝛿𝑖             𝑖𝑓 𝛿𝑖 < 0

𝑓𝑠𝑖
= 0                   𝑖𝑓 𝛿𝑖 > 0

                   (2) 

 

Usually, mechanical numerical computations are made in the physical basis and with implicit integration 

scheme, to have a stable and accurate solution. But computation time is heavily linked to the size of the matrices 

𝑴, 𝑲 and 𝑪 used. So a modal reduction has been chosen. Eigen modes Φ are obtained by solving the following 

equation: 

 

 (𝑲 − 𝜔2𝑴)𝚽 = 0 (3) 



 Thomas Catterou - Numerical strategy for dynamic simulation of impacts on RNR fuel pins 
 

  

4 

 

This calculation gives the eigenvalues 𝜔𝑖  and the eigenvectors Φi of the structure. To solve the dynamic issue, 

we use the formula (1) written on the physical basis. The displacement of the structure is being sought in the 

form (4) using modal analysis, with 𝑄𝑖  modal displacement which depends solely of the time. 

 

 𝑈𝑡 = ∑ Φ𝑖𝑄𝑖(𝑡)

𝑁

1

 (4) 

N is the number of modes considered and is linked with the frequency truncation which will be discussed in 

section III.4. If N is far below the number of degree of freedom of the mesh, the size of the problem is 

considerably decreased. The equation (1) can be re-written using the decomposition (4) : 

 

 �̅��̈� + �̅��̇� + �̅�𝑄 = 𝜱𝑇𝐹𝑠(𝑈) (5) 

�̅�, �̅� and �̅� are respectively modal mass, damping and stiffness matrices projected on modal basis 𝚽. By 

construction, matrices �̅� and �̅� are diagonals. The damping is defined by damping ratio 𝜉𝑖 related to each mode, 

so in this model �̅� is also diagonal. Therefore, computation will be substantially accelerated. 

Contact non-linearities make the implicit scheme convergence very difficult, which lead to unacceptable 

computation time. Consequently, an explicit integration scheme is chosen, for instance the simplest one, the 

central difference scheme (Bathe, 2006). By substituting expression of the central difference scheme in the 

formula (5), it leads to: 

 

 (
1

𝑑𝑡2
�̅� +

1

2𝑑𝑡
�̅�) 𝑄𝑡+𝑑𝑡 = 𝜱𝑇𝐹𝑠

𝑡(𝜱𝑄𝑡) − (�̅� −
2

𝑑𝑡2
�̅�) 𝑄𝑡 − (

1

𝑑𝑡2
�̅� −

1

2𝑑𝑡
�̅�) 𝑄𝑡−𝑑𝑡 (6) 

 

Thus, for every time step, one computation of the modal contribution is simply done (6). Velocities and 

accelerations are derived from the displacement by using expressions of the integration scheme. This 

methodology allows really fast computation, but produce instability as soon as the time step is too large in 

relation to contact time. These aspects will be detailed in section III.5. The contact forces vector is defined on 

“physical” basis, it depends on the deflection vector 𝑈. So during the computation, physical displacement of 

each contact point is calculated, contact forces are deducted from these displacements and contact force are 

projected on the set of modal basis (Boyere, 2010).  

The use of an explicit scheme and the reduction of the number of degree of freedom lead to very fast 

computation. But it is needed to use an analytical reference to choose parameters of the numerical method. Then, 

an experimental validation is carried out in the last section. 

 

III. Numerical parameters sensitivity 

III.1 Presentation of the issue 
 

A simple contact problem is spotlighted here, a clamped beam in flexion which impacts on a spring at the 

other edge. This issue is a simplified model of the dynamic behavior of an assembly impacting another one as 

described in Figure 2 and is similar to the configuration studied by (Yin et al., 2007).The beam is described with 

its bending rigidity 𝑘𝑏 equal to  3𝐸𝐼/𝐿3, with 𝐸 its Young’s modulus, 𝐼 its inertia and L its length and 

represented Figure 4. The problem is solved with the numerical method proposed in section II and compared to a 

reference semi-analytical method described in Annex A. 

 

 

Figure 4 - Clamped beam impacting on a spring. 

 

A calculation made with modal analysis requires defining a modal truncation, which means a maximum of 

natural frequency. The influence of this parameter will be the first step of our comparison. Then time step choice 
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is very important in an explicit computation. On one hand, a large time step may cause integration scheme 

instability, on the other hand, a very small time step will increase computation times, storage capacity needed, 

and doesn’t always lead to more accurate results. Finally, the influence of the spatial discretization, that means 

the number of elements 𝑛𝑒𝑙𝑒𝑚 used to model the beam, will be analyzed in this section.  

 

III.2 Adimensionnal parameters 
 

The numerical problem of the clamped beam impacting on a spring is solved with the Finite Element 

software CAST3M. Computations have been made with the explicit integration scheme of central differences 

and using projection on modal basis described in section II. All the results are observed according to the 

dimensionless factor 𝑅𝑘, ratio of bending and shock stiffnesses, which represent the ‘hardness’ of the contact (7). 

The maximal 𝑅𝑘 value which can be found in the pin’s bundle is about 3000. 
 

 𝑅𝑘 =
𝑘𝑠

𝑘𝑏

=
𝑘𝑠𝐿3

3𝐸𝐼
 (7) 

 

The frequency truncation has a significant effect on result and will be observed through another dimensional 

factor, with 𝑓0 the first eigenmode frequency of the fixed-free beam : 

 

 

𝑅𝑓𝑡𝑟𝑢𝑛𝑐 =
𝑓𝑡𝑟𝑢𝑛𝑐

𝑓0

 

𝑓0 =
1,76

𝜋𝐿2
√

𝐸𝐼

𝜌𝑆
 

(8) 

 

The beam used is representative to the full assembly. Its parameters are 𝑘𝑏 = 4,5.105𝑁/𝑚, total mass 𝑚 =
127𝑘𝑔 and the computation time step is 𝑑𝑡 =  5.10−5𝑠.  

 

Figure 5 show the displacement of the free-edge of the beam during time obtained by numerical and reference 

method for two values of 𝑅𝑓𝑡𝑟𝑢𝑛𝑐. Numerical estimation is way better when a high number of modes are 

considered, so when 𝑅𝑓𝑡𝑟𝑢𝑛𝑐 is high (Figure 5 – a).  

 

 

Figure 5 - Displacements on the beam's end for numerical computation and analytical reference for 

𝑹𝒌 = 𝟑𝟎𝟎𝟎. a) 𝑹𝒇𝒕𝒓𝒖𝒏𝒄
= 𝟑𝟎𝟎  b) 𝑹𝒇𝒕𝒓𝒖𝒏𝒄

= 𝟏𝟎 

 

The contact force is a very short phenomenon. Figure 6 shows the evolution of the first contact force with the 

analytical and the numerical computation for two values of  𝑅𝑓𝑡𝑟𝑢𝑛𝑐. A high value of 𝑅𝑓𝑡𝑟𝑢𝑛𝑐 is necessary to 

reproduce correctly the contact force. Two contact durations are introduced: 𝑑𝑡𝑠1 the duration of the rebound and 

𝑑𝑡𝑠2 the period of first oscillation during the contact. They will be discussed in section III.3. 
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Figure 6 - Forces on the beam's end for numerical computation (green) and analytical reference (black) for 

𝑹𝒌 = 𝟑𝟎𝟎𝟎. a) 𝑹𝒇𝒕𝒓𝒖𝒏𝒄
= 𝟑𝟎𝟎  b) 𝑹𝒇𝒕𝒓𝒖𝒏𝒄

= 𝟏𝟎 

 

Some assessment tools are necessary to quantify differences between numerical results and references ones. 

An error indicator 𝐸𝑟𝑟 (9) is introduced in order to quantify differences between power spectral densities (PSD) 

Γnum and  Γ𝑟𝑒𝑓 obtained with the two methods. This value falls between 0% (superposed signals) and 100% 

(decorrelated signals), 

 

 𝐸𝑟𝑟 =
𝑚𝑎𝑥(|𝛤𝑛𝑢𝑚 − 𝛤𝑟𝑒𝑓|)

𝑚𝑎𝑥([|𝛤𝑛𝑢𝑚|, |𝛤𝑟𝑒𝑓|])
 (9) 

 

This function accounts for the correlation between numerical curves and reference ones. For instance, 

𝐸𝑟𝑟 = 35% for Figure 5 b).It is globally responsive to amplitude or phase error, but doesn’t take into account 

short signal variations like contacts.  

Thus, another assessment tool based on the ratio of contact forces is used. It compares maximal impact forces 

recorded during the numerical calculation 𝐹𝑠𝑛𝑢𝑚
 and the reference one  𝐹𝑠𝑟𝑒𝑓

:  

 𝐸𝑟𝑟𝐹 =
𝑚𝑎𝑥 (|𝐹𝑠𝑛𝑢𝑚

− 𝐹𝑠𝑟𝑒𝑓
|)

𝑚𝑎𝑥 (|𝐹𝑠𝑛𝑢𝑚
|, |𝐹𝑠𝑟𝑒𝑓

|)
 (10) 

It is defined between 0% (same contact forces) and 100% (contact forces infinitely distinct). The 𝐸𝑟𝑟𝐹  error for 

the curves plotted Figure 6 a) is 𝐸𝑟𝑟𝐹 = 2% and for Figure 6 b), 𝐸𝑟𝑟𝐹 = 50%. These assessment parameters will 

be used to observe the influence of modal truncation, time step choice and spatial discrepancy. There is a link 

between shock duration and minimal value of numerical parameters. The first step of the study is to assess the 

value of the shock duration. 

 

III.3 Shock duration criterion 
 

The value of the contact stiffness will affect the shock duration. The higher the value of 𝑅𝑘, the faster the shock 

will occur and the numerical calculation will require smaller time step and higher frequency truncation. Two 

different characteristic times are defined. The first one is called 𝑑𝑡𝑠1 and corresponds to the rebound duration, 

the period during which bending waves move from contact point and return. For the clamped beam studied here, 

assumption will be made than only the first clamped-spring mode influence can be taken into consideration to 

assume this characteristic time. The first pulsation 𝜔𝑠1 of the clamped-spring configuration is computed thanks 

to the Rayleigh-Ritz method (Rayleigh, 1896) and is described in Annex B.
*
  𝑚1 is the total mass of the pin. 

 

                                                           
*
 Note that pulsation modes in the clamped spring configuration can also be determined semi-analytically (Behn 

et al., 2014) but doesn’t lead to analytic formulation 
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 𝜔𝑠1
2 =

1512 𝑘𝑏

𝑚1

𝑅𝑘
2 + 15 (𝑅𝑘 + 1)

19𝑅𝑘
2 + 459𝑅𝑘 + 5436

 (11) 

 

The shock duration is equal to: 

 

 𝑑𝑡𝑠1 =
𝜋

𝜔𝑠1
 (12) 

 

The expression (12) gives a good estimate of the rebound duration of the beam. But it doesn’t represent the 

hardness of the contact, since when 𝑅𝑘 is high, 𝑑𝑡𝑠1 becomes independent of 𝑅𝑘
†. A second characteristic time 

𝑑𝑡𝑠2 is introduced, depicting the shock duration of a mass impacting on the spring 𝑘𝑠. The mass 𝑚2 considered is 

equal to 3/8 of the total mass of the beam, corresponding to the reaction force on the spring for the static 

problem of a beam submitted to a distributed load. 

 

 𝑑𝑡𝑠2 = 𝜋√
𝑚2

𝑘𝑠
 (13) 

 

The period 𝑑𝑡𝑠2 represents the first vibration period during the contact, whereas 𝑑𝑡𝑠1 represents the full rebound 

duration as illustrated in Figure 6. So the minimal contact duration 𝑑𝑡𝑠 is the minimum of 𝑑𝑡𝑠1 and 𝑑𝑡𝑠2 and is 

plotted Figure 7.  

 𝑑𝑡𝑠 = 𝑚𝑖𝑛(𝑑𝑡𝑠1, 𝑑𝑡𝑠2) (14) 

 

An estimation of 𝑑𝑡𝑠1 and 𝑑𝑡𝑠2 is also given thanks to the semi-analytical model (𝑑𝑡𝑠1_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 and 

𝑑𝑡𝑠2_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒). Formulas (12) and (13) are able to estimate correctly the contact duration of the beam 

regardless of the contact stiffness. 

 

 

Figure 7 – Contact duration depending on Rk 

 

Frequency of the shock is equal to 1/𝑑𝑡𝑠. To model phenomena occurring during the contact duration, frequency 

truncation has to be higher (arbitrarily a factor 4 is used) than the frequency of the shock. 

 

 𝑓𝑡𝑟𝑢𝑛𝑐 >
4

𝑑𝑡𝑠

  (15) 

 

                                                           

†
 When 𝑅𝑘 → ∞, 𝑑𝑡𝑠1 = 𝜋√

19𝑚1

1512𝑘𝑏
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Furthermore, explicit scheme have a standard criterion to avoid divergence (Bathe, 2006) :  
 

 𝑓𝑡𝑟𝑢𝑛𝑐 <
1

4𝑑𝑡
 (16) 

 

Time step have to be chosen depending of the frequency truncation if equation (15) and (16) are respected. 

 

 𝑑𝑡 <
𝑑𝑡𝑠

16
 (17) 

III.4 Modal truncation influence 
 

Exploit high frequency modes will give a better modeling of contact non-linearities, but will increase calculation 

cost and cause instabilities. The function 𝐸𝑟𝑟 and 𝐸𝑟𝑟𝐹  are plotted Figure 8, depending on the stiffness ratio and 

for various modal truncation ratio. The time step chosen is 𝑑𝑡 = 5.10−5𝑠 and 𝑛𝑒𝑙𝑒𝑚 = 150. 

 

Figure 8 - Error function depending on modal truncation  

 

Vertical dotted lines represent the inequality (15) for each value of 𝑅𝑓𝑡𝑟𝑢𝑛𝑐. For a low modal truncation 

(𝑅𝑓𝑡𝑟𝑢𝑛𝑐 = 10) and a 𝑅𝑘 higher than 103, 𝐸𝑟𝑟 is about 34% (Figure 8). It represents an overvaluation of the 

amplitude of about 30% and a phase offset (Figure 5 - b). With a higher modal truncation, analytical and 

numerical displacements are more or less the same and the error function is close to zero (Figure 5 - a). Then, 

when 𝑅𝑘 is very high (>105 here, but the value depends on the time step chosen, see section III.5), computation 

diverges because of shocks.  

Forces are derived three times from the displacement, so higher differences in results are expected. We compare 

ratio of force 𝐸𝑟𝑟𝐹  on the Figure 9. 

 

Figure 9 – Force error function depending on frequency truncation  
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The contact force is overall well computed for low 𝑅𝑘(<50) but the ratio 𝐸𝑟𝑟𝐹 increases for higher 𝑅𝑘 with a 

small frequency truncation. A 𝑅𝑓𝑡𝑟𝑢𝑛𝑐  >  300 is needed to minimize error for 𝑅𝑘 < 3.103 (~20% maximum 

error). When the frequency truncation used doesn’t respect the equation (15), reference and numerical models 

begin to diverge. This observation gives a criterion to choose the frequency truncation depending on the contact 

stiffness. 

III.5 Time discretization influence 
 

The aim of this part is to choose the higher time step ensuring unconditional stability of numerical computation. 

A high frequency truncation, high number of elements and different time steps are used for the simulation 

(𝑅𝑓𝑡𝑟𝑢𝑛𝑐
= 300 𝑎𝑛𝑑 𝑛𝑒𝑙𝑒𝑚 = 150). The time step chosen have to respect equation (16). When the time step 𝑑𝑡 is 

too high, computation diverges regardless 𝑅𝑘. Note that for a structure with damping, minimal time step can be a 

little bit higher (Bathe, 2006). Then, evolution of 𝐸𝑟𝑟 for different values of 𝑅𝑘 is given Figure 10. Criterion (17) 

is given with vertical dotted line on the figure. 

 

Figure 10 - Error function depending on temporal discrepancy 

For 𝑑𝑡 = 1.10−4𝑠, the time step doesn’t comply with criterion (16), so the computation diverges for any 𝑅𝑘. For 

the other values of 𝑑𝑡, numerical results are similar to reference ones (𝐸𝑟𝑟 < 20%), then diverge for high 𝑅𝑘. A 

smaller time step enables good displacement assessment for 𝑅𝑘 > 104, even if criterion (15) on the frequency 

truncation is not verified. But the contact force is misjudged (Figure 11). The frequency truncation is the main 

parameter to take into consideration in the methodology of choice (see section III.7). 

 

 

Figure 11 - Force error function depending on temporal discrepancy 
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III.6 Spatial discretization influence 
 

The finite element method requires discretizing the geometry in quite a few elements. In most case, a substantial 

number of elements increase accuracy but increase also the cost of the computation. Yet, computation showed 

that force and displacement accuracy is marginally affected to the choice of elements length, as long as the 

criterion in the literature (Marburg, 2002) is respected (18): 

 

 

𝑑𝑥 <
𝜆

4
=

𝑐𝑏𝑒𝑛𝑑𝑖𝑛𝑔

4𝑓𝑡𝑟𝑢𝑛𝑐

 

𝑐𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =  √2𝜋𝑓𝑡𝑟𝑢𝑛𝑐√
𝐸𝐼

𝜌𝑆
 

(18) 

Elements have to be small enough to model a bending wave at the frequency 𝑓𝑡𝑟𝑢𝑛𝑐. Otherwise, there is a risk 

making mistake if the contact time is very short, so when 𝑅𝑘 is high. 

 

III.7 Numerical parameters choice methodology 
 

For a dynamic simulation with shock based on modal basis, the choice of frequency truncation is of the utmost 

importance. When the shock stiffness is high confronted to bending stiffness of a structure, it’s needed to 

increase the frequency truncation or the numerical result will be incorrect. Limit values are given by equations 

(15) and (16). Once frequency truncation has been chosen, the choice of time step value is self-evident: it has to 

follow equation (17). To observe very fast phenomena, a lower value of time step is practicable without 

prejudice to the stability of the computation, but results will not be more accurate. Then, spatial discretization 

has to be chosen dependently of the truncation frequency but has a minor effect on the stability and the accuracy 

of the problem. The methodology of choice of numerical parameters for a dynamic simulation with shocks on 

modal basis has to follow the steps given in Table 1.  

This methodology applied to the small fractional horsepower compressor studied by (Yin et al., 2007) gives a 

frequency truncation value 𝑓𝑡𝑟𝑢𝑛𝑐 > 1,51 𝑀𝐻𝑧. Yet, approximatively above this value of frequency truncation, 

results in terms of impact force converged. 

Table 1 - Methodology 

Step Description Criterion 

1 Estimation of shock duration 𝑑𝑡𝑠  

2 Choice of the frequency truncation 𝑓𝑡𝑟𝑢𝑛𝑐 𝑓𝑡𝑟𝑢𝑛𝑐 > 1/4𝑑𝑡𝑠 

3 Choice of time step 𝑑𝑡 𝑑𝑡 < 1/16𝑑𝑡𝑠 
4 Choice of spatial discretization 𝑑𝑥 𝑑𝑥 < 𝑐𝑏𝑒𝑛𝑑𝑖𝑛𝑔/4𝑓𝑡𝑟𝑢𝑛𝑐 

 
IV. Experimental validation 
 

IV.1 Description of the test bed  
 

A test bed has been settled in the CEA of Cadarache, to represent the dynamical behavior of a fuel pin in an 

arrangement similar to the one in the bundle. It is able to load the fuel pin with a shaker and to make free 

bending release experiment. A CAD model of the device is given Figure 12-a). Two rows of contact elements 

are set on each side of the fuel pin. Piezoelectric sensors inserted inside contact elements provide dynamical 

force measurement. Laser sensors provide measurement of the velocity on different points of the pin.  
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a)  

b)  

Figure 12 - a) Cad model of the test bed CARNAC, b) Schematic description of the bending 

tests 

Bending release experiments have been made to compare experimental result with the numerical method 

described above (Figure 12-b)). Several supports have been implemented along the pin except for a free length 

𝑙0. The pin is manually bended through a amplitude 𝑑1 at its edge. Velocity and contact force are measured on a 

contact point at a height 𝑙1. A rigid stop equipped of a piezoelectric sensor is fixed at the same height for of the 

tests. Several parameters have been analyzed: 

 The material used for fake fuel pellets, called here 𝑚𝑎𝑡1 and 𝑚𝑎𝑡2. The distribution of mass is 

respected with each material. 

 The free length: 600, 700 or 800mm with respectively associated mass 316, 376 and 436g. 

 The amplitude of release 𝑑1  

IV.2 Contact law 
 

Experimental results are compared to the ones given by the numerical method set in section II. Mass, free length, 

magnitude of release, and geometrical properties of the beam are issued of characteristics of experiment. Linear 

contact law with stiffness 𝑘𝑠 similar to the section III doesn’t represent well the pin’s geometry. So the contact 

law used is non-linear; it takes into account linear ovalization of the wire and the clad and the hertzian 

deformation on contact areas and (Figure 13).  

 

Figure 13 - Contact model 

Wire’s and clad’s rigidities 𝑘𝑤𝑖𝑟𝑒  and 𝑘𝑐𝑙𝑎𝑑   are computed analytically by using Fourier series decomposition and 

solving a fourth order system of equation ((Madureira and Melo, 2015; Millard and Roche, 1984)). By applying 
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a quasi-punctual force written as a sum of sinus, it’s possible to obtain the ovalization of the tube and cylinder 

depending on the boundary condition of the problem. The ratio between the force amplitude and the 

displacement at the load point gives the linear rigidities. Non-linear spring rigidities between the stop and the 

wire �̃�ℎ1 and between the wire and the clad �̃�ℎ2 have been also calculated analytically using Hertz equations 

(Johnson, 1985). The combination effect of these four springs is calculated using formulas: 

 

 

 

𝛿 = 𝐹 (
1

𝑘𝑤𝑖𝑟𝑒

+
1

𝑘𝑐𝑙𝑎𝑑

) + 𝐹
2
3  (

1

�̃�ℎ1

+
1

�̃�ℎ2

)

2
3

 

𝐹 =  −
𝑏

3𝑎
+ (−

1

2
(𝑞 + √

4𝑝3 + 27𝑞2

27
))

1
3

+ (−
1

2
(𝑞 − √

4𝑝3 + 27𝑞2

27
))

1
3

  

with : 

𝑎 =   
1

𝑘𝑤𝑖𝑟𝑒
+

1
𝑘𝑐𝑙𝑎𝑑

;   𝑏 =  
1

�̃�ℎ1

+
1

�̃�ℎ2

 ;   𝑝 =
𝑏

2

3𝑎2
;   𝑞 =

2𝑏
3

27𝑎3
−

𝛿
𝑎

 

(19) 

 

Numerical values of stiffness are indicated in Table 2. 

Table 2 - Stiffness values 

𝑘𝑐𝑙𝑎𝑑  𝑘𝑤𝑖𝑟𝑒  �̃�ℎ1 �̃�ℎ2 

2,48.106 𝑁/𝑚 1,56.107 𝑁/𝑚 6,5.109 𝑁/𝑚
2
3 5,85.109 𝑁/𝑚

2
3 

 

The whole contact law and the contact law of each of its constituents of the system are plotted Figure 14 : 

 

 

 

Figure 14 - Contact law 

 

IV.3   Comparisons between experiments and numerical method 
 

Comparisons have been made on velocity. During an impact, the absolute value of the velocity decreases 

abruptly, and remains close to zero during the contact time. Then, the pin bounces until another contact time 

(Figure 15). 
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Figure 15 - Experimental measurement of velocity, contact time and rebound  

 

An approximation has been made of a unique modal damping for all fixed-free vibration modes of 3%, which 

corresponds to an average value of the damping generated by dry friction. This choice leads to good result for a 

short duration study on the first contacts. Initial time set when the velocity is maximal. Experimental simulations 

have been made for different free length (600, 700 and 800mm), which means for different ratio 𝑅𝑘 (900 −
1430 − 2130). Numerical parameters chosen and the value of criteria of section III.7 are indicated in Table 3. 

Due to the three lengths of pins considered, they are three values of 𝑑𝑡𝑠 leading to three values of criterions, but 

we use the same numerical parameters for all configurations. Note that frequency truncation chosen is very close 

to lower boundary to accelerate computation and time step is chosen lower than its bound to observe precisely 

contact forces. 

 

Table 3 – Numerical application of criteria for a fuel pin. 

 

Step Criterion Value 

1 𝑑𝑡𝑠 = 1,04 − 0,83 − 0,68 . 10−3𝑠  

2 𝑓𝑡𝑟𝑢𝑛𝑐 > 3846 − 4819 − 5882 𝐻𝑧 𝑓𝑡𝑟𝑢𝑛𝑐 = 6000𝐻𝑧 
3 𝑑𝑡 <  6,5 − 5,1 − 4,2 . 10−5𝑠 𝑑𝑡 = 1.10−5𝑠 

4 𝑑𝑥 < 0,3 𝑑𝑥 = 0,042 

 

Figure 16 shows the comparison of numerical results and experimental measures for 𝑅𝑘 = 900, 1430 and 2130. 

Magnitudes of rebounds diverge after the fourth oscillation: it’s due to the nonlinear damping of the pin which is 

not covered in the numerical method. Furthermore, displacements are a little worse estimated when 𝑅𝑘 increases. 

The comparison between contact forces is given in Figure 17. The peak force and the magnitude of the rebound 

are very well estimated. 
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Figure 16 - Comparison numerical/experimental on velocity for a) 𝑹𝒌 = 𝟗𝟎𝟎, 𝒅𝟏 = 𝟑, 𝟓𝒎𝒎  , 

b) 𝑹𝒌 = 𝟏𝟒𝟑𝟎, 𝒅𝟏 = 𝟖𝒎𝒎 and c) 𝑹𝒌 = 𝟐𝟏𝟑𝟎, 𝒅𝟏 = 𝟒𝒎𝒎 
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Figure 17 - Comparison numerical/experimental on contact force for a) 𝑹𝒌 = 𝟗𝟎𝟎, 𝒅𝟏 =
𝟑, 𝟓𝒎𝒎, 𝑹𝒌 = 𝟏𝟒𝟑𝟎, 𝒅𝟏 = 𝟖𝒎𝒎 and c) 𝑹𝒌 = 𝟐𝟏𝟑𝟎, 𝒅𝟏 = 𝟒𝒎𝒎 
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In the Figure 18, indicators 𝐸𝑟𝑟 and 𝐸𝑟𝑟𝐹  are used again to compare experimental and numerical result. As 

observed on Figure 16 and Figure 17, 𝐸𝑟𝑟 and 𝐸𝑟𝑟𝐹 function are low with reference parameter, the numerical 

approach is able to model accurately experimental results (Figure 18, blue points). The full contact law described 

in section IV.2 is necessary to give a better estimation of the maximal contact force: if only the linear stiffness’s 

(𝑘𝑤𝑖𝑟𝑒  and 𝑘𝑐𝑙𝑎𝑑) are considered, 𝐸𝑟𝑟𝐹 lies between 15% and 45% (Figure 18, red points), but 𝐸𝑟𝑟 is not 

modified. Similarly, using a lower truncation frequency (𝑅𝑓𝑡𝑟𝑢𝑛𝑐 = 100) will worsen the experimental-

numerical correlation (Figure 18, green points). 

 

 

Figure 18 – Errors 𝑬𝒓𝒓 and 𝑬𝒓𝒓𝑭 between numerical method and experiment.  

 

V. Conclusions 
 

A numerical method is chosen to solve dynamical problem with a large number of contact zone in order to size 

fuel pin. It consists of the use of an explicit integration scheme, a modal basis reduction and a smooth 

representation of contacts. An analytical contact duration assessment is proposed and lead to selection criteria for 

numerical parameters. A semi-analytical solution is created for the simple case of a clamped beam impacting on 

a rigid stop and is compared to numerical result to validate criteria on numerical parameters. A test bed has been 

built to observe the real dynamic behavior of fuel pins. The numerical method is confronted to experimental 

result with a good correlation as long as criteria are respected and the contact law is well defined.  

The numerical method can now be used to simulate more complex problem, as the non-linear dynamical 

behavior of a whole fuel pins bundle, with a high accuracy and computation much faster than with reference 

methods.  
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A. Annex A : Reference solution 
 

The problem of a clamped beam impacting on a spring is solved with a semi-analytical method. The system can 

be separated in two linear elementary issues (fixed-free beam and fixed spring) showed  Figure 19 a) and Figure 

19 b). 

 

 

Figure 19 - Clamped spring impact on a spring. a) free edge - b) contact on the spring 

 

A.1 Linear issue resolution 
 

The issue is split in two phases, when the edge of the beam is free, and when the edge is in contact with the 

spring. In each case, we solve the linear problem by projecting it on a modal basis obtained numerically. We can 

project this equation on truncated modal basis by using the decomposition (4) on N modes with natural 

frequency 𝑓𝑁 < 𝑓𝑡𝑟𝑢𝑛𝑐. 𝜔𝑓𝑖 , 𝜉𝑓𝑖 and Φ𝑓𝑖 refer to eigenvalue, damping ratio and eigenvector for the clamped free 

configuration and 𝜔𝑠𝑖 , 𝜉𝑠𝑖  and Φ𝑠𝑖 refer to the same objects for clamped spring configuration. The equations of 

dynamic on modal basis for each mode ‘i’ and each configuration follow below. Note that displacements are 

discretized spatially because of the use of numerical mode but they are temporally continuous. 𝑈0 and �̇�0 are the 

initial displacement and velocity vector. 

 

 For clamped free configuration : 

 

 �̈�𝑖 + 2𝜉𝑓𝑖𝜔𝑓𝑖�̇�𝑖 + 𝜔𝑓𝑖
2 𝑞 = 0, (20) 

 𝑞𝑖(𝑡) = 𝑒−𝜉𝑓𝑖𝜔𝑓𝑖𝑡  (𝑎𝑖 cos (𝜔𝑓𝑖√1 − 𝜉𝑓𝑖
2 𝑡) + 𝑏𝑖 sin (𝜔𝑓𝑖√1 − 𝜉𝑓𝑖

2 𝑡)), 

(21) 

 𝑎𝑖 =
U0.Φ𝑓𝑖

Φ𝑓𝑖.Φ𝑓𝑖
           𝑏𝑖 =

�̇�0.Φ𝑓𝑖

𝜔𝑓𝑖 (Φ𝑓𝑖.Φ𝑓𝑖)
+

𝜉𝑓𝑖

𝜔𝑓𝑖√1−𝜉𝑓𝑖
2

 
U0.Φ𝑓𝑖

Φ𝑓𝑖.Φ𝑓𝑖
 

 

 For clamped spring configuration : 

 

 �̈�𝑖 + 2𝜉𝑠𝑖𝜔𝑠𝑖�̇�𝑖 + 𝜔𝑠𝑖
2 𝑞 = 0, (22) 

 𝑞𝑖(𝑡) = 𝑒−𝜉𝑠𝑖𝜔𝑠𝑖𝑡  (𝑎𝑖 cos(𝜔𝑠𝑖√1 − 𝜉𝑠𝑖
2 𝑡) + 𝑏𝑖 sin(𝜔𝑠𝑖√1 − 𝜉𝑠𝑖

2 𝑡)), 

(23) 
 𝑎𝑖 =

U0.Φ𝑠𝑖

Φ𝑠𝑖.Φ𝑠𝑖
           𝑏𝑖 =

V0.Φ𝑠𝑖

𝜔𝑠𝑖 (Φ𝑠𝑖.Φ𝑠𝑖)
+

𝜉𝑖

𝜔𝑠𝑖√1−𝜉𝑠𝑖
2

 
u0.Φ𝑠𝑖

Φ𝑠𝑖.Φ𝑠𝑖
 

 

The full displacement 𝑈(𝑡) can be calculated by using the expression (4). With this approach, the exact 

solution is unreachable, given that it requires decomposing the solution on infinity of modes, a truncation 

frequency 𝑓𝑡𝑟𝑢𝑛𝑐 is introduced on equation (4) and discussed in section A.4.  

 

A.2 Damping 
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The damping is defined for the clamped free configuration with damping ratios 𝜉𝑓𝑖
. Damping ratios for 

clamped spring configuration 𝜉𝑠𝑖
 is computed in order to follow damping conservation by projecting clamped 

free damping matrix �̅�𝒇 on physical basis 𝑪, then on clamped spring basis �̅�𝒔 (24):  

 

 

�̅�𝑓 =  [

2𝜉f1
𝜔𝑓1

⋯ 0

⋮ ⋱ ⋮
0 ⋯ 2𝜉𝑓𝑁

𝜔𝑓𝑁

] – Damping matrix in clamped-free modal basis 

𝑪 = 𝚽𝒇�̅�𝒇𝚽𝒇
𝑻 – Damping matrix on physical basis 

�̅�𝒔 = 𝚽𝒔
𝑻𝑪𝚽𝒔  - Damping matrix on clamped-spring basis 

(24) 

 

In practice, depending on 𝜉𝑓𝑖, we compute 𝐶 then 𝐶𝑠
̅̅̅̅  numerically. These matrices operations induce non-

diagonal terms in 𝐶�̅� which will be neglected to speed calculation up. Note that even if constant value of 𝜉𝑓𝑖
 are 

chosen, all the coefficient 𝜉𝑠𝑖
 will be different due to differences between the clamped free modal basis and the 

clamped spring modal basis. 

A.3 Transition times finding 
 

A continuous expression in physical basis of displacement is given by (21) and the expression (4). When the 

displacement of the end of beam 𝑢𝐿 changes sign, the configuration will change. A root finding algorithm is used 

to find the next time this displacement becomes zero. Numerous algorithms exist in the literature (Nath Datta, 

2013). For our use, we will choose the secant method which uses an approximation of the velocity. The solution 

is less likely to diverge due to high frequency velocity produced by the contact. Secant method is a quasi-

Newton method (Rougier et al., 2004), which use the following time iteration (25), with : 

 𝑡𝑛+1 = 𝑡𝑛 −
𝑢𝐿(𝑡𝑛)(𝑡𝑛 − 𝑡𝑛−1)

𝑢𝐿(𝑡𝑛) − 𝑢𝐿(𝑡𝑛−1)
 (25) 

The method requires two initials values times near the root which can be chosen analytically by considering only 

the first vibration mode. The convergence is achieved by less than ten iterations. When the time where 

displacement is zero is found, the configuration is changed, so equations relative to the new configuration are 

used and initial conditions are reset. Then the procedure is reiterated until reaching a predetermined number of 

contacts or time. Finally, when all the contact and take off times have been found, we can build the solution by 

using equations (21) for each configuration. 

 

A.4 Reference model parameters 
 

The methodology allows us to simulate analytically the fall on a clamped beam on a spring. It’s a novel 

approach which has the main advantage to solve a non-linear contact issue with continuous expressions using 

beam theory hypothesis. This method is used as follow: 

 

 Modal basis are computed numerically. The modal truncation frequency used is arbitrarily very high 

(15000Hz) 

 First root is detected thanks to the root finding algorithm (section A.3) and then the displacement 

values are calculated on 200 time values between initial time and contact time. Thereafter, the 

second root is estimated, the displacement calculated and so on. 

 Modal damping has to be relatively high to ensure root finding algorithm convergence regardless of 

the parameters used in the following computations (section IV). The modal damping used in 

following studies is:  𝜉𝑓𝑖
= 12%, ∀𝑖. 

 
This computation will be used as reference in the following section with the aim to assess the accuracy of 

numerical method. 
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B. Annex B : Determination of first pulsation of a clamped-spring beam. 
 

For a conservative problem, the ratio between maximum potential energy 𝐸𝑝𝑚𝑎𝑥𝑖  and maximum kinetic energy 

𝐸𝑐𝑚𝑎𝑥𝑖  during time is equal to 

 

 
𝐸𝑝𝑚𝑎𝑥𝑖

𝐸𝑘𝑚𝑎𝑥𝑖

= 1, (26) 

 

and a mode shape can be written 

 

 𝑈𝑖(𝑥, 𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑖𝑡 + 𝜃)Φ𝑖 . (27) 

 

Maximal values of potential and kinetic energy can be expressed according to mode shape for the clamped-

spring problem 

 

 𝐸𝑝𝑚𝑎𝑥𝑖 = 𝐴2∫ 𝐸𝑆 (
𝜕𝑈𝑖

𝜕𝑥
)

2

𝑑𝑉 + 𝑘𝑠𝑈𝑖(𝐿)2        𝐸𝑘𝑚𝑎𝑥𝑖 = 𝜔2𝐴2  ∫
𝜌𝑈𝑖  

2

2
 𝑑𝑉 (28) 

 

It’s possible to deduce an approximation of 𝜔𝑖 with equations (26) and (28) : 

 

 𝜔𝑖
2 =

∫ 𝐸𝑆 (
𝜕𝑈𝑖

𝜕𝑥
)

2

𝑑𝑉 + 𝑘𝑠𝑈𝑖(𝐿)2 

1
2

∫ 𝜌𝑈𝑖
2𝑑𝑉

 (29) 

 

To find the natural pulsation 𝜔1, it is necessary to give a estimation of the first mode shape 𝑈1. To this end, let’s 

solve the static problem of a clamped spring beam subjected to a distributed loading by using the force method. 

The deformation shape can be expressed as a function of the spring stiffness 𝑘𝑠 : 

 

 𝑈𝑠𝑡𝑎𝑡 =
6𝐸𝐼

𝐿3
(−

3𝐿

8𝑘𝑠

+
𝐿4

8𝐸𝐼
) (

𝐿𝑥2

2
−

𝑥3

6
) − (

𝐿2𝑥2

2
+

𝑥4

12
−

𝐿𝑥3

3
) (30) 

 

A hypothesis has to be made that 𝑈1 = 𝑈𝑠𝑡𝑎𝑡 .  Therefore, using (29) and (30). 

 

 𝜔𝑠1
2 =

1512 𝑘𝑏

𝑚

𝑅𝑘
2 + 15 (𝑅𝑘 + 1)

19𝑅𝑘
2 + 459𝑅𝑘 + 5436

 (31) 

 


