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Abstract

This paper introduces the KineCluE code that implements the self-consistent mean-field theory for clusters of
finite size. The transport coefficients of a system are then obtained as a sum over cluster contributions (cluster
expansion formalism), each being individually obtained with KineCluE. This method allows to go beyond the
infinitely dilute limit and is an important step in bridging the gap between dilute and concentrated approaches.
Inside a finite volume of space containing the components of a single cluster, all kinetic trajectories are
accounted for in an exact manner. The code, written in Python, adapts to a wide variety of systems, with
various crystallographic systems (eventually strained), defects and solute types and number, and various jump
mechanisms, including collective ones. The code also features interesting tools such as the sensitivity study
routine which allows to identify the most important jump frequencies to get accurate transport coefficients.

Keywords: Phenomenological coefficients, Coarse graining, Diffusion, Cluster expansion, Alloy kinetics,
Random walk

PROGRAM SUMMARY

Program Title: KineCluE (KINEtic CLUster Expansion)

Licensing provisions: LGPL
Programming language: Python 3.6

Nature of problem: Providing a general method for
computing transport coefficients from atomic jump
frequencies, taking into account kinetic correlations.

Solution method: The program relies on the self-
consistent mean field theory. The system is described in
terms of lattice sites, defects and jump mechanisms. The
first part of the code translates the diffusion problem for
such system into an analytical linear eigenvalue problem.
The second part of the code assigns numerical values
to each analytical variable and then solves the linear
problem.

∗Corresponding author.
E-mail address: thomas.schuler@cea.fr

1. Introduction

Atomic transport in solids has attracted enormous
experimental[1] and theoretical[2, 3] attention over
the past 70 years. It is still a challenging prob-
lem in various ways. In the first place, the mi-
croscopic dynamical rules determining the macro-
scopic diffusion coefficients are becoming more and
more complex as the investigations based on the
density functional theory (DFT)[4] provide an in-
creasingly detailed description of the atomic trans-
port mechanisms [5–7]. In addition, the effort of
solving the N-body problem of N interacting species
diffusing on a lattice has been mainly focused on
the limiting case of two-body diffusion problems
both in dilute [3] and–with simplifying assumptions–
concentrated alloys [8–13]. Three-body diffusion
problems have only been tackled in very simple
systems[14, 15]. Besides, the experimental charac-
terization of atomic transport at low temperature is
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in general not feasible, and only some of the trans-
port coefficients can be experimentally determined.
Thanks to the progress of DFT applied to the calcu-
lation of migration barriers [16–18], atom jump fre-
quency databases are in construction for metallic al-
loys [6, 19–22], but also for ceramics [23, 24] and
semi-conductors [25–29]. The use of these databases
is mainly dedicated to the study of self- and solute
diffusion [19, 21]. Much less attention has been paid
to the estimation of the full Onsager matrix [30], al-
though the latter is essential to investigate flux cou-
pling between point defects and atomic species oc-
curring in systems driven by a supersaturation of
point defects, in materials submitted to irradiation
[31, 32] as well as during thermal quenching treat-
ments [33] or under severe plastic deformation [34].

In most cases, diffusion mechanisms in solids are
mediated by point defects, the most frequent ones
being the exchange of an atom with a first nearest
neighbor (1NN) vacancy (a vacant site of the lat-
tice) and the exchange of an atom with a 1NN self-
interstitial. One of the most stable interstitial config-
uration is the dumbbell (or split-interstitial) config-
uration: a directional pair of atoms sharing a lattice
site. This is a complex mechanism possibly leading
to a modification of the initial dumbbell composition
and direction, and there is still no exact calculation of
the associated transport coefficients even in the lim-
iting case of an infinite dilute alloy (a single point
defect and solute atom in a host matrix) [11, 35–37].
Due to the small concentration of point defects, the
successive jumps of a given atom are correlated be-
cause the probability of making several exchanges
with the same point defect is larger than the proba-
bility of making exchanges with different point de-
fects. These kinetic correlations related to the prob-
ability of the PD to perform return paths slow down
the diffusion of a tracer atom and are the main con-
tributors to the off-diagonal Onsager coefficients LAB

between two atomic species A and B. Thus, they de-
termine the sign and the amplitude of flux couplings.
In the limiting case of an infinite dilute alloy con-
taining a vacancy, automated computational schemes
have allowed to achieve the calculation of transport
coefficients for long–range thermodynamic interac-
tions between solute and point defect [6, 22, 38–
45]. At the origin of these numerical schemes, there

are new theoretical developments based either on the
Self-Consistent Mean Field theory (SCMF) [41] or
on a Green function formalism [15, 44–46]. Indeed,
even though computing a macroscopic transport co-
efficient from microscopic jump rates is a well de-
fined problem, many efforts are still needed to find
the general solution.

Within a diffusion theory, one describes the evo-
lution of an alloy by means of a microscopic mas-
ter equation. One starts from a simplified descrip-
tion of the system as a rigid lattice, whose sites are
occupied by either atoms or point defects. Tran-
sitions from one configuration to another are fixed
by the constraints of the jump mechanisms. These
transitions determine the evolution of the distribu-
tion function, e.g. the probability of every config-
uration as a function of time. Solving the master
equation and computing the time-dependent distribu-
tion function involves finding a non-linear eigenvalue
problem coupled to the unknown diffusion driving
forces, i.e., the gradients of chemical potentials. At
first order in the diffusion driving forces and under
a stationary condition, the problem becomes a lin-
ear eigenvalue problem, the eigenvalues correspond-
ing to the contribution of the kinetic correlations to
the Onsager coefficients. An exact solution was ob-
tained only in the particular case of a vacancy-solute
cluster in an infinite medium, this by means of a
Green function formalism. [45] However, there ex-
ists an exact variational formula of the Onsager coef-
ficients. [47, 48] The various diffusion methods pro-
vide upper bounds of the phenomenological coeffi-
cients and can be compared with each others. [49]
Within the SCMF theory, the kinetic correlations are
represented by a non-equilibrium effective Hamil-
tonian. [50] The unknown kinetic interactions of
the effective Hamiltonian are assumed to be a lin-
ear combination of the chemical potential gradients,
leading to a solution in the form of partial differential
kinetic equations. [51] A solute-point defect n-body
kinetic interaction is related to the kinetic equation
of the corresponding n-th moment of the probability
distribution function. [50, 52] In a dilute alloy, the
n-th moments are assimilated to the ensemble prob-
abilities of the various configurations of the solute-
point defect cluster n.[41] The range of a kinetic in-
teraction is directly related to the length of the return
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paths of the cluster components. For example, a 1NN
pairwise kinetic interaction accounts for point defect
two-jump return paths only. A systematic increase of
the kinetic interaction range yields the Onsager coef-
ficient as a series converging to the exact Onsager
solution of a single cluster in an infinite medium.
The use of symmetry operations for the analysis of
the point-defect exchange frequencies and the com-
putation of the Onsager coefficients have recently
widen the investigations to more complex crystallo-
graphic structures, as for example the study of solute
drag in strained systems [53] and in the hexagonal
close packed magnesium crystal [43]. However, we
still miss a kinetic method that can handle complex
diffusion mechanisms among which are the dumb-
bell diffusion mechanism [36], the kick-out mech-
anism [54], the macro-jumps of two-half vacancies
surrounding a large-sized solute atom [55]. In these
cases, the challenge is to achieve a full exploration of
the configuration phase space, use symmetry opera-
tions to reduce the configuration phase space, then
build a graph whose vertices represent the configura-
tions and edges represent the authorized transitions.
Moreover, a systematic method dealing with larger
clusters than a two-body clusters does not exist yet.

We introduce KineCluE, an automated code ded-
icated to dilute alloys with intermediate solute con-
centrations between the infinite dilute and concen-
trated limits. Recently, we have derived an approx-
imation scheme based on a division of the system
into point defect-solute cluster sub-spaces [41, 56].
Computing separately the transport coefficient con-
tribution of each cluster considered isolated in an in-
finite medium and then modeling the system as a lat-
tice gas of clusters leads to a very efficient approach
of diffusion and phase transformations in dilute sys-
tems. Within this new formalism, the total Onsager
matrix is split into intrinsic cluster Onsager matrices,
allowing as well for a proper definition of the cluster
mobility and dissociation rate. The code is versatile
and able to deal with many types of crystal structures,
defect types and jump mechanisms, including collec-
tive ones. Its ability to perform calculations on clus-
ters larger than pairs is an important step in bridging
the gap between dilute and concentrated approaches
of diffusion problems. Section 2 presents the theo-
retical framework behind KineCluE. Then, the tech-

nical implementation of the code is described in Sec.
3, and some examples of results obtained with the
code are presented in Sec. 4.

2. Theoretical background

2.1. Cluster transport coefficients

Transport coefficients appear in the framework of
the thermodynamics of irreversible processes, origi-
nally developed by Onsager [30, 57]:

~Jα = −
∑
β

Lαβ~∇
µβ

kBT
, (1)

where Lαβ is the Onsager transport coefficient (units
of

[
m−1s−1

]
) relating the flux ~Jα of species α under

a chemical potential gradient ~∇µβ of species β, kB is
the Boltzmann constant, T is the absolute tempera-
ture. The Allnatt formula relates the transport coef-
ficients with equilibrium fluctuations of atomic posi-
tions [58]:

Lαβ = lim
τ→∞

〈
∆ ~Rα (τ) ∆ ~Rβ (τ)

〉
6Vτ

, (2)

where V is the total volume of the system, ∆ ~Rα (τ) is
the total displacement vector of atoms of species α
during time-step τ. Starting from this definition and
assuming that the system is sufficiently dilute such
that it can be divided into kinetically independent
subspaces called cluster, we define cluster transport
coefficients [41, 42, 56] . These coefficients are in-
trinsic equilibrium properties of each cluster and the
total transport coefficients are obtained from the re-
lation

Lαβ =
∑

c

[c]ne Leq
αβ (c) , (3)

where Leq
αβ (c) is the transport coefficient of cluster c

(units of
[
m2s−1

]
) , and [c]ne is the concentration of

cluster c per unit volume, not necessarily an equi-
librium concentration. Thus, Eq. 3 defines out-of-
equilibrium macroscopic transport coefficients, and
expanding these coefficients into larger clusters en-
ables going beyond the dilute limit. Cluster trans-
port coefficients defined this way have the same units
as diffusion coefficients. In order to have the same
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units between cluster transport coefficients and trans-
port coefficients, the former must be divided by the
atomic volume, while concentrations in Eq. 3 be-
come site concentrations.

KineCluE aims at computing these cluster trans-
port coefficients using the self-consistent mean-field
theory[50, 52] as a function of strain and tempera-
ture. Since a change in the chemical potentials of
the system affects only the cluster concentrations in
Eq. 3, KineCluE is a crucial step in developing
a general and efficient framework to provide accu-
rate atomic-based kinetic properties for higher-order
models such as object-kinetic Monte Carlo [59–65],
cluster dynamics [66–69] or phase field models [70–
72].

2.2. Self-consistent mean-field theory

The goal of the self-consistent mean-field (SCMF)
theory is to compute transport coefficients as a
thermodynamic–i.e. equilibrium–average of atomic
jumps. A chemical potential gradient driving the sys-
tem out-of-equilibrium is assumed, and the result-
ing flux is computed using a thermodynamic average.
Transport coefficients are then identified from Eq. 1.
The method has been described in details elsewhere
[41, 52], and here we outline the main steps to obtain
a different formulation, more suitable to be coded ef-
ficiently.

It is assumed that the system can be mapped onto
a rigid lattice containing a number of lattice sites,
each being occupied by a single atom or defect. The
microscopic master equation controls the evolution
of a system represented by a configuration vector n
whose components are the site occupation numbers,
nαi (nαi = 1 if species α occupies site i in configuration
n, and nαi = 0 if not):

dP (n, t)
dt

=
∑

ñ

[W (ñ,n) P (ñ, t) −W (n, ñ) P (n, t)] .

(4)
P (n, t) is the probability of having configuration n
at time t, and W (ñ,n) is the rate at which a sys-
tem in configuration ñ switches to configuration n.
It is assumed that the probability of any configu-
ration can be expressed as the product of its equi-
librium probability P0 (n) and a probability δP (n, t)

that corresponds to the deviation from equilibrium
P (n, t) = P0 (n) × δP (n, t), and that δP (n, t) has the
same mathematical form as the equilibrium proba-
bility. However, thermodynamic interactions are re-
placed by an effective Hamiltonian in δP (n, t), to
account for the fact that two equivalent configura-
tions at equilibrium do not necessarily have the same
probability in out-of-equilibrium conditions because
the driving force breaks the symmetry of the system.
In our formulation of the SCMF theory, the effective
Hamiltonian is reduced to nc-body effective interac-
tions where nc is the number of components (defects,
solutes) in cluster c. The introduction of a driving
force reduces the symmetry of the system such that
only the crystal symmetry operations conserving the
chemical potential gradient direction are valid for the
out-of-equilibrium system. We group all symmetry-
equivalent (in the out-of-equilibrium system) config-
urations into effective interaction classes because all
of these configurations will equally contribute to the
non-equilibrium averages. The magnitude of effec-
tive interactions belonging to class σ is denoted νσ
and nσ represents a product of site occupancies for
each of the nc cluster components, times a sign vari-
able. Hence, for a given configuration, nσ = ±1 if
this configuration is identical to one of the instances
of class σ, and =0 if it is not. Knowing the sign vari-
able for one instance of the effective interaction class,
the sign variable of another instance is the same if the
symmetry operation that transforms one instance in
the other maintains the chemical potential gradient
vector, and the sign variable will be the opposite if
the symmetry operation transforms the chemical po-
tential vector into its opposite.

δP (n, t) = exp

δΩ +
∑
i,α

nαi
δµαi
kBT
−

∑
σ

nσ
νσ

kBT

 .
(5)

δµαi is the local (site i) deviation from the equilibrium
chemical potential of species α and δΩ is a normaliz-
ing constant. These quantities (δΩ, δµαi , νσ) are time-
dependent, but we are only interested in the steady-
state flux, thus the time dependence is omitted for
simplicity. Note that using only nc-body effective in-
teractions to describe the deviation from equilibrium
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is not restrictive because it fully characterizes a sys-
tem of nc conserving defects and solutes in a bulk
matrix.

The continuity equation per site reads:

d [α]i

dt
= −

‹
S

~Jαi .d~S = −
∑
sεθαi

Γαi→s, (6)

where [α]i is the probability of site i to be occupied
by species α (hence the local site concentration), Jαi
is the local flux per unit surface of species α from
site i, and Γαi→s is the rate at which atoms of species
α jump from site i to site s, the latter being located at
jumping distance from site i (sεθαi ). The site concen-
tration of species α on site i is also given by the first
moment of the probability distribution function:

[α]i =
〈
nαi

〉oe
=

∑
n

nαi P (n, t) . (7)

〈.〉oe denotes the ensemble average over the out-of-
equilibrium distribution function P (n, t). We com-
bine Eqs. 4-7 to obtain the atomic-scale description
of the local concentration variation over time:

d
〈
nβj

〉oe

dt
=

〈∑
ñ

nβjW (n, ñ) [δP (ñ) − δP (n)]
〉

=

〈∑
ñ

nβjW (n, ñ)

∑
i,α

(
ñαi − nαi

) δµαi
kBT

−
∑
σ

(ñσ − nσ)
νσ

kBT

〉 . (8)

The first equality makes use of the detailed balance
W (ñ,n) P0 (ñ, t) = W (n, ñ) P0 (n, t), and 〈.〉 denotes
the ensemble average over the equilibrium distribu-
tion function P0 (n), implying an implicit sum over
all configurations n. The second equality results
from a first order expansion of the exponential func-
tion in Eq. 5. The expression in Eq. 8 can be greatly
simplified because: 1) for transitions between two
configurations ñ and n where atom β at site j does
not move, all the terms in the bracket will cancel out
when ñ and n are inverted in the double sum over all
configurations of the system (one sum is written ex-
plicitly, while the other is implicit in the 〈.〉 symbol).
Thus the sum over ñ is restricted to configurations

where β is one jump away from site j, that is the en-
semble of sites sεθβj . Note that additional constraints
might exist to make a jump possible, for instance a
substitutional atom needs a vacancy on the destina-
tion site. These constraints, expressed as a product
of site occupation numbers, are denoted mβ

js, and the

rate
[
s−1

]
of such jump is ωβ

js; 2) all sites in the sys-
tem are occupied, either by a "bulk-like" species or
by a solute or defect. Thus only chemical potential
differences appear δµ̄αi = δµαi − δµ

bulk
i , and the sum

over species α is restricted to defects and solutes be-
longing to the cluster; 3) the driving force is assumed
homogeneous in the system: δµ̄αk − δµ̄

α
i = ~ik.~∇µ̄α =

dµik∇µ̄α, where k is the location of species α after the
jump and dµik is the jump distance projected along unit
vector ~eµ which is collinear to the chemical potential
gradient direction (dµik may be positive or negative):

〈∑
sεθβj

nβjm
β
jsω

β
js

∑
α

∑
i,k

nαi ñαk dµik
∇µ̄α
kBT

−
∑
σ

(ñσ − nσ)
νσ

kBT

〉 = −
∑
sεθβj

Γ
β
j→s. (9)

The flux from site j along a particular diffusion
direction ~ed (unit vector) is obtained by summing
Γ
β
j→s over all forward jumps weighted by dd

js/Vat =

~js.~ed/Vat, Vat being the volume per site. Ensem-
ble θβj+ indicates that the summation runs over jumps
with a positive dd

js only. The macroscopic flux along
~ed in a system of volume V is then obtained as an
average over all sites in the system:

Jd,β = ~Jβ.~ed =
1
V

∑
j

nβj
∑
sεθβj+

dd
jsΓ

β
j→s. (10)

Flux Γ
β
j→s is identified from Eq. 9 for each specific

jump, and for convenience, we use a matrix notation:
Jd = − 1

V

(
Λ0

dµ − Λdν
)
, where µ and ν are vectors

which do not depend on the diffusion direction but
rather on the chemical potential gradient direction.
µ is a vector of length Nspecies whose components are
∇µ̄α/kBT (Nspecies being the number of species); ν is a
vector of length Ninter whose components are the val-
ues of the effective interactions νσ/kBT (Ninter being
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the number of effective interactions); Jd is a vector of
length Nspecies whose components are Jd,β, the fluxes
of each species in diffusion direction ~ed; Λ0

d is a ma-
trix of size Nspecies×Nspecies representing the uncorre-
lated contribution to diffusion in direction ~ed, while
the correlated contribution in the same direction is
contained in Λd, a matrix of size Nspecies ×Ninter. The
components of these two matrices are given here-
after:

Λ0
d,βα =

∑
j

∑
sεθβj+

dd
js

〈
nβjm

β
jsω

β
js

∑
i,k

nαi ñαk dµik

〉
, (11)

Λd,βσ =
∑

j

∑
sεθβj+

dd
js

〈
nβjm

β
jsω

β
js (nσ − ñσ)

〉
. (12)

Values for the effective interactions are obtained
from the stationarity of the nc

th-moment equations
d
〈
nα1

i1
nα2

i2
..nαn

in

〉
/dt = d

〈
nσ0

〉
/dt = 0 for each config-

uration of the system corresponding to one instance
σ0 of some effective interaction class σ:

〈
nσ0

∑
j,α

nαj
∑
sεθαj

mα
jsω

α
jsd

µ
js∇µ̄α

〉

=

〈
nσ0

∑
j,α

nαj
∑
sεθαj

mα
jsω

α
jsd

µ
js

∑
σ

(ñσ − nσ) νσ

〉
. (13)

Note that the thermodynamic average 〈.〉 reduces
to one configuration only for each effective interac-
tion σ0. Also, the sum over site j and species α ap-
pears because any component of the nc-component
cluster can potentially move and create non-zero
contributions to both sides of the equation. Equa-
tion 13 is more conveniently written in matrix for-
mat: Mµ = Tν with:

Mσ0α =

〈
nσ0

∑
j

nαj
∑
sεθαj

mα
jsω

α
jsd

µ
js

〉
, (14)

Tσ0σ =

〈
nσ0

∑
j,α

nαj
∑
sεθαj

mα
jsω

α
jsd

µ
js (ñσ − nσ)

〉
. (15)

Then solving for effective interactions consists in
inverting matrix T, and we obtain ν = T−1Mµ.

This solution is inserted in the expression for the
flux: Jd = − 1

V

(
Λ0

dµ − Λdν
)

= − 1
V

(
Λ0

d − ΛdT−1M
)
µ

from which we identify cluster transport coef-
ficients in diffusion direction ~ed: Leq

d,βα (c) =

1
V

(
Λ0

d − ΛdT−1M
)
βα

. The next section shows that M
is proportional to Λt

µ, which allows to save memory
and computational effort.

2.3. Relationship between M and Λ

The expressions for M and Λ present interesting
similarities (Eqs. 12 and 14), and we show that M
can be directly obtained from Λ, and that it does
not require additional calculations. On one hand, the
components of M are a sum over all possible jumps
from a given configuration–corresponding to some
effective interaction–of thermodynamically averaged
jump frequencies. On the other hand, the compo-
nents of Λ are a sum over all possible effective in-
teractions for a given jump. We now derive the rela-
tion between coefficients Mσ0α and Λµ,ασ, where α is
an atom or defect species and σ represents an effec-
tive interaction class and σ0 one particular instance
of this class.

Taking a class of effective interactions σ, all of its
instances give the same contribution to the M matrix
(in absolute value, the sign might differ). Assum-
ing that there are Nσ such instances per site we sum
the Mσ0α components over the ones having a positive
contribution, and the ones having a negative contri-
bution:

NσMσ0α =
∑
σ0εσ+

Mσ0α −
∑
σ0εσ−

Mσ0α. (16)

Also the projection of the jump distance along the
chemical potential gradient direction can have a pos-
itive or negative contribution such that the sum over
sites s in Eq. 14 is divided in two parts:

NσMσ0α =
∑

j

 ∑
σ0εσ+

∑
sεθαj+

χ
∣∣∣∣dµjs∣∣∣∣ − ∑

σ0εσ+

∑
sεθαj−

χ
∣∣∣∣dµjs∣∣∣∣

−
∑
σ0εσ−

∑
sεθαj+

χ
∣∣∣∣dµjs∣∣∣∣ +

∑
σ0εσ−

∑
sεθαj−

χ
∣∣∣∣dµjs∣∣∣∣

 , (17)
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where χ =
〈∣∣∣nσ0

∣∣∣ nαj mα
jsω

α
js

〉
.

In Eq. 12, the flux has been computed in a given
direction d. The absolute value of the reverse flux
is identical, because of translational invariance. It
follows that:

2Λd,ασ =
∑

j

∑
sεθαj+

∣∣∣dd
js

∣∣∣ 〈(nσ − ñσ) nαj m
α
jsω

α
js

〉

−
∑
sεθαj−

∣∣∣dd
js

∣∣∣ 〈(nσ − ñσ) nαj m
α
jsω

α
js

〉 . (18)

The final configuration of a given jump be-
ing the initial configuration of the reverse jump:
dd

js

〈
ñσnαj m

α
jsω

α
js

〉
= −dd

s j

〈
nσnαs mα

s jω
α
s j

〉
and the minus

sign comes from the fact that a given jump necessar-
ily has a contribution to Λ which is opposite to that
of the reverse jump. Using translational invariance:

∑
j

∑
sεθαj+

dd
s j

〈
nσnαs mα

s jω
α
s j

〉
=

∑
j

∑
sεθαj−

dd
js

〈
nσnαj m

α
jsω

α
js

〉
.

(19)
Hence, Eq. 18 becomes:

2Λd,ασ =
∑

j

2 ∑
sεθαj+

∣∣∣dd
js

∣∣∣ 〈nσnαj m
α
jsω

α
js

〉

− 2
∑
sεθαj−

∣∣∣dd
js

∣∣∣ 〈nσnαj m
α
jsω

α
js

〉 . (20)

The last step is to explicit the sum over instances
of the effective interaction class σ, which is hidden
in the thermal average 〈.〉. As previously, this sum is
separated into positive and negative contributions:

Λd,ασ =
∑

j

 ∑
σ0εσ+

∑
sεθαj+

χ
∣∣∣dd

js

∣∣∣ − ∑
σ0εσ+

∑
sεθαj−

χ
∣∣∣dd

js

∣∣∣
−

∑
σ0εσ−

∑
sεθαj+

χ
∣∣∣dd

js

∣∣∣ +
∑
σ0εσ−

∑
sεθαj−

χ
∣∣∣dd

js

∣∣∣ . (21)

Comparing Eqs. 17 and 21, Λd,ασand Mσ0α have
the same structure. They differ by a factor Nσ which

is the number of instances in a given effective in-
teraction class and by the direction along which the
jump vector is projected dd

js and dµjs, respectively.
Taking the diffusion direction as the chemical poten-
tial gradient direction:

NσMσ0α = Λµ,ασ, (22)

and Nσ is easily obtained from symmetry operations
for the out-of-equilibrium crystal. The components
of the M matrix do not depend on the diffusion di-
rection, but rather on the chemical potential gradient
direction ~eµ. Therefore, as long as ~eµ is taken as one
of the diffusion directions (which is always the case
in KineCluE) computing M can be avoided.

It is noteworthy that this relation (Eq. 22) guar-
antees that the cluster transport coefficient matrix is
symmetric, at least for d = µ. Let us define a di-
agonal matrix N which contains the Nσ coefficients.
Then Λt

µ = NM and the cluster transport coefficient
matrix is expressed as:

Leq
d (c) =

Λ0
d − ΛdT−1N−1Λt

µ

V
=
Λ0

d − ΛdT̃−1Λt
µ

V
,

(23)
with T̃ = NT. Because of detailed balance T̃ is sym-
metric, thus Leq

µ (c) is also symmetric.

3. Software implementation

KineCluE is a set of Python scripts aimed at the
computation of the transport coefficients of a cluster,
typically consisting of point defects and/or impuri-
ties embedded in an infinite lattice. In this respect, it
generalizes previous codes dedicated to the applica-
tion of the SCMF method to specific diffusion mech-
anisms [38, 41, 73]. It is run in a Python 3.6 envi-
ronment, with no need for high-performance compu-
tational facilities. It consists mainly of three files: a
module containing the definitions of all classes and
functions, and two scripts to perform the calculation,
first in symbolic and then in numeric form. The for-
mer computes the flux equations (Eq. 9) and pro-
duces the list of configurations and jump frequencies
that need to be considered within the specified inter-
action radius, whereas the latter performs the actual
numerical calculation after the user has provided the
relevant binding and saddle-point energies.
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The code is highly versatile in terms of crystal
structures, defects, cluster size, and jump mech-
anisms. It can treat diffusion of interstitial so-
lutes, vacancies, dumbbells, as well as more com-
plex, possibly multicomponent defects. Many point
defect-mediated diffusion mechanisms for substitu-
tional impurities can be modeled, from the traditional
to the more complex ones, e.g., the recently theorized
half-vacancy mechanism characterizing the diffusion
of oversized solute atoms [55] (see Sec. 4.2.2) . It
works for any crystal structure that can be described
by some periodic vectors and a set of basis atoms,
and in principle for clusters of any size and compo-
sition, although there are some practical limitations
due to computational time increase with cluster size
(see Sec. 4.1.1).

In addition to the tensor of transport coefficients in
three user-defined diffusion directions, the code com-
putes the cluster partition function as well as drag
ratios, correlation factors, and other relevant cluster
properties such as mobilities and dissociation prob-
abilities, quantities that are required for higher scale
models such as cluster dynamics and object kinetic
Monte Carlo.

3.1. Overview
The logical diagram of the code is depicted in Fig.

1. We present here the main features relating the
technical implementation to the SCMF theory ex-
posed in the previous section. For more details and
practical instructions, we refer the reader to the code
documentation.

User input. The main ingredients for the symbolic
calculation are the crystal periodicity vectors and ba-
sis atoms, the cluster components and their sublat-
tices (also called "defects"), and the jump mecha-
nisms. Each of these is represented in the code by an
instance of the corresponding class (Crystal, Defect,
Species, JumpMech). In addition, the SCMF method
requires the definition of a kinetic radius, i.e. the
cutoff distance for effective interactions. To a longer
kinetic radius corresponds a higher amount of effec-
tive interactions, and hence a larger system of equa-
tions; this ensures a better accuracy because more
kinetic trajectories are included. Optionally, a sec-
ond (smaller) cutoff range can be set for thermody-
namic interactions, with the aim of speeding up the

Kinetic radius 

Crystal vectors 

Species and sublattices 

Jump mechanisms 

Read input 

Initialize configurations 

Compute analytical T,  Λ Compute analytical Λ0 

Write analytical T,  Λ, Λ0 

Read analytical matrices 

from file 

Temperature loop 

Output options 

Binding energies 

Saddle-point energies 

Numerical application 

Symmetry operations 

List of defects 

List of jump mechanisms 

List of configurations 

List of effective interactions 

Analytical part 

Numerical part 

Reduced list of configurations 

Reduce configuration list 

with thermodynamic range 

List of jump frequencies 

Find jump frequencies 

between configurations 

Figure 1: Overview of the main steps of the KineCluE code.
Green boxes picture user inputs, and blue boxes represents
some computation made by the code. The outputs of this com-
putation are listed below each box. Note that the code consists
of two parts: first the analytical calculation is performed; sec-
ond the numerical application uses outputs from the analytical
part to produce cluster transport coefficients.

8



calculations and reducing the amount of binding and
saddle-point energies to compute. This is usually
justified by the fact that binding energies between
cluster constituents fade quickly with distance. The
thermodynamic radius parameter should be set to the
minimum value that allows for a correct description
of thermodynamic interactions. The optimal choice
of the kinetic radius parameter is discussed in Sec.
4.1.2.

Symmetry operations. KineCluE uses crystal sym-
metries to minimize the amount of effective inter-
actions. At the beginning of the symbolic calcula-
tion, the symmetry operations conserving the crys-
tal are computed using an algorithm inspired by
the one from Trinkle[45], and then applied to find
all symmetry-equivalent sublattice positions, cluster
configurations, and jumps. In this way, the user
needs to specify only sublattices and jump mech-
anisms that are unique with respect to all possible
symmetry operations.

Interactions and jump frequencies. Symmetry oper-
ations are also employed to construct the phase space
of cluster configurations (see Sec. 3.2) and classify
the configurations in classes of symmetry-equivalent
thermodynamic and effective interactions. For each
newly found configuration, the symmetry operations
are applied to each cluster component to produce all
symmetric configurations, which are then assigned
the same thermodynamic interaction. Analogously,
effective interactions classes are identified by using
the subset of symmetry operations that maintain the
direction of the chemical potential gradient. In ad-
dition, symmetries are exploited to determine the list
of symmetry-unique jump frequencies. For each al-
lowed jump from an initial to a final configuration,
the code applies the symmetry operations on the ini-
tial and final positions of the components simultane-
ously. This ensures that jumps with different saddle
points but same initial or final positions are properly
distinguished, as shown in [43, 74] for hexagonal
close-packed structures. In the course of the devel-
opment of KineCluE, the same subtlety was found
also in Bravais lattices, as is shown in Fig. 2. This
demonstrates the need for using crystal symmetry
analysis to identify unique transitions.

  

a b c

Figure 2: Examples of vacancy (green square) jumps in the
vicinity of a solute (blue sphere) for various lattices: a) hexag-
onal close pack, the smaller and lighter spheres represent-
ing atoms that are below and above the basal plane; b) face-
centered cubic with a substitutional solute; c) face-centered cu-
bic with an interstitial solute. For each system, the two jumps
shown with green arrows are not equivalent because of differ-
ing saddle-point configurations, even though the initial and final
configurations are symmetrically identical.

Symbolic computation. Once the lists of interactions
and jump frequencies are finalized, the code pro-
ceeds to the symbolic calculation of T (Eq. 15),
Λ (Eq. 12), and Λ0 (Eq. 11) (M is directly ob-
tained from Λ, as explained in Sec. 2.3). The
T matrix is built line by line by looping on the
list of symmetry-unique effective interactions: for
each configuration containing this effective interac-
tion, the code explores all configurations that can be
reached with a valid jump, recognizes the effective
interaction corresponding to each final configuration,
and assigns the transition to the corresponding jump
frequencies ωi j. The initial configuration brings in
a negative contribution (−ωi j), and the final config-
uration a positive one (+ωi j) to the matching col-
umn of the T matrix. In the case of homogeneous
driving forces, kinetic correlations only depend on
the anti-symmetric part of the effective interactions
[51]. Hence, the contribution is swapped in sign
if the symmetry operation leading to this particu-
lar instance of the effective interaction class reverses
the chemical potential gradient direction. Concur-
rently, each column of the Λ matrix is obtained by
averaging each species displacement (projected on
the chemical potential gradient direction) among all
valid jumps from each effective interaction configu-
ration. The uncorrelated term Λ0 is instead obtained
by averaging each species net displacement (with no
projections) over all possible thermodynamic states
of the system. Finally, the code computes the parti-
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tion function Z =
∑

t gt exp
(
Et

b/kBT
)
, where t marks

the thermodynamic interaction, Et
b the binding en-

ergy (positive means attraction) and gt the geometric
multiplicity, i.e. the number of symmetry equivalents
(which fully accounts for configurational entropy in-
side the cluster). At this point, the symbolic calcula-
tion is done and the results are stored in a file to be
loaded back by the numerical part of the code.

Strained systems. The symmetry-based approach al-
lows for a straight-forward treatment of strained sys-
tems. The user can define a strain tensor to deform
the crystal and reduce its symmetry. The code au-
tomatically finds the subset of symmetry operations
that remain valid, and evaluates if the broken sym-
metry gives rise to new symmetry-unique sublattices
or jump mechanisms that were equivalent in the un-
strained system, updating the list of effective interac-
tions and jump frequencies accordingly. The calcula-
tion of the symbolic expressions then proceeds in the
same way. Strains usually generate anisotropic dif-
fusion terms [53], which appear in the code as non-
null terms along the directions perpendicular to the
chemical potential gradient direction. Note that we
introduce single component effective interactions to
account for kinetic correlations of a single defect in
a non-Bravais strained lattice.

Numerical evaluation. For the numerical calcula-
tions, the user provides a range of temperatures and
(optionally) strain values, as well as the binding
and saddle point energies for each of the symmetry-
unique configurations and jump frequencies found in
the symbolic part of the code. The latter are listed
in separate files, so that they can be inspected in
an atomic visualization software, and computed with
the usual methods (density functional theory, interac-
tion models, interatomic potentials, etc.). For strain
calculations, the user needs to provide as well val-
ues of the elastic dipoles of each equilibrium and
saddle-point configuration; the energy variation due
to elastic energy is computed automatically within
the linear elasticity theory [75]. The calculation at
this point simply consists in solving numerically the
system of equations of Eq. 13, and combining the
results with matrices Λ and Λ0 as in Eq. 23. Addi-
tional options allow the user to perform parametric

studies as functions, for instance, of the kinetic ra-
dius (see Sec. 4.1.2), of particular jump frequencies,
as well as sensitivity studies to identify the jump fre-
quencies that have the largest impact on the cluster
transport coefficients (see Sec. 4.1.3).

After computing the coefficients for each cluster
(one calculation each), the total transport coefficients
in Eq. 3 must be computed as a post-processing step,
depending on the cluster concentrations [c] that can
be obtained either in equilibrium or non-equilibrium
conditions, for instance by linking with a cluster-
dynamics model.

Computational load. From a computational per-
spective, the code is light and can easily run on per-
sonal laptops. Distributed under an LGPL license, it
can be downloaded freely together with the user doc-
umentation and a set of input file examples[76]. The
computational time can be as short as one second for
two-component clusters, and increases with cluster
size, kinetic radius, and the amount of jump mech-
anisms. Increasing the kinetic radius or the number
of components involves in both cases a wider config-
uration space and a higher amount of kinetic equa-
tions, the construction of which is the bottleneck of
the symbolic calculation. See Sec. 4.1.1 for a more
detailed evaluation of the computational time with
cluster size and kinetic radius.

Current limitations. Among the limitations of the
current version of KineCluE, the most important to
mention is that it proceeds in the canonical ensemble
(fixed number of atoms of each species) and with a
fixed number of defects and solutes. The first con-
dition implies that users keep track of the number of
matrix atoms involved in their system, even though
they are not declared explicitly. One example is
an interstitial solute becoming a substitutional solute
where an implicit matrix atom was located. As in a
Monte Carlo simulation in the canonical ensemble,
this matrix atom cannot disappear, and must become
for instance a self-interstitial atom. Users must also
pay attention to the second condition. For instance,
recombinations between self-interstitials and vacan-
cies cannot be modeled at this stage, because such
a reaction would lead from a two-component cluster
(the two point defects) to no defects. This limitation
can sometimes be overcome by allowing two defects
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to be located at the same site (cf. the code documen-
tation, and the kick-out mechanism described in Sec.
4.2.3). Finally, no transmutations (change of defect
type or solute species) are allowed in the definition
of the jump mechanisms.

3.2. Configuration space exploration algorithm

We present in more details our–to the best of our
knowledge–original algorithm to explore and build
the cluster configuration space. Such an algorithm
can be useful outside the scopes of KineCluE, for
instance to sample the configuration space and per-
form exact thermodynamic averages, in replacement
of traditional rigid-lattice Monte Carlo simulations.
From a starting configuration (that can be either pro-
vided by the user or automatically generated) the al-
gorithm applies the user-defined jump mechanisms
to move from one configuration to the next one. In
this sense, the configuration space can be seen as a
graph where the nodes (the configurations) are con-
nected with each other by a jump. Symmetry oper-
ations are used at each newly found configuration to
ensure that symmetry-equivalent configurations are
visited only once.

Figure 3 summarizes the main steps of the algo-
rithm. Configurations to analyze are progressively
appended to an exploration list, which initially in-
cludes the starting configuration only, and all found
configurations are stored in the final configuration
list. The exploration stops when the exploration list
is empty. For each new configuration C in the ex-
ploration list, the code first generates all symmetry-
equivalent configurations and appends them to the
configuration list, then considers all jumps applica-
ble from C. Each final configuration reached by the
latter jumps is added to the exploration list, unless it
is found to be disconnected, i.e. if any component
of the cluster is found at a distance larger than the
defined kinetic radius from any other cluster compo-
nent. Therefore, if the starting configuration is the
most compact one, the algorithm builds the config-
uration space by moving progressively to configura-
tions where the cluster constituents are further and
further apart, until one or more of them are beyond
the kinetic radius. However, the starting configu-
ration does not need to be the most compact one:
if defects, species permissions, and jump mecha-

Initialize empty Configuration_List 

Initialize Explore_List  with starting 

configuration (Automatically generated  

or provided by the user) 

Pick first configuration C in Explore_List 

Remove C from Explore_List 

Append all symmetry equivalents of C to 

Configuration_List 

C ϵ Configuration_List? 

Pick first jump available from C  

Is final configuration connected? 

Pick next jump available from C  

Append final configuration to 

Explore_List 

yes 

no 

no 

yes 

Other jumps available from C? 

yes 

no 

Is Explore_List empty? 

no yes 

End 

configuration 

space 

exploration 

Figure 3: Algorithm for the exploration of the configuration
space, using symmetry operations to minimize the number of
configurations to explore.
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nisms have been well defined, the resulting config-
uration space should be well connected and indepen-
dent from the chosen initial configuration. This is
also ensured by the fact that reverse jumps are added
automatically by the code if they are not found by
symmetry operations.

Finally, it should be noticed that a correct defini-
tion of the jump mechanisms is crucial for the al-
gorithm to visit all configurations existing within the
defined kinetic radius, and that not necessarily all the
connected configurations are reachable with a given
set of jumps. For instance, in the case of a dumbbell-
solute pair with radius equal to the 1NN distance,
the so-called tensile configurations (solute in a non-
target 1NN position) are not accessible, unless an on-
site rotation jump is defined [37].

4. Testing and applications

In this section we assess the technical performance
and current limitations of the code, discuss the con-
vergence of transport coefficients with respect to the
kinetic radius, and explain how to perform sensitivity
studies to identify the most important jump frequen-
cies of the system.

4.1. Performance and functionality assessment

4.1.1. Assessment of computation time and memory
In the analytical part of the code, most of the

time is spent on the construction of the configura-
tion space and of the analytical system of equations.
Therefore, the parameters most affecting the compu-
tational performance are the kinetic radius and the
cluster size, because they are both proportional to
the amount of configurations and of kinetic inter-
actions. Figure 4 shows measurements of the com-
putational time as functions of these two quanti-
ties, in the following sample cases: vacancy-solute
and dumbbell-solute pairs (kinetic radius, left panel);
clusters of vacancies and substitutional or intersti-
tial solutes (cluster size, right panel). The tests were
run on a workstation equipped with an Intel R© Xeon R©

CPU E5-2680 v4 processor (2.40 GHz). The timing
of the numerical code was averaged on the amount
of temperature-strain data points.

For both parameters, the computation time in-
creases quickly on the logarithmic scale. For what
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Figure 4: Measured computational times as functions of kinetic
radius (left) and cluster size (right) on an Intel R© Xeon R© CPU
E5-2680 v4 (2.40 GHz). The measurements of numerical cal-
culations, marked with dashed lines and empty markers, refer
to the average time per computed temperature data point.

concerns the kinetic radius, this is of no issue be-
cause results are usually already well converged af-
ter a few lattice parameters, as is showed in the next
section. It is thus unneeded to go to very large radii,
and in the vast majority of cases it is possible to run
calculations in a matter of seconds or minutes, in any
case no longer than an hour.

On the contrary, computation time represents at
the moment a technical limitation for the cluster size
that can be handled in KineCluE. It will be necessary,
in order to extend its capabilities to larger clusters, to
implement parallelization strategies on the construc-
tion of the system of equations and of the configura-
tion space. Furthermore, another limitation is given
by memory requirements: in Figure 4, the tests could
not be performed beyond 45-50 a0 and 4-5 compo-
nents because the RAM memory of the workstation
was completely filled up. The main limiting factors
also in this case are the amount of configurations
and effective interactions: for instance, a computa-
tion with 1.08 million configurations and 136 thou-
sands interactions required about 2.4 GB of RAM.
This issue will be addressed in future versions of the
code.

In conclusion, the current version of KineCluE is
limited to clusters of size 4 or 5, depending on the
chosen kinetic radius, whereas for pairs it is possible
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to obtain very well converged results in reasonably
short times on standard personal workstations.

4.1.2. Convergence of pair transport coefficients
The larger the kinetic radius, the more kinetic tra-

jectories are included in the calculation. At infinite
kinetic radius, all possible trajectories are included
so the formalism adopted in KineCluE should theo-
retically converge towards the exact value for an iso-
lated cluster in an infinite medium. This paragraph
shows that cluster transport coefficients converged
within practical errors are obtained for kinetic radii
no larger than a few lattice parameters. The investi-
gation is summarized in Fig. 5, and was performed
for various crystallographic systems, jump mecha-
nisms and temperatures, each informed by previ-
ously published ab initio calculations[43, 55, 73, 77],
so convergence varies from one system to another.

In a dilute system containing only monomers
and pairs, all the off-diagonal contributions to the
Onsager matrix come from interactions within the
defect-solute (dS ) pair cluster. Hence, we know that
the product between the off-diagonal cluster trans-
port coefficient LdS (dS ) and the pair partition func-
tion ZdS converges towards a well-defined physical
quantity. Therefore, we choose the absolute value
of the relative error on the ZdS × LdS (dS ) product,
to evaluate convergence and to choose the most ap-
propriate kinetic radius, which should: 1) be suffi-
ciently high so that all important kinetic trajectories
are taken into account (converged quantity); 2) be
sufficiently low so that all cluster in the solid solution
remain isolated from each other (dilute hypothesis,
see Sec. 2.1). Once the kinetic radius is set for the
pair cluster, it should be kept identical for all clus-
ters in the system, otherwise illogical configurations
would arise, for instance a three-body configuration
where all components interact as pair clusters but the
configuration is not considered as a three-body clus-
ter (or the opposite).

Figure 5 shows the absolute value of the relative
error on ZdS × LdS (dS ) with respect to its value at
Rkin = 20 a0 taken as reference. First of all, this con-
tribution is indeed converging monotonically with in-
creasing kinetic radius. Second, the sign of the rel-
ative error (shown as solid and dashed lines) varies
from one example to another, but it is correlated with
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Figure 5: Convergence of cluster transport coefficients as a
function of the kinetic radius for various crystallographic sys-
tems and jump mechanisms. ξdS is the absolute value of the
relative error on the ZdS × LdS (dS ) product, the reference value
being taken at a kinetic radius of 20 lattice parameters. Solid
(resp. dashed) lines represent positive (resp. negative) values
of the relative error. Note that in the bottom-left plot, all curves
from T = 900 K upwards are superimposed.

the actual sign of off-diagonal transport coefficients.
In the end, choosing a lower kinetic radius always
leads to underestimated values of the absolute value
of off-diagonal transport coefficients, which is log-
ical since this coefficient mainly contains contribu-
tions from correlated trajectories. The larger the ki-
netic radius, the more of these correlated trajectories
are added to the calculation, even though their ther-
modynamic weight decreases with increasing dis-
tance. This is consistent with findings from varia-
tional approaches of transport coefficients [48, 49].
Another interesting point is the evolution of conver-
gence with temperature. We found that increasing
the temperature always leads to a decrease in the
value of off-diagonal transport coefficients, such that
the relative error increases if these coefficients are
positive, while it decreases if they are negative. This
behavior is observed in Fig. 5 by looking at the order
of the curves depending on whether they are solid
or dashed. Finally it is noteworthy that all relative
errors drop below 10% at a kinetic range of three lat-
tice parameters. Although this may not be true for
other examples, the variety of jump mechanisms and
interactions strongly points towards the validity and
applicability of our cluster transport coefficients for-
malism to a wide variety of systems.
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4.1.3. Sensitivity study
In this section we demonstrate how to use the sen-

sitivity study routine of KineCluE, and how it can
be useful in parameterizing the kinetic model effi-
ciently. As an example, we consider the diffusion of
a vacancy-carbon pair (VC) in Fe, and rely on pre-
viously published ab initio data[77]. After the an-
alytical part of the code, a set of jump frequencies
are identified, and the user needs to supply numeri-
cal values for the saddle-point energies correspond-
ing to all of these jump frequencies. If saddle-point
energies are not provided, KineCluE will use by de-
fault the kinetically-resolved activation (KRA) bar-
rier approximation[78] based on the binding energies
of the initial and final state (in our example we as-
sume that all binding energies have been computed
accurately):

Eα
sp = Qα −

Eini
b + Efin

b

2
, (24)

where Eα
sp is the saddle-point energy for a jump

performed by species α between two configurations
which are characterized by binding energies Eini

b and
Efin

b (positive binding energy means attraction). Qα

is a species-specific activation energy, usually taken
as the bulk migration energy of this species when it
is isolated.

Unfortunately, we cannot tell beforehand how well
this approximation performs for a given jump, and a
change in saddle-point energies may lead to qualita-
tive changes in transport coefficients. Still, we use
the default (i.e. KRA) value of saddle point energies
as a starting point for the sensitivity analysis. The
theory behind this analysis is described in details in
the Appendix section. It is an iterative process, and
each row of Fig. 6 corresponds to one step of the
process. Each step itself consists of two parts. The
first part is the computation of the gradient of clus-
ter transport coefficients in the jump frequency space,
which is simply the partial derivative of cluster trans-
port coefficient with respect to each jump frequency.
The larger the partial derivative, the larger the change
in transport coefficients resulting from a change in
the saddle-point energy of the corresponding jump
frequency. Note that dissociation jump frequencies
should be removed from this analysis. Indeed, nu-
merous jump frequencies can be assigned to a disso-

ciation frequency, e.g. all jumps between the thermo-
dynamic and kinetic radius. This way, dissociation
jump frequencies are made artificially important be-
cause of how we regroup jump frequencies together
to speed up the calculation. Moreover, they should
in principles represent jumps where cluster compo-
nents do not interact anymore, such that the KRA
approximation in Eq. 24 is expected to hold. The
second part is to compute the values of cluster trans-
port coefficients for different values of the most criti-
cal jump frequencies, which helps in deciding if it is
worth computing these jump frequencies accurately,
for instance using ab initio methods.

The left-hand side column of Fig. 6 shows the
normalized gradient at each step, and allows to iden-
tify the most important jump frequencies. Obviously,
some jump frequencies affect a lot some coefficients
of the Onsager matrix and do not have much ef-
fect on other coefficients. To simplify the discus-
sion in this example, we focus on the off-diagonal
coefficient at T = 600 K. The first step of the cal-
culation identifies jump frequencies C56 and C12 as
having the most effect on the LVC coefficient. The
right-hand side column of Fig. 6 shows the ratio be-
tween the LVC coefficient for various values of these
two jump frequencies and the current LVC value. We
see that variations of 0.2 eV in saddle-point energies
can produce a change in the qualitative nature (i.e.,
sign) of flux coupling between vacancy and carbon.
It is thus important to have an accurate estimation of
these jump frequencies. In Ref. [77]–using ab initio
calculations–the saddle-point energies are found re-
spectively -0.055 eV and -0.445 eV higher than the
KRA-predicted value, which results in a change of
sign of the LVC coefficient as well as a one order of
magnitude increase in its absolute value. Going to
the second iteration of the process, jump frequencies
C56 and C12 are set to their ab initio values and thus
removed from the analysis. Jump frequencies V25

and V12 are now identified as the most critical ones.
Again, the right-hand side plot shows that a small
variation of the V12 jump frequency value could lead
to a change of sign of LVC, so this jump frequency
needs to be calculated accurately. On the contrary,
jump frequency V25 does not seem to have much ef-
fect on LVC unless the saddle-point energy is found
about 0.3 eV lower than the current KRA value. In
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fact, ab initio calculations show that the V12 jump is
not possible (which leads to a change of sign of LVC),
and that the V25 saddle-point energies is only 0.05
eV higher than the KRA-predicted value. Moving
on to the third step and removing jump frequencies
V25 and V12 from the analysis, jump frequencies C25

and C68 are identified as the most critical ones. But
when we look at the right-hand side plot, we see that
the impact of these two jump frequencies is rather
small, unless the KRA approximation is off by about
0.5 eV for both jump frequencies, which is unlikely.
Hence we can consider that we have already com-
puted all the most important jump frequencies, and
that the parameterization step can be stopped here.

On this simple example where the code identified
12 jump frequencies, the sensitivity analysis shows
that one only needs to compute 4 of these jump fre-
quencies to get a reasonable estimation of the LVC

coefficient. The value obtained after step 2 (LVC =

−2.263 × 10−14 m2s−1) is found to be within a 5%
relative error with respect to the coefficient obtained
when all 12 jump frequencies were computed ab ini-
tio (LVC = −2.388 × 10−14 m2s−1). In larger clusters
were hundreds of jump frequencies are identified by
the code, this sensitivity analysis can result in impor-
tant computational savings for the parameterization
of the model while having accurate cluster transport
coefficient values.

4.2. Benchmarking to literature studies

We briefly present in this section a few validation
studies in a broad range of crystal lattices and diffu-
sion mechanisms, including strained systems.

4.2.1. Self-diffusion correlation factors in various
systems

A first validation consists in computing the self-
diffusion correlation factors f0 for several diffusion
mechanisms. This is easily done in KineCluE by
defining the tracer atom as a foreign species having
the same exact energetics as the matrix host atoms.
The latter entails null interaction energies, and jump
frequencies equal to those in the pure metal.

Before anything else, let us define correlation fac-
tors: to us, a correlation factor is the ratio between a
transport coefficient and the uncorrelated part of that
same coefficient, meaning that coefficient reduced to

Initial: LV C (V C) = −2.345× 10−15 m2.s−1
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Final: LV C (V C) = −2.388× 10−14 m2.s−1

1

Figure 6: Example of sensitivity analysis using ab initio
data[77] for a vacancy (V)–carbon (C) pair in Fe at T =600 K.
Each row corresponds to a step of the sensitivity study, the left-
hand plot being the analysis of the most critical jump frequen-
cies (i.e. the ones with the highest components in the normal-
ized gradient vector), and the right-hand plot being the compu-
tation of transport coefficients for various saddle-point energy
values for the two most critical jump frequencies. In the lat-
ter, the axes show saddle-point energy differences with respect
to the KRA-computed value, while the color surface shows the
absolute value of the ratio between the corresponding LVC and
its reference value before this step of the sensitivity study. The
black contour indicates a change in the sign of LVC . The filled
circled represents the saddle-point energy values at which the
reference LVC was computed (0,0) and the arrow points towards
the direction of highest variation of LVC . Finally, the open circle
shows the value of saddle-point energies differences once they
were computed ab initio [77]. Jump frequencies are labeled
αi j for a jump where species α jumps between a configuration
where V and C are ith nearest-neighbors and a configuration
where they are jth nearest-neighbors.
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its Λ0
d component in Eq. 23. The uncorrelated part

of a transport coefficient is a sum over all possible
configurations and possible jumps from these config-
urations of the associated jump frequencies weighted
by square jump distances. Most of the time, this def-
inition of the uncorrelated contribution amounts to
the definition given by a random walk. Yet, when
defects go through different non-equivalent configu-
rations, users needs to define macro-jumps between
equivalent configurations to be able to compute a true
random walk [79]. The arbitrary choice of macro-
jumps may lead to different f0 values because the
sum only runs over a restricted number of configu-
rations. For instance, considering dumbbell migra-
tion in FCC metals, f0 is found equal to 0.439454
[80] or 0.878908 [79] depending on whether the ran-
dom walk is defined between jumps or macro-jumps
consisting of two successive jumps. Our definition
based onΛ0

d does not require any definition of macro-
jumps, which makes it more general and systematic.
Note that this definition only affects the f0 coeffi-
cient, not transport coefficients.

Table 1 shows the computed f0 in comparison
with previous analytical or Monte Carlo calculations
[15, 36, 55, 79–85], and when available with the
Green function (GF) method by Trinkle [45]. As op-
posed to the latter, the results in KineCluE depend on
the chosen kinetic radius Rkin, i.e., on the amount of
kinetic trajectories included in the calculation. How-
ever, with increasing Rkin the results converge well to
the reference values, and it is not necessary to go to
very large radii to obtain an already satisfactory pre-
cision. For instance, a calculation with Rkin = 6a0

runs in a few seconds and ensures a precision to the
third or fourth decimal digit, which is usually fully
satisfactory for the purposes of a diffusion study. It
is interesting to mention that, in agreement with the
convergence analysis in Section 4.1.2, the value of
f0 systematically decreases with increasing kinetic
radius, as the contribution of correlations becomes
larger.

We have investigated vacancy-exchange mecha-
nisms in several crystals, including two-dimensional
ones, and some dumbbell mechanisms in BCC and
FCC alloys. The case of dumbbell–solute pairs
in BCC has been more extensively treated in an-
other work [73], where KineCluE has allowed for

the extension of the previous SCMF framework [37]
from first nearest-neighbor (1nn) interactions to ar-
bitrarily long kinetic radii. The correlation factor
obtained for the rotation-translation mechanism of
〈100〉 dumbbells in FCC is in full agreement with
Monte Carlo simulations [87] and Bocquet’s earlier
analytical model [80].

In addition, we have successfully tested the code
on a few more complex mechanisms, for which ana-
lytical calculations are available, namely: tracer dif-
fusion in FCC via a di-vacancy mechanism [15], the
diffusion of oversized atoms in BCC and FCC alloys
[55], and several kick-out and combined dumbbell-
direct interstitial mechanisms in diamond [83]. The
latter two cases are discussed in more detail in Sec-
tions 4.2.2) and 4.2.3, respectively.

4.2.2. Oversized solute mechanism in BCC and FCC
crystals

Thanks to the high degree of flexibility in the jump
mechanism definition, KineCluE can handle com-
plex diffusion mechanisms, such as for instance the
recently discovered diffusion pattern of oversized so-
lute atoms (OSA) in BCC and FCC alloys [55]. Ac-
cording to this mechanism, OSA diffusion does not
occur via a direct exchange with vacancies; instead,
when neighboring a vacancy, the oversized atom
leaves the substitutional position and relaxes towards
the center of the empty lattice space, forming a com-
plex with two half vacancies. In this "split-vacancy"
configuration, either of the two half vacancies can
exchange with one of the neighboring matrix atoms.
This entails the dissociation of the complex and the
return of the solute into a substitutional position (Fig.
1 of the previous work [55]). A net displacement
of the solute has occurred if the new substitutional
position is different from the one before the com-
plex formation. In FCC structures, it is also possi-
ble for the half-vacancy to perform non-dissociative
jumps within the 1nn triangle (Fig. 3 of the previ-
ous work[55]). Bocquet and coworkers developed
the analytical framework to compute the solute cor-
relation factor and diffusion coefficient for this new
mechanism, and then considered the case of yttrium
in BCC and FCC iron by computing the ab initio mi-
gration barriers, with solute-vacancy thermodynamic
interactions limited to 1nn and 2nn.
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Table 1: Self-diffusion correlation factors for various mechanisms, as computed with KineCluE, in comparison with the Green
function method [45] and previous calculations [15, 36, 55, 80–85]. The third column refers to the absolute error with respect to
the reference value in the last column (or the GF method when available), when the calculation is performed with a smaller kinetic
radius (6 a0).

Mechanism KineCluE (Rkin) Error at
Rkin = 6a0

GF method[45] other calculations

Vacancy mechanisms
BCC 0.72719507 (50 a0) 4.8 · 10−4 0.72719414 0.727194 [81, 85]

FCC 0.78145371 (30 a0) 2.7 · 10−4 0.78145142 0.78145142 [81, 85]

Simple cubic 0.65310983 (60 a0) 8.5 · 10−4 0.65310884 0.653109 [85]

HCP base plane 0.78121130 (30 a0) 7.2 · 10−4 0.78120488 0.78120489 [84]

HCP axial plane 0.78145784 (30 a0) 7.2 · 10−4 0.78145142 0.78145142 [84]

Diamond 0.50000082 (30 a0) 9.8 · 10−5 0.50000000 0.5 [81, 84]

Dumbbell mechanisms
〈110〉 in BCC, 60◦rotation-translation 0.41264390 (30 a0) 3.1 · 10−4 - 0.413010 [36]

〈110〉 in BCC, translation 0.49432350 (50 a0) 1.2 · 10−3 - 0.494371 [36]

〈100〉 in FCC, 90◦rotation-translation 0.43945498 (30 a0) 1.0 · 10−4 - 0.439454 [80]

Other mechanisms
Divacancy mechanism in FCC 0.45809698 (30 a0) 3.0 · 10−4 - 0.45809434 [15]

Oversized solute diffusion in BCC 0.76161942 (30 a0) 1.8 · 10−3 - 0.761603 [55]

Oversized solute diffusion in FCC 0.79459770 (30 a0) 8.7 · 10−3 - 0.787081 [55]

Kick-out mechanism in diamond

Tetrahedral (t1−3) 0.9696972 (20 a0) 8.3 · 10−6 - 0.969733 [86], 0.9701
[83]

Hexagonal (h1,2) 0.851764 (20 a0) 2.4 · 10−5 - 0.8525 [83]

Hexagonal (h3,4) 0.917991 (30 a0) 3.5 · 10−3 - 0.9269 [83]

Hexagonal (h5−8) 0.9925246 (20 a0) 4.0 · 10−7 - 0.9927 [83]

Multiple interstitial mechanism in diamond
Tetrahedral 0.4848494 (10 a0) 7.2 · 10−6 - 0.4850 [83]

Hexagonal 0.5641879 (10 a0) 1.4 · 10−3 - 0.5643 [83]

Vacancy in two-dimensional lattices
Square lattice 0.46697619 (100 a0) 8.5 · 10−3 - 0.46705 [82]

Hexagonal lattice 0.56009029 (100 a0) 8.5 · 10−3 - 0.56006 [82]

Honeycomb structure 0.33336978 (100 a0) 9.5 · 10−3 - 0.33333 [82]
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Figure 7: Diffusion coefficient (above) and correlation factor
(below) of yttrium in BCC and FCC iron via the oversized so-
lute diffusion mechanism, compared with the analytical calcu-
lations (markers) by Bocquet et al.[55].

With the appropriate definition of configurations
and jumps, it is possible to reproduce the same
mechanism in KineCluE. The split-vacancy config-
uration is defined by introducing a second sublat-
tice in the intermediate position between two sub-
stitutional atoms, and by setting permissions so that
each species (vacancy and solute) is allowed on that
sublattice only when sharing the site with the other
species. In addition, the usual 1nn substitutional con-
figuration must be forbidden by setting its prefactor
to zero in the numerical part of the code. Finally,
the solute jump needs to be described with several
dissociative jumps, each of which departs from the
split-vacancy configuration and brings the vacancy
either to a 2nn, 3nn, or 5nn configuration in BCC
(2nn, 3nn, or 4nn in FCC). In FCC, it is also neces-
sary to add the 1nn-1nn non-dissociative jump. Sam-
ple input files can be found in the code documenta-
tion. Figure 7 shows the perfect match between the Y
correlation factor and diffusion coefficient obtained
with KineCluE and Bocquet’s analytical model. A
satisfactory agreement is also obtained for the self-
diffusion correlation factors shown in Table 1.

In addition, KineCluE provides a more complete
picture of solute-defect correlations thanks to the cal-
culation of the off-diagonal transport coefficient for
kinetic radii larger than a few nearest neighbors. We
have therefore computed the drag ratios LYV/LYY and
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Figure 8: Variation with temperature of the off-diagonal to di-
agonal transport coefficient ratios, for diffusion of yttrium in
BCC and FCC iron via the oversized solute mechanism.

LYV/LVV (Fig. 8) with Bocquet’s ab initio migration
barriers, setting the thermodynamic and kinetic radii
to 3a0 and 4a0, respectively. This leads to 38 dis-
tinct jump frequencies in BCC (78 in FCC); jumps
beyond the 2nn shell were set to the isolated vacancy
jump frequency. The LVV coefficient is obtained by
adding the contribution of the monomers (single va-
cancies) to that of the OSA-vacancy pair according
to Eq. 3, and assuming the pair concentration as
CVY = CVCYZVY (CY = 1%). The partition function
ZVY is output by KineCluE, while the drag ratios are
independent from the vacancy concentration. The re-
sults show that Y will diffuse by vacancy drag up to
very high temperatures and across the phase transfor-
mation to FCC. Therefore, not only the diffusion of
Y atoms is faster than Fe self diffusion–as was high-
lighted by Bocquet–but it is expected that the highly
stable split-vacancy complex leads to strong positive
(i.e. same direction) flux coupling between Y solutes
and vacancies. Note that the values of the LVY/LVV

coefficients in Fig. 8 are in principle dependent on
the kinetic radius. Indeed, as the kinetic radius in-
creases, more and more V monomer contributions
are included in the V-Y pair LVV coefficient. Yet, be-
cause there is a strong attractive interaction between
V and Y (1.2 eV in BCC and 1.3 eV in FCC), these
V monomer contributions are negligible compared
with the V-Y pair contribution unless the calculation
is performed with a very large kinetic radius.
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4.2.3. Kick-out and multiple interstitial mechanisms
in diamond structures

In semi-conductors with a diamond crystallo-
graphic structure, kick-out and multiple interstitial
diffusion mechanisms associated with near-value ac-
tivation energies may contribute to the atomic trans-
port [27]. KineCluE is able to handle these com-
plex diffusion mechanisms. A mechanism frequently
invoked is the one combining hops of a dumbbell
and direct interstitial (described as the stable-split
mechanism in Ref. [83] and as a multiple diffusion
mechanism here). The dumbbell is oriented along
the < 110 > direction and one of the atoms of the
dumbbell is hopping onto a neighboring interstitial
site (tetrahedral or hexagonal site). There is also the
so-called kick-out mechanism (also called indirect
mechanism): an atom sitting on an interstitial site A
hops onto a neighboring lattice site B and kicks the
substitutional atom which was occupying the lattice
site B out onto a neighboring interstitial site C. The
interstitial network is either made of tetragonal or
hexagonal interstitial sites. For the hexagonal inter-
stitial network, we distinguish three sub-mechanisms
depending on the cosine of the angle made between
vectors ~AB and ~BC: the first sub-mechanism starting
from a given site interstitial site A involves two final
hexagonal sites C (labeled (1, 2) in [83]) forming a
cosine equal to 9/11, the second sub-mechanism in-
volves two hexagonal sites C labeled (3, 4) forming a
cosine equal to 5/11 and the third set involving four
hexagonal sites C labeled (5, 6, 7, 8) forming a cosine
equal to 1/11. The agreement between the correla-
tion factor f0 obtained from KineCluE and the values
extracted from atomic kinetic Monte Carlo simula-
tions [83] is very good for for both the kick-out and
multiple diffusion mechanisms. Note that to compare
with data from Ref. [83], we have used the measured
average cosine value costrθ of the angle between suc-
cessive jumps of a tracer atom to compute the corre-
sponding f0 using the formula: f0 = 1+costrθ. In ad-
dition, KineCluE with kinetic radius larger than 20a0

has a better precision because the resulting correla-
tion factors are systematically lower than the corre-
sponding Monte Carlo value. The precision of the
Monte Carlo simulation is around 10−2, a precision
that we get in KineCluE with a kinetic radius approx-
imately equal to 3a. Thus, although not informed by

the authors, we estimate the size of the Monte Carlo
simulation box to be around 2 × 3a0. This is based
on the idea that kinetic correlations associated with
defect trajectories coming out of a Monte Carlo sim-
ulation box are not properly taken into account due
to the periodic conditions.

4.2.4. Transport coefficients in strained systems
KineCluE allows for a seamless application of the

SCMF cluster-expansion method to strained systems,
thus widely improving the state-of-the-art models
for computing full strain-dependent transport ma-
trices. Strain-dependent diffusion coefficient were
measured by molecular dynamics [88] and by Monte
Carlo simulations [89], but it was shown that measur-
ing the elasto-diffusion tensor with the latter method
is tricky [90]. Previous analytical models allowing
for such kind of calculations were based on:

- the SCMF method (before cluster expansion) by
Garnier and coworkers for diffusion of substitu-
tional solutes via a vacancy mechanism in FCC
alloys [53, 91, 92];

- the Green function method for isolated intersti-
tial solutes and vacancy-solute pairs in any lat-
tice [45, 46].

KineCluE greatly expands the range of systems that
can be treated under strain, taking accurately into ac-
count all effects on correlations and energetics; for
instance, it can correctly describe the effects of strain
on the flux coupling between dumbbells and substi-
tutional solutes, for which no model currently exists.
In the analytical part code, the symmetry analysis al-
lows for the correct identification of the broken sym-
metries in the strained crystal, whereas the effect of
strain-field elastic energy is automatically included
in the numerical code in the framework of linear elas-
ticity theory [75].

The implementation has been successfully tested
on the aforementioned studies. Figure 9 shows
the drag ratio LBV/LBB for a vacancy-solute pair
in a FCC model alloy, as a function of different
jump frequency ratios in the unstrained crystal (left
panel), under a tetragonal strain ε33 (middle panel),
and under a shear strain ε = 2ε12 = 2ε21 (right
panel). The nomenclature is the same as in the
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reference SCMF-based work [92] (Figures 1 and 2
therein). The diffusion direction (e.g. [001]) is
controlled in KineCluE with the chemical poten-
tial gradient direction, and by optionally adding two
other non-collinear diffusion directions in case non-
isotropic terms arise. The KineCLuE calculations
were performed with a larger kinetic radius (4a0)
than Garnier’s model (

√
2a0), which entails larger

correlations (larger |LBV|) and slower solute diffusion
(smaller LBB). Hence, the drag ratios computed with
KineCluE are larger in absolute value then the ones
computed by Garnier, as shown in Fig. 9. In the ex-
ample of LBV/LBB [100] under shear strain, atomic
kinetic Monte Carlo simulations[92] performed in a
(6a0)3 cell (corresponding approximately to a kinetic
radius of 3a0) are expected to be located in between
the results from KineCluE (Rkin = 4a0) and those
from Garnier (Rkin =

√
2a0). The fact that they are

not is most probably due to statistical uncertainties,
especially as the difference appears at large jump fre-
quency ratio.

KineCluE compares well also with the elasto-
diffusion calculations performed with the Green
Function (GF) method for interstitial carbon diffu-
sion in BCC iron [46]. Figure 10 shows the non-
null components of the elasto-diffusion tensor dxy =

dDxy/dε, obtained in KineCluE by finite differences:
d = (L(ε1) − Lε0)/(ε1 − ε0), with ε0 = 0 and
ε1 = 10−6. The change of sign of the d11 coefficient
at T = 425.1 K is in perfect agreement with the GF
calculations; this has been achieved by setting a suf-
ficiently small ∆ε. Given that the code is already
capable of computing derivatives of the transport co-
efficients (used for instance in the sensitivity study,
cf. Section 4.1.3), it will be possible in future imple-
mentations to obtain the exact value of the derivative
dDxy/dε, without the need for finite differences.

5. Conclusion

We introduced the KineCluE code that computes
cluster transport coefficients from atomic-scale jump
frequencies. The code is highly versatile in terms
of crystallographic system, chemical species and
defects, interaction ranges, and jump mechanisms,
which allows for the treatment of a wide range of
systems. It is an important tool to bridge two gaps:

a "scale" gap and a "concentration" gap. For the
former, the cluster expansion of the Onsager matrix
enables for an efficient evaluation of kinetic prop-
erties as functions of cluster concentrations, since
cluster transport coefficients only have to be com-
puted once. Coupling with cluster dynamics and
phase field methods is thus straightforward, and
KineCluE allows to truly link these methods with
atomic-scale information such as energies of config-
urations and migration barriers under well-controlled
approximations. Also, cluster quantities are directly
useful to object kinetic Monte Carlo methods. In the
end, KineCluE offers new possibilities for studying
micro-structure and defect population evolution over
significant time scales informed by atomic scale data.
Regarding the concentration gap, available analytical
kinetic models have always been separated into exact
models for infinitely dilute systems and mean field
approaches for concentrated models. Starting from
a dilute system framework, KineCluE allows for the
treatment of larger clusters than what has been done
previously, and these clusters contain some of the
physics of concentration effects on transport proper-
ties. Thus, it is a first but important step in unifying
both dilute and concentrated approaches in a unique
formalism that would be able to correctly describe
intermediate concentrations (a few percent) which
are probably the most useful but also the most chal-
lenging to compute.
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Appendix: Sensitivity study

Transport coefficients for cluster of more than two
components depend on a large number of jump fre-
quencies, and this number increases exponentially
with the number of components in the cluster. The
sensitivity study is a routine of KineCluE designed
to identify the most important jump frequencies by
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calculations in the same work. Each strain calculation refers to a specific diffusion direction (in the shown cases, directions [100]
and [010] are equivalent).
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Figure 10: Components of the elasto-diffusion tensor for inter-
stitial carbon diffusion in BCC iron, compared with the Green
function method (markers)[46]. In perfect agreement with the
reference work, the d11 coefficient shows a sign change at T =

425.1 K (negative values are marked with a dashed line), and
the d44 coefficient is exactly equal to the carbon diffusivity in
the unstrained crystal.

computing the local derivatives of cluster transport
coefficients with respect to jump frequencies. Start-
ing from a set of jump frequencies–which might not
be very accurate–this routine identifies the most crit-
ical jump frequencies, i.e. the ones that need to be
computed accurately to have reliable transport coef-
ficients. Because the method is only local, several
iterations might be necessary to identify the full set
of critical jump frequencies.

Let us assume that we have a set of jump frequen-
cies W0 =

(
ω0

i

)
; we are then able to compute a nu-

merical value for Ld (W0). Now we want to know
how Ld (W0) would change if some of the jump fre-
quencies ωi would be modified. To this end, we will
compute the gradient of Ld in the jump frequency
phase space which points towards the direction of the
highest change in Ld:

∇Ld =

(
∂Ld

∂ωi

∣∣∣∣∣
W0

)
. (25)

We compute the partial derivatives using the matrix
form of cluster transport coefficients: Ld (c) = Λ0

d −
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ΛdT̃−1Λt
µ (Eq. 23):

∂Ld

∂ωi
=
∂Λ0

d

∂ωi
+
∂Λd

∂ωi
T̃−1Λt

µ +Λd
∂T̃−1

∂ωi
Λt
µ +ΛdT̃−1

∂Λt
µ

∂ωi
.

(26)
Note that all the above matrices and derivatives are
evaluated at W0. The terms in matrices Λ0, Λ and
T̃ are linear combinations of jump frequencies, and
we have computed their analytical form in the first
part of the KineCluE code, so their derivatives with
respect to a given jump frequency ωi are straightfor-
ward to compute. The remaining issue is that we
do not have the analytical expression of T̃−1, and it
can be prohibitively long to compute because T̃ is a
square matrix of size the number of effective inter-
actions in the system. Thus, we use the following
identity:

T̃T̃−1 = I⇒
∂T̃
∂ωi

T̃−1 + T̃
∂T̃−1

∂ωi
= 0

⇒
∂T̃−1

∂ωi
= −T̃−1 ∂T̃

∂ωi
T̃−1. (27)

Inserting Eq. 27 in Eq. 26 amounts to a practically
convenient expression:

∂Ld

∂ωi
=
∂Λ0

d

∂ωi
+
∂Λd

∂ωi
T̃−1Λµ − ΛdT̃−1 ∂T̃

∂ωi
T̃−1Λµ

+ ΛdT̃−1∂Λµ

∂ωi
. (28)

Now all the derivatives can be easily computed from
the analytical expressions of Λ0, Λ and T̃. Then, for
a given set of jump frequencies W0, all terms located
in Eq. 28 are directly computed numerically, and the
numerical value of T̃−1 is already known from the
calculation of Ld (W0). The direction V in jump fre-
quency space along which Ld varies the most around
W0 is given by the normalized gradient:

V =
∇Ld

‖∇Ld‖
=

∇Ld
√
∇Ld.∇Ld

. (29)

Practically speaking, vector V gives the weighted
combination of jump frequencies that is able to affect
the most Ld (W0). These weights then show which
are the most critical jump frequencies to get an ac-
curate estimation of Ld around W0. These jump fre-
quencies should be computed accurately (e.g. using

first-principles calculations) to obtain a new estima-
tion of Ld around a new point in the jump frequency
space, W1. Then again, the corresponding V vector
is obtained to see which are the most relevant jump
frequencies around that point, and so on and so forth.

The remaining question is: when should we stop?
Because the analysis is only local, when we change
some of the jump frequencies, we will not get the
same set of critical jump frequencies, and eventually
we might end up computing all of these, which we
wanted to avoid originally. The idea is to take a set of
jump frequencies among the ones with the highest V
vector components and compute the numerical value
of transport coefficients for changes in these jump
frequency values. A batch calculation feature is pro-
vided in KineCluE for this purpose. Then, one can
decide if it is worth computing precisely the value of
a given saddle-point configuration, or if it does not
affect cluster transport coefficients within a tolerance
chosen by the user. An example of such procedure is
presented in Sec. 4.1.3.

Another possible approach which is not yet part of
the KineCluE code, is to compute the Taylor expan-
sion of transport coefficients around a reference point
in jump frequency space. This may be numerically
advantageous because any order derivative of clus-
ter transport coefficients uses the same derivatives as
the gradient, so there is no additional analytical effort
needed, it is only a numerical application which re-
quires matrix multiplications. The N th-order Taylor
expansion for multivariate functions reads:

Ld =

N∑
|n|=0

n∏
i=0


(
ωi − ω

0
i

)ni

ni!
∂niLd

∂ωni
i

⌋
W0

 (30)

where |n| = k denotes a sum over all possible val-
ues of {ni} where

∑
i ni = k. The nth order derivative

(for n > 1) of Ld with respect to n jump frequencies
(eventually some jump frequencies may appear more
than once) is expressed as:
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∂nLd

∂ωn = Λd
∂nT̃−1

∂ωn Λ
t
µ

+

n∑
γ=1

∂Λd

∂ωγ

∂n−1T̃−1

∂ωn−1
,γ

Λt
µ + Λd

∂n−1T̃−1

∂ωn−1
,γ

∂Λt
µ

∂ωγ


+

∑
1≤γ<δ≤n

∂Λd

∂ωγ

∂n−2T̃−1

∂ωn−2
,γ,δ

∂Λt
µ

∂ωδ

+
∂Λd

∂ωδ

∂n−2T̃−1

∂ωn−2
,γ,δ

∂Λt
µ

∂ωγ

 .
(31)

The nth order derivative of the inverse of the T̃ matrix
is given as:

∂nT̃−1

∂ωn =

∑
ρ

n∏
i=1

(
−T̃−1 ∂T̃

∂ωρ(i)

) T̃−1, (32)

where the sum over ρ denotes a sum over the possible
permutations of jump frequencies and a short-hand
notation is used in the two previous equations:

∂n−1A
∂ωn−1
, j

=
∂n−1A

∂ω1...∂ω j−1∂ω j+1...∂ωn
(33)

This way of computing the local variations of
cluster transport coefficients in the jump frequency
space might be more efficient from a numerical point
of view than re-computing transport coefficients for
each values of the most important jump frequencies.
If testing shows that this Taylor expansion formalism
is more efficient, it will be implemented in future ver-
sions of KineCluE.
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