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Fuel pins are the first containment barriers of a sodium fast reactor, and their integrities have to be preserved during a dynamical load. Pins are included in an assembly with mounting gaps, to allow them to swell during the life cycle of the reactor; so they are subjected to shock and contact at the early ages. A numerical method has been chosen with the aim to determine the dynamical behavior of a large system with a lot of contacts. The validity of the method is confronted for a basic issue to semi-analytical solution. Then, dynamical behavior of an isolated pin has been studied experimentally and numerically, with a non-linear representative contact law. Numerical method is appropriate to assess contact forces caused for pins.

Introduction

I.1 Industrial context

In sodium fast reactor (SFR), the fuel is enclosed in pins, composed of slender steel tubes (the clad) and a spacer wire coiled into a helix around the clad (Figure 1-a). The pin has a very heterogeneous distribution of mass since fuel pellets represent 70% of the total mass. Details on design are given by [START_REF] Beck | Conceptual design of ASTRID fuel sub-assemblies[END_REF]. Fuel pins are arranged in a bundle enclosed inside a hexagonal tube (Figure 1-b). Many hundreds assemblies are main constituents of the reactor core. These assemblies are maintained by their spikes (Figure 2) at the bottom of the core in a lattice. During a dynamic loading, the core lattice shakes assemblies which will bend and impact each other locally on spacer pads. The shock will generate acceleration on pins and cause dynamic stresses. Then, a high number of pin-to-pin collisions, up to 15000, will occur in the bundle between the spacer wire of a pin and the clad of a nearby one.

Figure 2 -Schematic of two assemblies

The industrial aim is to develop a calculation methodology to identify contact force on pins caused by dynamic loads (earthquake, handling or transportation), throughout the life of the assembly. Then, a local model will allow assessing maximum stresses in pins and sizing them. The accuracy of the calculation methodology has to be approved by analytical and experimental reference. This work differs from the other ones on the dynamic of fuel assemblies [START_REF] Broc | Physical and Numerical Methods for the Dynamic Behavior of the Fast Reactor Cores[END_REF][START_REF] Moussallam | Industrial model for the dynamic behavior of Liquid Metal Fast Breeder Reactor (LMFBR) core[END_REF] because the study is focused on the pins bundle without fluid.

I.2

Contact dynamics modelling

Multibody collisions are one of the strongest non-linearity in mechanics. Contact modelling is an ancient topic, which starts with works of [START_REF] Hertz | Miscellaneous papers[END_REF] on the contact between two optical lenses. Many authors have expanded thereafter this theory by introducing friction, tangential force and dynamic effects [START_REF] Johnson | Contact Mechanics[END_REF][START_REF] Stronge | Impact Mechanics[END_REF]. But, the numeric implementation of a contact remains very complex, whereas it is usually met in industrial context. Impacts occur during very brief time, and cause high forces and accelerations [START_REF] Gilardi | Literature survey of contact dynamics modelling[END_REF]. Standard numerical methods struggle to converge or to remain stable, leading to inaccurate or very slow calculation [START_REF] Bathe | Finite Element Procedures[END_REF]. Several dedicated integration scheme have been created to solve contact problem, using a time-step cutting [START_REF] Bathe | Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme[END_REF], energy consistency [START_REF] Chawla | Energy consistent algorithms for frictional contact problems[END_REF] or high frequency damping [START_REF] Tchamwa | Accurate explicit direct time integration method for computational structural dynamics[END_REF]. There are two main kinds of integration scheme, implicit ones for which is an iterative process minimizing the error, and the explicit ones where the calculation is direct. In most cases, explicit schemes are more relevant to deal with contact issue, because they are way faster than implicit ones and remain stable as long as time step is short (less than a millisecond) [START_REF] Bathe | Finite Element Procedures[END_REF]. But implicit schemes are sometimes used when it is preferable to use a larger time step [START_REF] Khenous | Comparison of two approaches for the discretization of elastodynamic contact problems[END_REF][START_REF] Thenint | Etude d'un système non linéaire à chocs sous excitation large bande : application à un tube de générateur de vapeur[END_REF]. The integration scheme choice and the manner to model contact are closely linked so they have to be chosen in accordance. Location of contact is usually founded with a dedicated algorithm but it's not necessary in the bundle because contact zones are known. There are several ways to model the contact in structural dynamic, summarized by [START_REF] Gilardi | Literature survey of contact dynamics modelling[END_REF]. There are two major categories: non-smooth laws, for which the contact is instantaneous and the velocity is discontinuous, versus smooth laws for which solids in contact will be able to interpenetrate each other. In non-smooth dynamics, a restitution parameter is introduced to model the damping [START_REF] Jean | The non-smooth contact dynamics method[END_REF][START_REF] Schindler | Timestepping schemes for nonsmooth dynamics based on discontinuous Galerkin methods: Definition and outlook[END_REF][START_REF] Thornton | Coefficient of Restitution for Collinear Collisions of Elastic-Perfectly Plastic Spheres[END_REF], the ratio between absolute values of velocity before and after the shock. In smooth dynamic, a non-linear force is introduced with a penalty method depending on the distance between reference points of solids in contact [START_REF] Goldsmith | Impact: the theory and physical behaviour of colliding solids[END_REF]. Several formulations of the contact laws can be found in literature [START_REF] Gilardi | Literature survey of contact dynamics modelling[END_REF], from the expression of [START_REF] Hertz | Miscellaneous papers[END_REF] or more complex formulation such as [START_REF] Thornton | Coefficient of Restitution for Collinear Collisions of Elastic-Perfectly Plastic Spheres[END_REF]. These laws have been confronted to solve the Newton's cradle [START_REF] Donahue | Newton's cradle undone: Experiments and collision models for the normal collision of three solid spheres[END_REF]. In order to assess contact forces, a smooth law is best suited and can be introduced in a computation with an explicit integration scheme [START_REF] Gilardi | Literature survey of contact dynamics modelling[END_REF].

Dynamic simulations involving contacts require vast computing power, because of the necessity to use short time-step. There are several ways to simplify the problem, for instance modal analysis which can be used for non-linear calculation [START_REF] Antunes | Methods for the Dynamical Analysis of Nonlinear Structures[END_REF] even if it's not commonly done. If the modal truncation is chosen efficiently [START_REF] Rieger | The relationhip between finite element analysis and modal analysis[END_REF], it allows to reduce drastically degrees of freedom of the model and thus lower computation time, allowing the simulation of whole system.

II. Numerical model and computation methodology

All calculations shown in the follow-up have been made with the finite-element software CAST3M for numerical aspects and Scilab for reference computations. The final goal of the study is to be able to assess the dynamical behavior of the full bundle of 217 pins, with 15000 contact zones and thus it is needed to choose a suitable numerical methodology. The slenderness ratio between contact points is less than 10, so shear effects are not negligible. Therefore it has been chosen to use Timoshenko beams, with a shear coefficient linked to the pin's geometry equal to 0,5 [START_REF] Chawla | Energy consistent algorithms for frictional contact problems[END_REF].

The objective is to define a numerical method suitable for the whole sub-assembly, but in this paper, only the behavior of a single pin with its contact is studied to assess the validity of the method. Numerical goal is to solve the equation of dynamics with non-linear contact forces, with 𝑴,𝑪 and 𝑲 respectively matrices of mass, damping and stiffness of the pin, 𝐹 𝑠 non-linear contact forces and 𝑈 the deflection vector. Contact force at a contact point 𝑓 𝑠𝑖 depends on the contact stiffness 𝑘 𝑠 and deflection at this point 𝛿 𝑖 .

𝑴𝑈 ̈+ 𝑪𝑈 ̇+ 𝑲𝑈 = 𝐹 𝑠 (𝑈),

{ 𝑓 𝑠 𝑖 = 𝑘 𝑠 𝛿 𝑖 𝑖𝑓 𝛿 𝑖 < 0 𝑓 𝑠 𝑖 = 0 𝑖𝑓 𝛿 𝑖 > 0 (2) (1) 
Usually, mechanical numerical computations are made in the physical basis and with implicit integration scheme, to have a stable and accurate solution. But computation time is heavily linked to the size of the matrices 𝑴, 𝑲 and 𝑪 used. So a modal reduction has been chosen. Eigen modes Φ are obtained by solving the following equation:

(𝑲 -𝜔 2 𝑴)𝚽 = 0 (3)
This calculation gives the eigenvalues 𝜔 𝑖 and the eigenvectors Φ i of the structure. To solve the dynamic issue, we use the formula (1) written on the physical basis. The displacement of the structure is being sought in the form (4) using modal analysis, with 𝑄 𝑖 modal displacement which depends solely of the time.

𝑈 𝑡 = ∑ Φ 𝑖 𝑄 𝑖 (𝑡) 𝑁 1 (4)
N is the number of modes considered and is linked with the frequency truncation which will be discussed in section III.4. If N is far below the number of degree of freedom of the mesh, the size of the problem is considerably decreased. The equation ( 1) can be re-written using the decomposition (4) :

𝑴 ̅ 𝑄 ̈+ 𝑪 ̅ 𝑄 ̇+ 𝑲 ̅ 𝑄 = 𝜱 𝑇 𝐹 𝑠 (𝑈) (5) 
𝑴 ̅ , 𝑪 ̅ and 𝑲 ̅ are respectively modal mass, damping and stiffness matrices projected on modal basis 𝚽. By construction, matrices 𝑴 ̅ and 𝑲 ̅ are diagonals. The damping is defined by damping ratio 𝜉 𝑖 related to each mode, so in this model 𝑪 ̅ is also diagonal. Therefore, computation will be substantially accelerated. Contact non-linearities make the implicit scheme convergence very difficult, which lead to unacceptable computation time. Consequently, an explicit integration scheme is chosen, for instance the simplest one, the central difference scheme [START_REF] Bathe | Finite Element Procedures[END_REF]. By substituting expression of the central difference scheme in the formula (5), it leads to:

( 1 𝑑𝑡 2 𝑴 ̅ + 1 2𝑑𝑡 𝑪 ̅ ) 𝑄 𝑡+𝑑𝑡 = 𝜱 𝑇 𝐹 𝑠 𝑡 (𝜱𝑄 𝑡 ) -(𝑲 ̅ - 2 𝑑𝑡 2 𝑴 ̅ ) 𝑄 𝑡 -( 1 𝑑𝑡 2 𝑴 ̅ - 1 2𝑑𝑡 𝑪 ̅ ) 𝑄 𝑡-𝑑𝑡 (6) 
Thus, for every time step, one computation of the modal contribution is simply done (6). Velocities and accelerations are derived from the displacement by using expressions of the integration scheme. This methodology allows really fast computation, but produce instability as soon as the time step is too large in relation to contact time. These aspects will be detailed in section III.5. The contact forces vector is defined on "physical" basis, it depends on the deflection vector 𝑈. So during the computation, physical displacement of each contact point is calculated, contact forces are deducted from these displacements and contact force are projected on the set of modal basis [START_REF] Boyere | Modélisation des chocs et du frottement en analyse transitoire par recombinaison modale[END_REF]. The use of an explicit scheme and the reduction of the number of degree of freedom lead to very fast computation. But it is needed to use an analytical reference to choose parameters of the numerical method. Then, an experimental validation is carried out in the last section.

III. Numerical parameters sensitivity

III.1 Presentation of the issue

A simple contact problem is spotlighted here, a clamped beam in flexion which impacts on a spring at the other edge. This issue is a simplified model of the dynamic behavior of an assembly impacting another one as described in Figure 2 and is similar to the configuration studied by [START_REF] Yin | Transient responses of repeated impact of a beam against a stop[END_REF].The beam is described with its bending rigidity 𝑘 𝑏 equal to 3𝐸𝐼/𝐿 3 , with 𝐸 its Young's modulus, 𝐼 its inertia and L its length and represented Figure 4. The problem is solved with the numerical method proposed in section II and compared to a reference semi-analytical method described in Annex A.

Figure 4 -Clamped beam impacting on a spring.

A calculation made with modal analysis requires defining a modal truncation, which means a maximum of natural frequency. The influence of this parameter will be the first step of our comparison. Then time step choice is very important in an explicit computation. On one hand, a large time step may cause integration scheme instability, on the other hand, a very small time step will increase computation times, storage capacity needed, and doesn't always lead to more accurate results. Finally, the influence of the spatial discretization, that means the number of elements 𝑛 𝑒𝑙𝑒𝑚 used to model the beam, will be analyzed in this section.

III.2 Adimensionnal parameters

The numerical problem of the clamped beam impacting on a spring is solved with the Finite Element software CAST3M. Computations have been made with the explicit integration scheme of central differences and using projection on modal basis described in section II. All the results are observed according to the dimensionless factor 𝑅 𝑘 , ratio of bending and shock stiffnesses, which represent the 'hardness' of the contact (7). The maximal 𝑅 𝑘 value which can be found in the pin's bundle is about 3000.

𝑅 𝑘 = 𝑘 𝑠 𝑘 𝑏 = 𝑘 𝑠 𝐿 3 3𝐸𝐼 (7)
The frequency truncation has a significant effect on result and will be observed through another dimensional factor, with 𝑓 0 the first eigenmode frequency of the fixed-free beam :

𝑅 𝑓𝑡𝑟𝑢𝑛𝑐 = 𝑓 𝑡𝑟𝑢𝑛𝑐 𝑓 0 𝑓 0 = 1,76 𝜋𝐿 2 √ 𝐸𝐼 𝜌𝑆 (8)
The beam used is representative to the full assembly. Its parameters are 𝑘 𝑏 = 4,5.10 5 𝑁/𝑚, total mass 𝑚 = 127𝑘𝑔 and the computation time step is 𝑑𝑡 = 5.10 -5 𝑠. The contact force is a very short phenomenon. Figure 6 shows the evolution of the first contact force with the analytical and the numerical computation for two values of 𝑅 𝑓𝑡𝑟𝑢𝑛𝑐 . A high value of 𝑅 𝑓𝑡𝑟𝑢𝑛𝑐 is necessary to reproduce correctly the contact force. Two contact durations are introduced: 𝑑𝑡 𝑠1 the duration of the rebound and 𝑑𝑡 𝑠2 the period of first oscillation during the contact. They will be discussed in section III.3. Some assessment tools are necessary to quantify differences between numerical results and references ones. An error indicator 𝐸𝑟𝑟 (9) is introduced in order to quantify differences between power spectral densities (PSD) Γ num and Γ 𝑟𝑒𝑓 obtained with the two methods. This value falls between 0% (superposed signals) and 100% (decorrelated signals),

𝐸𝑟𝑟 = 𝑚𝑎𝑥(|𝛤 𝑛𝑢𝑚 -𝛤 𝑟𝑒𝑓 |) 𝑚𝑎𝑥([|𝛤 𝑛𝑢𝑚 |, |𝛤 𝑟𝑒𝑓 |]) (9) 
This function accounts for the correlation between numerical curves and reference ones. For instance, 𝐸𝑟𝑟 = 35% for Figure 5 b).It is globally responsive to amplitude or phase error, but doesn't take into account short signal variations like contacts.

Thus, another assessment tool based on the ratio of contact forces is used. It compares maximal impact forces recorded during the numerical calculation 𝐹 𝑠 𝑛𝑢𝑚 and the reference one 𝐹 𝑠 𝑟𝑒𝑓 :

𝐸𝑟𝑟 𝐹 = 𝑚𝑎𝑥 (|𝐹 𝑠 𝑛𝑢𝑚 -𝐹 𝑠 𝑟𝑒𝑓 |) 𝑚𝑎𝑥 (|𝐹 𝑠 𝑛𝑢𝑚 |, |𝐹 𝑠 𝑟𝑒𝑓 |) (10) 
It is defined between 0% (same contact forces) and 100% (contact forces infinitely distinct). The 𝐸𝑟𝑟 𝐹 error for the curves plotted Figure 6 a) is 𝐸𝑟𝑟 𝐹 = 2% and for Figure 6 b), 𝐸𝑟𝑟 𝐹 = 50%. These assessment parameters will be used to observe the influence of modal truncation, time step choice and spatial discrepancy. There is a link between shock duration and minimal value of numerical parameters. The first step of the study is to assess the value of the shock duration.

III.3 Shock duration criterion

The value of the contact stiffness will affect the shock duration. The higher the value of 𝑅 𝑘 , the faster the shock will occur and the numerical calculation will require smaller time step and higher frequency truncation. Two different characteristic times are defined. The first one is called 𝑑𝑡 𝑠1 and corresponds to the rebound duration, the period during which bending waves move from contact point and return. For the clamped beam studied here, assumption will be made than only the first clamped-spring mode influence can be taken into consideration to assume this characteristic time. The first pulsation 𝜔 𝑠1 of the clamped-spring configuration is computed thanks to the Rayleigh-Ritz method [START_REF] Rayleigh | The theory of sound[END_REF] and is described in Annex B. * 𝑚 1 is the total mass of the pin.

𝜔 𝑠1 2 = 1512 𝑘 𝑏 𝑚 1 𝑅 𝑘 2 + 15 (𝑅 𝑘 + 1) 19𝑅 𝑘 2 + 459𝑅 𝑘 + 5436 (11)
The shock duration is equal to:

𝑑𝑡 𝑠1 = 𝜋 𝜔 𝑠1 (12) 
The expression (12) gives a good estimate of the rebound duration of the beam. But it doesn't represent the hardness of the contact, since when 𝑅 𝑘 is high, 𝑑𝑡 𝑠1 becomes independent of 𝑅 𝑘 † . A second characteristic time 𝑑𝑡 𝑠2 is introduced, depicting the shock duration of a mass impacting on the spring 𝑘 𝑠 . The mass 𝑚 2 considered is equal to 3/8 of the total mass of the beam, corresponding to the reaction force on the spring for the static problem of a beam submitted to a distributed load.

𝑑𝑡 𝑠2 = 𝜋√ 𝑚 2 𝑘 𝑠 ( 13 
)
The period 𝑑𝑡 𝑠2 represents the first vibration period during the contact, whereas 𝑑𝑡 𝑠1 represents the full rebound duration as illustrated in Figure 6. So the minimal contact duration 𝑑𝑡 𝑠 is the minimum of 𝑑𝑡 𝑠1 and 𝑑𝑡 𝑠2 and is plotted Figure 7.

𝑑𝑡 𝑠 = 𝑚𝑖𝑛(𝑑𝑡 𝑠1 , 𝑑𝑡 𝑠2 ) ( 14 
)
An estimation of 𝑑𝑡 𝑠1 and 𝑑𝑡 𝑠2 is also given thanks to the semi-analytical model (𝑑𝑡 𝑠1 _𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 and 𝑑𝑡 𝑠2 _𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒). Formulas ( 12) and ( 13) are able to estimate correctly the contact duration of the beam regardless of the contact stiffness.

Figure 7 -Contact duration depending on Rk

Frequency of the shock is equal to 1/𝑑𝑡 𝑠 . To model phenomena occurring during the contact duration, frequency truncation has to be higher (arbitrarily a factor 4 is used) than the frequency of the shock.

𝑓 𝑡𝑟𝑢𝑛𝑐 > 4 𝑑𝑡 𝑠 (15) † When 𝑅 𝑘 → ∞, 𝑑𝑡 𝑠1 = 𝜋√ 19𝑚 1 1512𝑘 𝑏
Furthermore, explicit scheme have a standard criterion to avoid divergence [START_REF] Bathe | Finite Element Procedures[END_REF] :

𝑓 𝑡𝑟𝑢𝑛𝑐 < 1 4𝑑𝑡 (16) 
Time step have to be chosen depending of the frequency truncation if equation ( 15) and ( 16) are respected.

𝑑𝑡 < 𝑑𝑡 𝑠 16 (17)

III.4 Modal truncation influence

Exploit high frequency modes will give a better modeling of contact non-linearities, but will increase calculation cost and cause instabilities. The function 𝐸𝑟𝑟 and 𝐸𝑟𝑟 𝐹 are plotted Figure 8, depending on the stiffness ratio and for various modal truncation ratio. The time step chosen is 𝑑𝑡 = 5.10 -5 𝑠 and 𝑛 𝑒𝑙𝑒𝑚 = 150.

Figure 8 -Error function depending on modal truncation

Vertical dotted lines represent the inequality (15) for each value of 𝑅 𝑓𝑡𝑟𝑢𝑛𝑐 . For a low modal truncation (𝑅 𝑓𝑡𝑟𝑢𝑛𝑐 = 10) and a 𝑅 𝑘 higher than 10 3 , 𝐸𝑟𝑟 is about 34% (Figure 8). It represents an overvaluation of the amplitude of about 30% and a phase offset (Figure 5 -b). With a higher modal truncation, analytical and numerical displacements are more or less the same and the error function is close to zero (Figure 5 -a). Then, when 𝑅 𝑘 is very high (>10 5 here, but the value depends on the time step chosen, see section III.5), computation diverges because of shocks. Forces are derived three times from the displacement, so higher differences in results are expected. We compare ratio of force 𝐸𝑟𝑟 𝐹 on the Figure 9.

Figure 9 -Force error function depending on frequency truncation

The contact force is overall well computed for low 𝑅 𝑘 (<50) but the ratio 𝐸𝑟𝑟 𝐹 increases for higher 𝑅 𝑘 with a small frequency truncation. A 𝑅 𝑓𝑡𝑟𝑢𝑛𝑐 > 300 is needed to minimize error for 𝑅 𝑘 < 3.10 3 (~20% maximum error). When the frequency truncation used doesn't respect the equation (15), reference and numerical models begin to diverge. This observation gives a criterion to choose the frequency truncation depending on the contact stiffness.

III.5 Time discretization influence

The aim of this part is to choose the higher time step ensuring unconditional stability of numerical computation. A high frequency truncation, high number of elements and different time steps are used for the simulation (𝑅 𝑓 𝑡𝑟𝑢𝑛𝑐 = 300 𝑎𝑛𝑑 𝑛 𝑒𝑙𝑒𝑚 = 150). The time step chosen have to respect equation ( 16). When the time step 𝑑𝑡 is too high, computation diverges regardless 𝑅 𝑘 . Note that for a structure with damping, minimal time step can be a little bit higher [START_REF] Bathe | Finite Element Procedures[END_REF]. Then, evolution of 𝐸𝑟𝑟 for different values of 𝑅 𝑘 is given Figure 10. Criterion ( 17) is given with vertical dotted line on the figure.

Figure 10 -Error function depending on temporal discrepancy

For 𝑑𝑡 = 1.10 -4 𝑠, the time step doesn't comply with criterion (16), so the computation diverges for any 𝑅 𝑘 . For the other values of 𝑑𝑡, numerical results are similar to reference ones (𝐸𝑟𝑟 < 20%), then diverge for high 𝑅 𝑘 . A smaller time step enables good displacement assessment for 𝑅 𝑘 > 10 4 , even if criterion (15) on the frequency truncation is not verified. But the contact force is misjudged (Figure 11). The frequency truncation is the main parameter to take into consideration in the methodology of choice (see section III.7).

Figure 11 -Force error function depending on temporal discrepancy

III.6 Spatial discretization influence

The finite element method requires discretizing the geometry in quite a few elements. In most case, a substantial number of elements increase accuracy but increase also the cost of the computation. Yet, computation showed that force and displacement accuracy is marginally affected to the choice of elements length, as long as the criterion in the literature [START_REF] Marburg | Six boundary elements per wavelength: is that enough?[END_REF] is respected (18):

𝑑𝑥 < 𝜆 4 = 𝑐 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 4𝑓 𝑡𝑟𝑢𝑛𝑐 𝑐 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 = √2𝜋𝑓 𝑡𝑟𝑢𝑛𝑐 √ 𝐸𝐼 𝜌𝑆 (18) 
Elements have to be small enough to model a bending wave at the frequency 𝑓 𝑡𝑟𝑢𝑛𝑐 . Otherwise, there is a risk making mistake if the contact time is very short, so when 𝑅 𝑘 is high.

III.7 Numerical parameters choice methodology

For a dynamic simulation with shock based on modal basis, the choice of frequency truncation is of the utmost importance. When the shock stiffness is high confronted to bending stiffness of a structure, it's needed to increase the frequency truncation or the numerical result will be incorrect. Limit values are given by equations ( 15) and ( 16). Once frequency truncation has been chosen, the choice of time step value is self-evident: it has to follow equation ( 17). To observe very fast phenomena, a lower value of time step is practicable without prejudice to the stability of the computation, but results will not be more accurate. Then, spatial discretization has to be chosen dependently of the truncation frequency but has a minor effect on the stability and the accuracy of the problem. The methodology of choice of numerical parameters for a dynamic simulation with shocks on modal basis has to follow the steps given in Table 1. This methodology applied to the small fractional horsepower compressor studied by [START_REF] Yin | Transient responses of repeated impact of a beam against a stop[END_REF] gives a frequency truncation value 𝑓 𝑡𝑟𝑢𝑛𝑐 > 1,51 𝑀𝐻𝑧. Yet, approximatively above this value of frequency truncation, results in terms of impact force converged. 

IV. Experimental validation

IV.1 Description of the test bed

A test bed has been settled in the CEA of Cadarache, to represent the dynamical behavior of a fuel pin in an arrangement similar to the one in the bundle. It is able to load the fuel pin with a shaker and to make free bending release experiment. A CAD model of the device is given Figure 12-a Bending release experiments have been made to compare experimental result with the numerical method described above (Figure 12-b)). Several supports have been implemented along the pin except for a free length 𝑙 0 . The pin is manually bended through a amplitude 𝑑 1 at its edge. Velocity and contact force are measured on a contact point at a height 𝑙 1 . A rigid stop equipped of a piezoelectric sensor is fixed at the same height for of the tests. Several parameters have been analyzed:  The material used for fake fuel pellets, called here 𝑚𝑎𝑡 1 and 𝑚𝑎𝑡 2 . The distribution of mass is respected with each material.  The free length: 600, 700 or 800mm with respectively associated mass 316, 376 and 436g.  The amplitude of release 𝑑 1

IV.2 Contact law

Experimental results are compared to the ones given by the numerical method set in section II. Mass, free length, magnitude of release, and geometrical properties of the beam are issued of characteristics of experiment. Linear contact law with stiffness 𝑘 𝑠 similar to the section III doesn't represent well the pin's geometry. So the contact law used is non-linear; it takes into account linear ovalization of the wire and the clad and the hertzian deformation on contact areas and (Figure 13).

Figure 13 -Contact model

Wire's and clad's rigidities 𝑘 𝑤𝑖𝑟𝑒 and 𝑘 𝑐𝑙𝑎𝑑 are computed analytically by using Fourier series decomposition and solving a fourth order system of equation ( [START_REF] Madureira | Deformation of thin straight pipes under concentrated forces or prescribed edge displacements[END_REF][START_REF] Millard | Elementary solutions for the propagation of ovalization along straight pipes and elbows[END_REF]). By applying a quasi-punctual force written as a sum of sinus, it's possible to obtain the ovalization of the tube and cylinder depending on the boundary condition of the problem. The ratio between the force amplitude and the displacement at the load point gives the linear rigidities. Non-linear spring rigidities between the stop and the wire 𝑘 ̃ℎ1 and between the wire and the clad 𝑘 ̃ℎ2 have been also calculated analytically using Hertz equations [START_REF] Johnson | Contact Mechanics[END_REF]. The combination effect of these four springs is calculated using formulas:

𝛿 = 𝐹 ( 1 𝑘 𝑤𝑖𝑟𝑒 + 1 𝑘 𝑐𝑙𝑎𝑑 ) + 𝐹 2 3 ( 1 𝑘 ̃ℎ1 + 1 𝑘 ̃ℎ2 ) 2 3 𝐹 = - 𝑏 3𝑎 + (- 1 2 (𝑞 + √ 4𝑝 3 + 27𝑞 2 27 )) 1 3 + (- 1 2 (𝑞 -√ 4𝑝 3 + 27𝑞 2 27 
))

1 3

with :

𝑎 = 1 𝑘 𝑤𝑖𝑟𝑒 + 1 𝑘 𝑐𝑙𝑎𝑑 ; 𝑏 = 1 𝑘 ̃ℎ1 + 1 𝑘 ̃ℎ2 ; 𝑝 = 𝑏 2 3𝑎 2 ; 𝑞 = 2𝑏 3 27𝑎 3 - 𝛿 𝑎 (19) 
Numerical values of stiffness are indicated in Table 2. The whole contact law and the contact law of each of its constituents of the system are plotted Figure 14 : 

IV.3 Comparisons between experiments and numerical method

Comparisons have been made on velocity. During an impact, the absolute value of the velocity decreases abruptly, and remains close to zero during the contact time. Then, the pin bounces until another contact time (Figure 15).

Figure 15 -Experimental measurement of velocity, contact time and rebound

An approximation has been made of a unique modal damping for all fixed-free vibration modes of 3%, which corresponds to an average value of the damping generated by dry friction. This choice leads to good result for a short duration study on the first contacts. Initial time set when the velocity is maximal. Experimental simulations have been made for different free length (600, 700 and 800mm), which means for different ratio 𝑅 𝑘 (900 -1430 -2130). Numerical parameters chosen and the value of criteria of section III.7 are indicated in Table 3. Due to the three lengths of pins considered, they are three values of 𝑑𝑡 𝑠 leading to three values of criterions, but we use the same numerical parameters for all configurations. Note that frequency truncation chosen is very close to lower boundary to accelerate computation and time step is chosen lower than its bound to observe precisely contact forces.

Table 3 -Numerical application of criteria for a fuel pin.

Step Criterion Value 1 𝑑𝑡 𝑠 = 1,04 -0,83 -0,68 . 10 -3 𝑠 2 𝑓 𝑡𝑟𝑢𝑛𝑐 > 3846 -4819 -5882 𝐻𝑧 𝑓 𝑡𝑟𝑢𝑛𝑐 = 6000𝐻𝑧 3 𝑑𝑡 < 6,5 -5,1 -4,2 . 10 -5 𝑠 𝑑𝑡 = 1.10 -5 𝑠 4 𝑑𝑥 < 0,3 𝑑𝑥 = 0,042

Figure 16 shows the comparison of numerical results and experimental measures for 𝑅 𝑘 = 900, 1430 and 2130.

Magnitudes of rebounds diverge after the fourth oscillation: it's due to the nonlinear damping of the pin which is not covered in the numerical method. Furthermore, displacements are a little worse estimated when 𝑅 𝑘 increases. The comparison between contact forces is given in Figure 17. The peak force and the magnitude of the rebound are very well estimated. In the Figure 18, indicators 𝐸𝑟𝑟 and 𝐸𝑟𝑟 𝐹 are used again to compare experimental and numerical result. As observed on Figure 16 and Figure 17, 𝐸𝑟𝑟 and 𝐸𝑟𝑟 𝐹 function are low with reference parameter, the numerical approach is able to model accurately experimental results (Figure 18, blue points). The full contact law described in section IV.2 is necessary to give a better estimation of the maximal contact force: if only the linear stiffness's (𝑘 𝑤𝑖𝑟𝑒 and 𝑘 𝑐𝑙𝑎𝑑 ) are considered, 𝐸𝑟𝑟 𝐹 lies between 15% and 45% (Figure 18, red points), but 𝐸𝑟𝑟 is not modified. Similarly, using a lower truncation frequency (𝑅 𝑓𝑡𝑟𝑢𝑛𝑐 = 100) will worsen the experimentalnumerical correlation (Figure 18, green points).

Figure 18 -Errors 𝑬𝒓𝒓 and 𝑬𝒓𝒓 𝑭 between numerical method and experiment.

V. Conclusions

A numerical method is chosen to solve dynamical problem with a large number of contact zone in order to size fuel pin. It consists of the use of an explicit integration scheme, a modal basis reduction and a smooth representation of contacts. An analytical contact duration assessment is proposed and lead to selection criteria for numerical parameters. A semi-analytical solution is created for the simple case of a clamped beam impacting on a rigid stop and is compared to numerical result to validate criteria on numerical parameters. A test bed has been built to observe the real dynamic behavior of fuel pins. The numerical method is confronted to experimental result with a good correlation as long as criteria are respected and the contact law is well defined. The numerical method can now be used to simulate more complex problem, as the non-linear dynamical behavior of a whole fuel pins bundle, with a high accuracy and computation much faster than with reference methods.

A. Annex A : Reference solution

The problem of a clamped beam impacting on a spring is solved with a semi-analytical method. The system can be separated in two linear elementary issues (fixed-free beam and fixed spring) showed Figure 19 

A.1 Linear issue resolution

The issue is split in two phases, when the edge of the beam is free, and when the edge is in contact with the spring. In each case, we solve the linear problem by projecting it on a modal basis obtained numerically. We can project this equation on truncated modal basis by using the decomposition (4) on N modes with natural frequency 𝑓 𝑁 < 𝑓 𝑡𝑟𝑢𝑛𝑐 . 𝜔 𝑓𝑖 , 𝜉 𝑓𝑖 and Φ 𝑓𝑖 refer to eigenvalue, damping ratio and eigenvector for the clamped free configuration and 𝜔 𝑠𝑖 , 𝜉 𝑠𝑖 and Φ 𝑠𝑖 refer to the same objects for clamped spring configuration. The equations of dynamic on modal basis for each mode 'i' and each configuration follow below. Note that displacements are discretized spatially because of the use of numerical mode but they are temporally continuous. 𝑈 0 and 𝑈 ̇0 are the initial displacement and velocity vector.

 For clamped free configuration :

𝑞̈𝑖 + 2𝜉 𝑓𝑖 𝜔 𝑓𝑖 𝑞̇𝑖 + 𝜔 𝑓𝑖 2 𝑞 = 0, (20) 
𝑞 𝑖 (𝑡) = 𝑒 -𝜉 𝑓𝑖 𝜔 𝑓𝑖 𝑡 (𝑎 𝑖 cos (𝜔 𝑓𝑖 √1 -𝜉 𝑓𝑖 2 𝑡) + 𝑏 𝑖 sin (𝜔 𝑓𝑖 √1 -𝜉 𝑓𝑖 2 𝑡)), The full displacement 𝑈(𝑡) can be calculated by using the expression (4). With this approach, the exact solution is unreachable, given that it requires decomposing the solution on infinity of modes, a truncation frequency 𝑓 𝑡𝑟𝑢𝑛𝑐 is introduced on equation (4) and discussed in section A.4.

A.2 Damping

The damping is defined for the clamped free configuration with damping ratios 𝜉 𝑓 𝑖 . Damping ratios for clamped spring configuration 𝜉 𝑠 𝑖 is computed in order to follow damping conservation by projecting clamped free damping matrix 𝑪 ̅ 𝒇 on physical basis 𝑪, then on clamped spring basis 𝑪 ̅ 𝒔 (24): In practice, depending on 𝜉 𝑓𝑖 , we compute 𝐶 then 𝐶 𝑠 ̅̅̅̅ numerically. These matrices operations induce nondiagonal terms in 𝐶 ̅ 𝑠 which will be neglected to speed calculation up. Note that even if constant value of 𝜉 𝑓 𝑖 are chosen, all the coefficient 𝜉 𝑠 𝑖 will be different due to differences between the clamped free modal basis and the clamped spring modal basis.

𝑪 ̅ 𝑓 = [ 2𝜉 f 1 𝜔 𝑓 1 ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ 2𝜉 𝑓

A.3 Transition times finding

A continuous expression in physical basis of displacement is given by ( 21) and the expression (4). When the displacement of the end of beam 𝑢 𝐿 changes sign, the configuration will change. A root finding algorithm is used to find the next time this displacement becomes zero. Numerous algorithms exist in the literature [START_REF] Nath Datta | Numerical methods for the root finding problem[END_REF]. For our use, we will choose the secant method which uses an approximation of the velocity. The solution is less likely to diverge due to high frequency velocity produced by the contact. Secant method is a quasi-Newton method [START_REF] Rougier | Numerical comparison of some explicit time integration schemes used in DEM, FEM/DEM and molecular dynamics[END_REF], which use the following time iteration (25), with : 𝑡 𝑛+1 = 𝑡 𝑛 -𝑢 𝐿 (𝑡 𝑛 )(𝑡 𝑛 -𝑡 𝑛-1 ) 𝑢 𝐿 (𝑡 𝑛 ) -𝑢 𝐿 (𝑡 𝑛-1 )

The method requires two initials values times near the root which can be chosen analytically by considering only the first vibration mode. The convergence is achieved by less than ten iterations. When the time where displacement is zero is found, the configuration is changed, so equations relative to the new configuration are used and initial conditions are reset. Then the procedure is reiterated until reaching a predetermined number of contacts or time. Finally, when all the contact and take off times have been found, we can build the solution by using equations (21) for each configuration.

A.4 Reference model parameters

The methodology allows us to simulate analytically the fall on a clamped beam on a spring. It's a novel approach which has the main advantage to solve a non-linear contact issue with continuous expressions using beam theory hypothesis. This method is used as follow:

 Modal basis are computed numerically. The modal truncation frequency used is arbitrarily very high (15000Hz)  First root is detected thanks to the root finding algorithm (section A.3) and then the displacement values are calculated on 200 time values between initial time and contact time. Thereafter, the second root is estimated, the displacement calculated and so on.  Modal damping has to be relatively high to ensure root finding algorithm convergence regardless of the parameters used in the following computations (section IV). The modal damping used in following studies is: 𝜉 𝑓 𝑖 = 12%, ∀𝑖.

This computation will be used as reference in the following section with the aim to assess the accuracy of numerical method.
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 1 Figure 1 -ASTRID fuel pin (a) and sectional view of the pins bundle in its wrapper tube (b)

Figure 3 -

 3 Figure 3 -a) Sub-assembly section. b) Schema of contacts

Figure 5

 5 Figure5show the displacement of the free-edge of the beam during time obtained by numerical and reference method for two values of 𝑅 𝑓𝑡𝑟𝑢𝑛𝑐 . Numerical estimation is way better when a high number of modes are considered, so when 𝑅 𝑓𝑡𝑟𝑢𝑛𝑐 is high (Figure5a).
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 5 Figure 5 -Displacements on the beam's end for numerical computation and analytical reference for 𝑹 𝒌 = 𝟑𝟎𝟎𝟎. a) 𝑹 𝒇 𝒕𝒓𝒖𝒏𝒄 = 𝟑𝟎𝟎 b) 𝑹 𝒇 𝒕𝒓𝒖𝒏𝒄 = 𝟏𝟎
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 6 Figure 6 -Forces on the beam's end for numerical computation (green) and analytical reference (black) for 𝑹 𝒌 = 𝟑𝟎𝟎𝟎. a) 𝑹 𝒇 𝒕𝒓𝒖𝒏𝒄 = 𝟑𝟎𝟎 b) 𝑹 𝒇 𝒕𝒓𝒖𝒏𝒄 = 𝟏𝟎

  Figure 12 -a) Cad model of the test bed CARNAC, b) Schematic description of the bending tests

Figure

  Figure 14 -Contact law
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 16 Figure 16 -Comparison numerical/experimental on velocity for a) 𝑹 𝒌 = 𝟗𝟎𝟎, 𝒅 𝟏 = 𝟑, 𝟓𝒎𝒎 , b) 𝑹 𝒌 = 𝟏𝟒𝟑𝟎, 𝒅 𝟏 = 𝟖𝒎𝒎 and c) 𝑹 𝒌 = 𝟐𝟏𝟑𝟎, 𝒅 𝟏 = 𝟒𝒎𝒎

  a) and Figure 19 b).

Figure 19 -

 19 Figure 19 -Clamped spring impact on a spring. a) free edge -b) contact on the spring

  𝑡) = 𝑒 -𝜉 𝑠𝑖 𝜔 𝑠𝑖 𝑡 (𝑎 𝑖 cos(𝜔 𝑠𝑖 √1 -𝜉 𝑠𝑖 2 𝑡) + 𝑏 𝑖 sin(𝜔 𝑠𝑖 √1 -𝜉 𝑠𝑖 2

  𝑁 𝜔 𝑓 𝑁 ] -Damping matrix in clamped-free modal basis 𝑪 = 𝚽 𝒇 𝑪 ̅ 𝒇 𝚽 𝒇 𝑻 -Damping matrix on physical basis 𝑪 ̅ 𝒔 = 𝚽 𝒔 𝑻 𝑪𝚽 𝒔 -Damping matrix on clamped-spring basis (24)

  

  

  

  

  

  

  

  

Table 1 -Methodology

 1 

	Step	Description	Criterion
	1	Estimation of shock duration 𝑑𝑡 𝑠	
	2	Choice of the frequency truncation 𝑓 𝑡𝑟𝑢𝑛𝑐	𝑓 𝑡𝑟𝑢𝑛𝑐 > 1/4𝑑𝑡 𝑠
	3	Choice of time step 𝑑𝑡	𝑑𝑡 < 1/16𝑑𝑡 𝑠
	4	Choice of spatial discretization 𝑑𝑥	𝑑𝑥 < 𝑐 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 /4𝑓 𝑡𝑟𝑢𝑛𝑐

Table 2 -Stiffness values

 2 

	𝑘 𝑐𝑙𝑎𝑑	𝑘 𝑤𝑖𝑟𝑒	𝑘 ̃ℎ1		𝑘 ̃ℎ2
	2,48.10 6 𝑁/𝑚 1,56.10 7 𝑁/𝑚 6,5.10 9 𝑁/𝑚	2 3	5,85.10 9 𝑁/𝑚	2 3

B.

Annex B : Determination of first pulsation of a clamped-spring beam.

For a conservative problem, the ratio between maximum potential energy 𝐸 𝑝𝑚𝑎𝑥𝑖 and maximum kinetic energy 𝐸 𝑐𝑚𝑎𝑥𝑖 during time is equal to

and a mode shape can be written

Maximal values of potential and kinetic energy can be expressed according to mode shape for the clampedspring problem

It's possible to deduce an approximation of 𝜔 𝑖 with equations ( 26) and ( 28) :

To find the natural pulsation 𝜔 1 , it is necessary to give a estimation of the first mode shape 𝑈 1 . To this end, let's solve the static problem of a clamped spring beam subjected to a distributed loading by using the force method.

The deformation shape can be expressed as a function of the spring stiffness 𝑘 𝑠 :

A hypothesis has to be made that 𝑈 1 = 𝑈 𝑠𝑡𝑎𝑡 . Therefore, using ( 29) and (30).