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This paper introduces the KineCluE code that implements the self-consistent mean-field theory for clusters of finite size. The transport coefficients of a system are then obtained as a sum over cluster contributions (cluster expansion formalism), each being individually obtained with KineCluE. This method allows to go beyond the infinitely dilute limit and is an important step in bridging the gap between dilute and concentrated approaches. Inside a finite volume of space containing the components of a single cluster, all kinetic trajectories are accounted for in an exact manner. The code, written in Python, adapts to a wide variety of systems, with various crystallographic systems (eventually strained), defects and solute types and number, and various jump mechanisms, including collective ones. The code also features interesting tools such as the sensitivity study routine which allows to identify the most important jump frequencies to get accurate transport coefficients.

Solution method: The program relies on the selfconsistent mean field theory. The system is described in terms of lattice sites, defects and jump mechanisms. The first part of the code translates the diffusion problem for such system into an analytical linear eigenvalue problem. The second part of the code assigns numerical values to each analytical variable and then solves the linear problem.

Introduction

Atomic transport in solids has attracted enormous experimental [START_REF]Diffusion in Solid Metals and Alloys[END_REF] and theoretical [START_REF] Leclaire | Liii. correlation effects in diffusion in crystals[END_REF][START_REF] Allnatt | Atomic Transport in Solids[END_REF] attention over the past 70 years. It is still a challenging problem in various ways. In the first place, the microscopic dynamical rules determining the macroscopic diffusion coefficients are becoming more and more complex as the investigations based on the density functional theory (DFT) [START_REF] Martin | Electronic Structure, Basic Theory and Practical Methods[END_REF] provide an increasingly detailed description of the atomic transport mechanisms [START_REF] Meslin | [END_REF][START_REF] Messina | Systematic electronic-structure investigation of substitutional impurity diffusion and flux coupling in bcc iron[END_REF][START_REF] Barkema | Event-based relaxation of continuous disordered systems[END_REF]. In addition, the effort of solving the N-body problem of N interacting species diffusing on a lattice has been mainly focused on the limiting case of two-body diffusion problems both in dilute [START_REF] Allnatt | Atomic Transport in Solids[END_REF] and-with simplifying assumptionsconcentrated alloys [8][9][10][11][START_REF] Erdélyi | Stochastic kinetic mean field model[END_REF][START_REF] Vaks | Statistical theory of diffusion in concentrated bcc and fcc alloys and concentration dependencies of diffusion coefficients in bcc alloys fecu, femn, feni, and fecr[END_REF]. Three-body diffusion problems have only been tackled in very simple systems [14,[START_REF] Bocquet | Exact value of the correlation factor for the divacancy mechanism in fcc crystals: the end of a long quest[END_REF]. Besides, the experimental characterization of atomic transport at low temperature is in general not feasible, and only some of the transport coefficients can be experimentally determined. Thanks to the progress of DFT applied to the calculation of migration barriers [16][START_REF] Jónsson | Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions[END_REF][START_REF] Henkelman | [END_REF], atom jump frequency databases are in construction for metallic alloys [START_REF] Messina | Systematic electronic-structure investigation of substitutional impurity diffusion and flux coupling in bcc iron[END_REF][START_REF] Mantina | First principles impurity diffusion coefficients[END_REF][START_REF] Choudhury | Ab-initio based modeling of diffusion in dilute bcc fe-ni and fe-cr alloys and implications for radiation induced segregation[END_REF][START_REF] Wu | Robust fcc solute diffusion predictions from ab-initio machine learning methods[END_REF][START_REF] Agarwal | Ab initio magnesiumsolute transport database using exact diffusion theory[END_REF], but also for ceramics [START_REF] Claisse | Transport properties in dilute UN(x) solid solutions (x = Xe, Kr)[END_REF][START_REF] Schuler | Transport properties of c and o in un fuels[END_REF] and semi-conductors [START_REF] Liu | First-principles study of phosphorus diffusion in silicon: Interstitial-and vacancy-mediated diffusion mechanisms[END_REF][START_REF] Caliste | Germanium diffusion mechanisms in silicon from first principles[END_REF][START_REF]Range-separated approach to the rpa correlation applied to the van der waals bond and to diffusion of defects[END_REF][START_REF] Yoshida | Defects and Impurities in Silicon Materials: An Introduction to Atomic-Level Silicon Engineering[END_REF][START_REF] Kobayashi | Thermal equilibrium concentration of intrinsic point defects in heavily doped silicon crystals -theoretical study of formation energy and formation entropy in area of influence of dopant atoms[END_REF]. The use of these databases is mainly dedicated to the study of self-and solute diffusion [START_REF] Mantina | First principles impurity diffusion coefficients[END_REF][START_REF] Wu | Robust fcc solute diffusion predictions from ab-initio machine learning methods[END_REF]. Much less attention has been paid to the estimation of the full Onsager matrix [START_REF] Onsager | [END_REF], although the latter is essential to investigate flux coupling between point defects and atomic species occurring in systems driven by a supersaturation of point defects, in materials submitted to irradiation [START_REF] Nastar | Comprehensive Nuclear Materials[END_REF][START_REF] Ardell | Radiation-induced solute segregation in metallic alloys[END_REF] as well as during thermal quenching treatments [START_REF] Anthony | Diffusion in solids[END_REF] or under severe plastic deformation [START_REF] Zehetbauer | Deformation induced vacancies with severe plastic deformation: Measurements and modelling[END_REF].

In most cases, diffusion mechanisms in solids are mediated by point defects, the most frequent ones being the exchange of an atom with a first nearest neighbor (1NN) vacancy (a vacant site of the lattice) and the exchange of an atom with a 1NN selfinterstitial. One of the most stable interstitial configuration is the dumbbell (or split-interstitial) configuration: a directional pair of atoms sharing a lattice site. This is a complex mechanism possibly leading to a modification of the initial dumbbell composition and direction, and there is still no exact calculation of the associated transport coefficients even in the limiting case of an infinite dilute alloy (a single point defect and solute atom in a host matrix) [11,[35][36][37]. Due to the small concentration of point defects, the successive jumps of a given atom are correlated because the probability of making several exchanges with the same point defect is larger than the probability of making exchanges with different point defects. These kinetic correlations related to the probability of the PD to perform return paths slow down the diffusion of a tracer atom and are the main contributors to the off-diagonal Onsager coefficients L AB between two atomic species A and B. Thus, they determine the sign and the amplitude of flux couplings. In the limiting case of an infinite dilute alloy containing a vacancy, automated computational schemes have allowed to achieve the calculation of transport coefficients for long-range thermodynamic interactions between solute and point defect [START_REF] Messina | Systematic electronic-structure investigation of substitutional impurity diffusion and flux coupling in bcc iron[END_REF][START_REF] Agarwal | Ab initio magnesiumsolute transport database using exact diffusion theory[END_REF][START_REF] Garnier | Solute drag by vacancies in body-centered cubic alloys[END_REF][START_REF] Garnier | Quantitative modeling of solute drag by vacancies in face-centered-cubic alloys[END_REF][START_REF] Messina | Systematic electronic-structure investigation of substitutional impurity diffusion and flux coupling in bcc iron[END_REF][START_REF] Schuler | Transport properties of dilute α-Fe(x) solid solutions (x = c, n, o)[END_REF][START_REF] Schuler | Design principles for radiation-resistant solid solutions[END_REF][START_REF] Agarwal | Exact model of vacancy-mediated solute transport in magnesium[END_REF][START_REF] Bocquet | Correlation factor for diffusion in cubic crystals with solute-vacancy interactions of arbitrary range[END_REF][START_REF] Trinkle | Automatic numerical evaluation of vacancy-mediated transport for arbitrary crystals: Onsager coefficients in the dilute limit using a green function approach[END_REF]. At the origin of these numerical schemes, there are new theoretical developments based either on the Self-Consistent Mean Field theory (SCMF) [START_REF] Schuler | Transport properties of dilute α-Fe(x) solid solutions (x = c, n, o)[END_REF] or on a Green function formalism [START_REF] Bocquet | Exact value of the correlation factor for the divacancy mechanism in fcc crystals: the end of a long quest[END_REF][START_REF] Bocquet | Correlation factor for diffusion in cubic crystals with solute-vacancy interactions of arbitrary range[END_REF][START_REF] Trinkle | Automatic numerical evaluation of vacancy-mediated transport for arbitrary crystals: Onsager coefficients in the dilute limit using a green function approach[END_REF][START_REF] Trinkle | Diffusivity and derivatives for interstitial solutes: activation energy, volume, and elastodiffusion tensors[END_REF]. Indeed, even though computing a macroscopic transport coefficient from microscopic jump rates is a well defined problem, many efforts are still needed to find the general solution.

Within a diffusion theory, one describes the evolution of an alloy by means of a microscopic master equation. One starts from a simplified description of the system as a rigid lattice, whose sites are occupied by either atoms or point defects. Transitions from one configuration to another are fixed by the constraints of the jump mechanisms. These transitions determine the evolution of the distribution function, e.g. the probability of every configuration as a function of time. Solving the master equation and computing the time-dependent distribution function involves finding a non-linear eigenvalue problem coupled to the unknown diffusion driving forces, i.e., the gradients of chemical potentials. At first order in the diffusion driving forces and under a stationary condition, the problem becomes a linear eigenvalue problem, the eigenvalues corresponding to the contribution of the kinetic correlations to the Onsager coefficients. An exact solution was obtained only in the particular case of a vacancy-solute cluster in an infinite medium, this by means of a Green function formalism. [START_REF] Trinkle | Automatic numerical evaluation of vacancy-mediated transport for arbitrary crystals: Onsager coefficients in the dilute limit using a green function approach[END_REF] However, there exists an exact variational formula of the Onsager coefficients. [START_REF] Kipnis | Scaling Limits of Interacting Particle Systems[END_REF][START_REF] Spohn | Large Scale Dynamics of Interacting Particles[END_REF] The various diffusion methods provide upper bounds of the phenomenological coefficients and can be compared with each others. [START_REF] Arita | Bulk diffusion in a kinetically constrained lattice gas[END_REF] Within the SCMF theory, the kinetic correlations are represented by a non-equilibrium effective Hamiltonian. [50] The unknown kinetic interactions of the effective Hamiltonian are assumed to be a linear combination of the chemical potential gradients, leading to a solution in the form of partial differential kinetic equations. [START_REF] Nastar | Atomic diffusion theory challenging the cahn-hilliard method[END_REF] A solute-point defect n-body kinetic interaction is related to the kinetic equation of the corresponding n-th moment of the probability distribution function. [50,52] In a dilute alloy, the n-th moments are assimilated to the ensemble probabilities of the various configurations of the solutepoint defect cluster n. [START_REF] Schuler | Transport properties of dilute α-Fe(x) solid solutions (x = c, n, o)[END_REF] The range of a kinetic interaction is directly related to the length of the return paths of the cluster components. For example, a 1NN pairwise kinetic interaction accounts for point defect two-jump return paths only. A systematic increase of the kinetic interaction range yields the Onsager coefficient as a series converging to the exact Onsager solution of a single cluster in an infinite medium. The use of symmetry operations for the analysis of the point-defect exchange frequencies and the computation of the Onsager coefficients have recently widen the investigations to more complex crystallographic structures, as for example the study of solute drag in strained systems [START_REF] Garnier | Stress-induced anisotropic diffusion in alloys: Complex si solute flow near a dislocation core in ni[END_REF] and in the hexagonal close packed magnesium crystal [START_REF] Agarwal | Exact model of vacancy-mediated solute transport in magnesium[END_REF]. However, we still miss a kinetic method that can handle complex diffusion mechanisms among which are the dumbbell diffusion mechanism [36], the kick-out mechanism [54], the macro-jumps of two-half vacancies surrounding a large-sized solute atom [START_REF] Bocquet | Migration mechanism for oversized solutes in cubic lattices: The case of yttrium in iron[END_REF]. In these cases, the challenge is to achieve a full exploration of the configuration phase space, use symmetry operations to reduce the configuration phase space, then build a graph whose vertices represent the configurations and edges represent the authorized transitions. Moreover, a systematic method dealing with larger clusters than a two-body clusters does not exist yet.

We introduce KineCluE, an automated code dedicated to dilute alloys with intermediate solute concentrations between the infinite dilute and concentrated limits. Recently, we have derived an approximation scheme based on a division of the system into point defect-solute cluster sub-spaces [START_REF] Schuler | Transport properties of dilute α-Fe(x) solid solutions (x = c, n, o)[END_REF][START_REF] Schuler | On cluster transport coefficients and the local equilibrium hypothesis[END_REF]. Computing separately the transport coefficient contribution of each cluster considered isolated in an infinite medium and then modeling the system as a lattice gas of clusters leads to a very efficient approach of diffusion and phase transformations in dilute systems. Within this new formalism, the total Onsager matrix is split into intrinsic cluster Onsager matrices, allowing as well for a proper definition of the cluster mobility and dissociation rate. The code is versatile and able to deal with many types of crystal structures, defect types and jump mechanisms, including collective ones. Its ability to perform calculations on clusters larger than pairs is an important step in bridging the gap between dilute and concentrated approaches of diffusion problems. Section 2 presents the theoretical framework behind KineCluE. Then, the tech-nical implementation of the code is described in Sec. 3, and some examples of results obtained with the code are presented in Sec. 4.

Theoretical background

Cluster transport coefficients

Transport coefficients appear in the framework of the thermodynamics of irreversible processes, originally developed by Onsager [START_REF] Onsager | [END_REF][START_REF] Onsager | [END_REF]:

J α = - β L αβ ∇ µ β k B T , (1) 
where L αβ is the Onsager transport coefficient (units of m -1 s -1 ) relating the flux J α of species α under a chemical potential gradient ∇µ β of species β, k B is the Boltzmann constant, T is the absolute temperature. The Allnatt formula relates the transport coefficients with equilibrium fluctuations of atomic positions [START_REF] Allnatt | Einstein and linear response formulae for the phenomenological coefficients for isothermal matter transport in solids[END_REF]:

L αβ = lim τ→∞ ∆ R α (τ) ∆ R β (τ) 6Vτ , (2) 
where V is the total volume of the system, ∆ R α (τ) is the total displacement vector of atoms of species α during time-step τ. Starting from this definition and assuming that the system is sufficiently dilute such that it can be divided into kinetically independent subspaces called cluster, we define cluster transport coefficients [START_REF] Schuler | Transport properties of dilute α-Fe(x) solid solutions (x = c, n, o)[END_REF][START_REF] Schuler | Design principles for radiation-resistant solid solutions[END_REF][START_REF] Schuler | On cluster transport coefficients and the local equilibrium hypothesis[END_REF] . These coefficients are intrinsic equilibrium properties of each cluster and the total transport coefficients are obtained from the relation

L αβ = c [c] ne L eq αβ (c) , (3) 
where L eq αβ (c) is the transport coefficient of cluster c (units of m 2 s -1 ) , and [c] ne is the concentration of cluster c per unit volume, not necessarily an equilibrium concentration. Thus, Eq. 3 defines out-ofequilibrium macroscopic transport coefficients, and expanding these coefficients into larger clusters enables going beyond the dilute limit. Cluster transport coefficients defined this way have the same units as diffusion coefficients. In order to have the same units between cluster transport coefficients and transport coefficients, the former must be divided by the atomic volume, while concentrations in Eq. 3 become site concentrations.

KineCluE aims at computing these cluster transport coefficients using the self-consistent mean-field theory [50,52] as a function of strain and temperature. Since a change in the chemical potentials of the system affects only the cluster concentrations in Eq. 3, KineCluE is a crucial step in developing a general and efficient framework to provide accurate atomic-based kinetic properties for higher-order models such as object-kinetic Monte Carlo [START_REF] Vattré | Non-random walk diffusion enhances the sink strength of semicoherent interfaces[END_REF][START_REF] Messina | An object kinetic monte carlo model for the microstructure evolution of neutronirradiated reactor pressure vessel steels[END_REF][START_REF] Yang | Kinetic monte carlo simulations of helium cluster nucleation in tungsten with preexisting vacancies[END_REF][START_REF] Castin | Object kinetic monte carlo model for neutron and ion irradiation in tungsten: Impact of transmutation and carbon impurities[END_REF][START_REF] Chiapetto | Nanostructure evolution under irradiation in femnni alloys: A "grey alloy" object kinetic monte carlo model[END_REF][START_REF] Backer | Modeling of helium bubble nucleation and growth in austenitic stainless steels using an object kinetic monte carlo method[END_REF][START_REF] Xu | Cascade annealing simulations of bcc iron using object kinetic monte carlo[END_REF], cluster dynamics [START_REF] Jourdan | Efficient simulation of kinetics of radiation induced defects: A cluster dynamics approach[END_REF][START_REF] Stoller | Mean field rate theory and object kinetic monte carlo: A comparison of kinetic models[END_REF][START_REF] Soisson | Radiation-accelerated precipitation in fe-cr alloys[END_REF][START_REF] Clouet | A Fundamentals of Modeling for Metals Processing[END_REF] or phase field models [START_REF] Badillo | A phase field model for segregation and precipitation induced by irradiation in alloys[END_REF][START_REF] Piochaud | Atomic-based phase-field method for the modeling of radiation induced segregation in fe-cr[END_REF][START_REF] Thuinet | Multiscale modeling of radiation induced segregation in iron based alloys[END_REF].

Self-consistent mean-field theory

The goal of the self-consistent mean-field (SCMF) theory is to compute transport coefficients as a thermodynamic-i.e. equilibrium-average of atomic jumps. A chemical potential gradient driving the system out-of-equilibrium is assumed, and the resulting flux is computed using a thermodynamic average. Transport coefficients are then identified from Eq. 1. The method has been described in details elsewhere [START_REF] Schuler | Transport properties of dilute α-Fe(x) solid solutions (x = c, n, o)[END_REF]52], and here we outline the main steps to obtain a different formulation, more suitable to be coded efficiently.

It is assumed that the system can be mapped onto a rigid lattice containing a number of lattice sites, each being occupied by a single atom or defect. The microscopic master equation controls the evolution of a system represented by a configuration vector n whose components are the site occupation numbers,

n α i (n α i = 1 if species α occupies site i in configuration n, and n α i = 0 if not): dP (n, t) dt = ñ [W ( ñ, n) P ( ñ, t) -W (n, ñ) P (n, t)] . (4 
) P (n, t) is the probability of having configuration n at time t, and W ( ñ, n) is the rate at which a system in configuration ñ switches to configuration n. It is assumed that the probability of any configuration can be expressed as the product of its equilibrium probability P 0 (n) and a probability δP (n, t) that corresponds to the deviation from equilibrium P (n, t) = P 0 (n) × δP (n, t), and that δP (n, t) has the same mathematical form as the equilibrium probability. However, thermodynamic interactions are replaced by an effective Hamiltonian in δP (n, t), to account for the fact that two equivalent configurations at equilibrium do not necessarily have the same probability in out-of-equilibrium conditions because the driving force breaks the symmetry of the system. In our formulation of the SCMF theory, the effective Hamiltonian is reduced to n c -body effective interactions where n c is the number of components (defects, solutes) in cluster c. The introduction of a driving force reduces the symmetry of the system such that only the crystal symmetry operations conserving the chemical potential gradient direction are valid for the out-of-equilibrium system. We group all symmetryequivalent (in the out-of-equilibrium system) configurations into effective interaction classes because all of these configurations will equally contribute to the non-equilibrium averages. The magnitude of effective interactions belonging to class σ is denoted ν σ and n σ represents a product of site occupancies for each of the n c cluster components, times a sign variable. Hence, for a given configuration, n σ = ±1 if this configuration is identical to one of the instances of class σ, and =0 if it is not. Knowing the sign variable for one instance of the effective interaction class, the sign variable of another instance is the same if the symmetry operation that transforms one instance in the other maintains the chemical potential gradient vector, and the sign variable will be the opposite if the symmetry operation transforms the chemical potential vector into its opposite.

δP (n, t) = exp         δΩ + i,α n α i δµ α i k B T - σ n σ ν σ k B T         . ( 5 
)
δµ α i is the local (site i) deviation from the equilibrium chemical potential of species α and δΩ is a normalizing constant. These quantities (δΩ, δµ α i , ν σ ) are timedependent, but we are only interested in the steadystate flux, thus the time dependence is omitted for simplicity. Note that using only n c -body effective interactions to describe the deviation from equilibrium is not restrictive because it fully characterizes a system of n c conserving defects and solutes in a bulk matrix.

The continuity equation per site reads:

d [α] i dt = - ‹ S J α i .d S = - s θ α i Γ α i→s , (6) 
where [α] i is the probability of site i to be occupied by species α (hence the local site concentration), J α i is the local flux per unit surface of species α from site i, and Γ α i→s is the rate at which atoms of species α jump from site i to site s, the latter being located at jumping distance from site i (s θ α i ). The site concentration of species α on site i is also given by the first moment of the probability distribution function:

[α] i = n α i oe = n n α i P (n, t) . (7) 
. oe denotes the ensemble average over the out-ofequilibrium distribution function P (n, t). We combine Eqs. 4-7 to obtain the atomic-scale description of the local concentration variation over time:

d n β j oe dt = ñ n β j W (n, ñ) [δP ( ñ) -δP (n)] = ñ n β j W (n, ñ)         i,α ñα i -n α i δµ α i k B T - σ (ñ σ -n σ ) ν σ k B T        . (8) 
The first equality makes use of the detailed balance W ( ñ, n) P 0 ( ñ, t) = W (n, ñ) P 0 (n, t), and . denotes the ensemble average over the equilibrium distribution function P 0 (n), implying an implicit sum over all configurations n. The second equality results from a first order expansion of the exponential function in Eq. 5. The expression in Eq. 8 can be greatly simplified because: 1) for transitions between two configurations ñ and n where atom β at site j does not move, all the terms in the bracket will cancel out when ñ and n are inverted in the double sum over all configurations of the system (one sum is written explicitly, while the other is implicit in the . symbol). Thus the sum over ñ is restricted to configurations where β is one jump away from site j, that is the ensemble of sites s θ β j . Note that additional constraints might exist to make a jump possible, for instance a substitutional atom needs a vacancy on the destination site. These constraints, expressed as a product of site occupation numbers, are denoted m β js , and the rate s -1 of such jump is ω β js ; 2) all sites in the system are occupied, either by a "bulk-like" species or by a solute or defect. Thus only chemical potential differences appear δ μα i = δµ α i -δµ bulk i , and the sum over species α is restricted to defects and solutes belonging to the cluster; 3) the driving force is assumed homogeneous in the system:

δ μα k -δ μα i = ik. ∇ μα = d µ ik ∇ μα ,
where k is the location of species α after the jump and d µ ik is the jump distance projected along unit vector e µ which is collinear to the chemical potential gradient direction (d µ ik may be positive or negative):

s θ β j n β j m β js ω β js         α i,k n α i ñα k d µ ik ∇ μα k B T - σ (ñ σ -n σ ) ν σ k B T        = - s θ β j Γ β j→s . (9) 
The flux from site j along a particular diffusion direction e d (unit vector) is obtained by summing Γ β j→s over all forward jumps weighted by d d js /V at = js. e d /V at , V at being the volume per site. Ensemble θ β j+ indicates that the summation runs over jumps with a positive d d js only. The macroscopic flux along e d in a system of volume V is then obtained as an average over all sites in the system:

J d,β = J β . e d = 1 V j n β j s θ β j+ d d js Γ β j→s . (10) 
Flux Γ β j→s is identified from Eq. 9 for each specific jump, and for convenience, we use a matrix notation:

J d = -1 V Λ 0 d µ -Λ d ν
, where µ and ν are vectors which do not depend on the diffusion direction but rather on the chemical potential gradient direction. µ is a vector of length N species whose components are ∇ μα /k B T (N species being the number of species); ν is a vector of length N inter whose components are the values of the effective interactions ν σ /k B T (N inter being the number of effective interactions); J d is a vector of length N species whose components are J d,β , the fluxes of each species in diffusion direction e d ; Λ 0 d is a matrix of size N species × N species representing the uncorrelated contribution to diffusion in direction e d , while the correlated contribution in the same direction is contained in Λ d , a matrix of size N species × N inter . The components of these two matrices are given hereafter:

Λ 0 d,βα = j s θ β j+ d d js n β j m β js ω β js i,k n α i ñα k d µ ik , (11) 
Λ d,βσ = j s θ β j+ d d js n β j m β js ω β js (n σ -ñσ ) . ( 12 
)
Values for the effective interactions are obtained from the stationarity of the n c th -moment equations

d n α 1 i 1 n α 2 i 2 .
.n α n i n /dt = d n σ 0 /dt = 0 for each configuration of the system corresponding to one instance σ 0 of some effective interaction class σ:

n σ 0 j,α n α j s θ α j m α js ω α js d µ js ∇ μα = n σ 0 j,α n α j s θ α j m α js ω α js d µ js σ (ñ σ -n σ ) ν σ . ( 13 
)
Note that the thermodynamic average . reduces to one configuration only for each effective interaction σ 0 . Also, the sum over site j and species α appears because any component of the n c -component cluster can potentially move and create non-zero contributions to both sides of the equation. Equation 13 is more conveniently written in matrix format: Mµ = Tν with:

M σ 0 α = n σ 0 j n α j s θ α j m α js ω α js d µ js , (14) 
T σ 0 σ = n σ 0 j,α n α j s θ α j m α js ω α js d µ js (ñ σ -n σ ) . ( 15 
)
Then solving for effective interactions consists in inverting matrix T, and we obtain ν = T -1 Mµ.

This solution is inserted in the expression for the flux:

J d = -1 V Λ 0 d µ -Λ d ν = -1 V Λ 0 d -Λ d T -1
M µ from which we identify cluster transport coefficients in diffusion direction e d : L eq d,βα (c) =

1 V Λ 0 d -Λ d T -1 M βα .
The next section shows that M is proportional to Λ t µ , which allows to save memory and computational effort.

Relationship between M and Λ

The expressions for M and Λ present interesting similarities (Eqs. 12 and 14), and we show that M can be directly obtained from Λ, and that it does not require additional calculations. On one hand, the components of M are a sum over all possible jumps from a given configuration-corresponding to some effective interaction-of thermodynamically averaged jump frequencies. On the other hand, the components of Λ are a sum over all possible effective interactions for a given jump. We now derive the relation between coefficients M σ 0 α and Λ µ,ασ , where α is an atom or defect species and σ represents an effective interaction class and σ 0 one particular instance of this class.

Taking a class of effective interactions σ, all of its instances give the same contribution to the M matrix (in absolute value, the sign might differ). Assuming that there are N σ such instances per site we sum the M σ 0 α components over the ones having a positive contribution, and the ones having a negative contribution:

N σ M σ 0 α = σ 0 σ + M σ 0 α - σ 0 σ - M σ 0 α . (16) 
Also the projection of the jump distance along the chemical potential gradient direction can have a positive or negative contribution such that the sum over sites s in Eq. 14 is divided in two parts:

N σ M σ 0 α = j           σ 0 σ + s θ α j+ χ d µ js - σ 0 σ + s θ α j- χ d µ js - σ 0 σ -s θ α j+ χ d µ js + σ 0 σ -s θ α j- χ d µ js           , (17) 
where χ = n σ 0 n α j m α js ω α js . In Eq. 12, the flux has been computed in a given direction d. The absolute value of the reverse flux is identical, because of translational invariance. It follows that:

2Λ d,ασ = j           s θ α j+ d d js (n σ -ñσ ) n α j m α js ω α js - s θ α j- d d js (n σ -ñσ ) n α j m α js ω α js           . ( 18 
)
The final configuration of a given jump being the initial configuration of the reverse jump:

d d js ñσ n α j m α js ω α js = -d d s j n σ n α s m α s j ω α s j
and the minus sign comes from the fact that a given jump necessarily has a contribution to Λ which is opposite to that of the reverse jump. Using translational invariance:

j s θ α j+ d d s j n σ n α s m α s j ω α s j = j s θ α j- d d js n σ n α j m α js ω α js . (19) 
Hence, Eq. 18 becomes:

2Λ d,ασ = j           2 s θ α j+ d d js n σ n α j m α js ω α js -2 s θ α j- d d js n σ n α j m α js ω α js           . ( 20 
)
The last step is to explicit the sum over instances of the effective interaction class σ, which is hidden in the thermal average . . As previously, this sum is separated into positive and negative contributions:

Λ d,ασ = j           σ 0 σ + s θ α j+ χ d d js - σ 0 σ + s θ α j- χ d d js - σ 0 σ -s θ α j+ χ d d js + σ 0 σ -s θ α j- χ d d js           . (21) 
Comparing Eqs. 17 and 21, Λ d,ασ and M σ 0 α have the same structure. They differ by a factor N σ which is the number of instances in a given effective interaction class and by the direction along which the jump vector is projected d d js and d µ js , respectively. Taking the diffusion direction as the chemical potential gradient direction:

N σ M σ 0 α = Λ µ,ασ , (22) 
and N σ is easily obtained from symmetry operations for the out-of-equilibrium crystal. The components of the M matrix do not depend on the diffusion direction, but rather on the chemical potential gradient direction e µ . Therefore, as long as e µ is taken as one of the diffusion directions (which is always the case in KineCluE) computing M can be avoided.

It is noteworthy that this relation (Eq. 22) guarantees that the cluster transport coefficient matrix is symmetric, at least for d = µ. Let us define a diagonal matrix N which contains the N σ coefficients. Then Λ t µ = NM and the cluster transport coefficient matrix is expressed as:

L eq d (c) = Λ 0 d -Λ d T -1 N -1 Λ t µ V = Λ 0 d -Λ d T-1 Λ t µ V , (23) 
with T = NT. Because of detailed balance T is symmetric, thus L eq µ (c) is also symmetric.

Software implementation

KineCluE is a set of Python scripts aimed at the computation of the transport coefficients of a cluster, typically consisting of point defects and/or impurities embedded in an infinite lattice. In this respect, it generalizes previous codes dedicated to the application of the SCMF method to specific diffusion mechanisms [START_REF] Garnier | Solute drag by vacancies in body-centered cubic alloys[END_REF][START_REF] Schuler | Transport properties of dilute α-Fe(x) solid solutions (x = c, n, o)[END_REF][START_REF] Messina | Multiscale modeling of atomic transport phenomena in ferritic steels[END_REF]. It is run in a Python 3.6 environment, with no need for high-performance computational facilities. It consists mainly of three files: a module containing the definitions of all classes and functions, and two scripts to perform the calculation, first in symbolic and then in numeric form. The former computes the flux equations (Eq. 9) and produces the list of configurations and jump frequencies that need to be considered within the specified interaction radius, whereas the latter performs the actual numerical calculation after the user has provided the relevant binding and saddle-point energies.

The code is highly versatile in terms of crystal structures, defects, cluster size, and jump mechanisms. It can treat diffusion of interstitial solutes, vacancies, dumbbells, as well as more complex, possibly multicomponent defects. Many point defect-mediated diffusion mechanisms for substitutional impurities can be modeled, from the traditional to the more complex ones, e.g., the recently theorized half-vacancy mechanism characterizing the diffusion of oversized solute atoms [START_REF] Bocquet | Migration mechanism for oversized solutes in cubic lattices: The case of yttrium in iron[END_REF] (see Sec. 4.2.2) . It works for any crystal structure that can be described by some periodic vectors and a set of basis atoms, and in principle for clusters of any size and composition, although there are some practical limitations due to computational time increase with cluster size (see Sec. 4.1.1).

In addition to the tensor of transport coefficients in three user-defined diffusion directions, the code computes the cluster partition function as well as drag ratios, correlation factors, and other relevant cluster properties such as mobilities and dissociation probabilities, quantities that are required for higher scale models such as cluster dynamics and object kinetic Monte Carlo.

Overview

The logical diagram of the code is depicted in Fig. 1. We present here the main features relating the technical implementation to the SCMF theory exposed in the previous section. For more details and practical instructions, we refer the reader to the code documentation.

User input. The main ingredients for the symbolic calculation are the crystal periodicity vectors and basis atoms, the cluster components and their sublattices (also called "defects"), and the jump mechanisms. Each of these is represented in the code by an instance of the corresponding class (Crystal, Defect, Species, JumpMech). In addition, the SCMF method requires the definition of a kinetic radius, i.e. the cutoff distance for effective interactions. To a longer kinetic radius corresponds a higher amount of effective interactions, and hence a larger system of equations; this ensures a better accuracy because more kinetic trajectories are included. Optionally, a second (smaller) cutoff range can be set for thermodynamic interactions, with the aim of speeding up the
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Figure 1: Overview of the main steps of the KineCluE code. Green boxes picture user inputs, and blue boxes represents some computation made by the code. The outputs of this computation are listed below each box. Note that the code consists of two parts: first the analytical calculation is performed; second the numerical application uses outputs from the analytical part to produce cluster transport coefficients. calculations and reducing the amount of binding and saddle-point energies to compute. This is usually justified by the fact that binding energies between cluster constituents fade quickly with distance. The thermodynamic radius parameter should be set to the minimum value that allows for a correct description of thermodynamic interactions. The optimal choice of the kinetic radius parameter is discussed in Sec. 4.1.2.

Symmetry operations. KineCluE uses crystal symmetries to minimize the amount of effective interactions. At the beginning of the symbolic calculation, the symmetry operations conserving the crystal are computed using an algorithm inspired by the one from Trinkle [START_REF] Trinkle | Automatic numerical evaluation of vacancy-mediated transport for arbitrary crystals: Onsager coefficients in the dilute limit using a green function approach[END_REF], and then applied to find all symmetry-equivalent sublattice positions, cluster configurations, and jumps. In this way, the user needs to specify only sublattices and jump mechanisms that are unique with respect to all possible symmetry operations.

Interactions and jump frequencies. Symmetry operations are also employed to construct the phase space of cluster configurations (see Sec. 3.2) and classify the configurations in classes of symmetry-equivalent thermodynamic and effective interactions. For each newly found configuration, the symmetry operations are applied to each cluster component to produce all symmetric configurations, which are then assigned the same thermodynamic interaction. Analogously, effective interactions classes are identified by using the subset of symmetry operations that maintain the direction of the chemical potential gradient. In addition, symmetries are exploited to determine the list of symmetry-unique jump frequencies. For each allowed jump from an initial to a final configuration, the code applies the symmetry operations on the initial and final positions of the components simultaneously. This ensures that jumps with different saddle points but same initial or final positions are properly distinguished, as shown in [START_REF] Agarwal | Exact model of vacancy-mediated solute transport in magnesium[END_REF][START_REF] Nandipati | Selflearning kinetic monte carlo simulations of al diffusion in mg[END_REF] for hexagonal close-packed structures. In the course of the development of KineCluE, the same subtlety was found also in Bravais lattices, as is shown in Fig. 2. This demonstrates the need for using crystal symmetry analysis to identify unique transitions. Symbolic computation. Once the lists of interactions and jump frequencies are finalized, the code proceeds to the symbolic calculation of T (Eq. 15), Λ (Eq. 12), and Λ 0 (Eq. 11) (M is directly obtained from Λ, as explained in Sec. 2.3). The T matrix is built line by line by looping on the list of symmetry-unique effective interactions: for each configuration containing this effective interaction, the code explores all configurations that can be reached with a valid jump, recognizes the effective interaction corresponding to each final configuration, and assigns the transition to the corresponding jump frequencies ω i j . The initial configuration brings in a negative contribution (-ω i j ), and the final configuration a positive one (+ω i j ) to the matching column of the T matrix. In the case of homogeneous driving forces, kinetic correlations only depend on the anti-symmetric part of the effective interactions [START_REF] Nastar | Atomic diffusion theory challenging the cahn-hilliard method[END_REF]. Hence, the contribution is swapped in sign if the symmetry operation leading to this particular instance of the effective interaction class reverses the chemical potential gradient direction. Concurrently, each column of the Λ matrix is obtained by averaging each species displacement (projected on the chemical potential gradient direction) among all valid jumps from each effective interaction configuration. The uncorrelated term Λ 0 is instead obtained by averaging each species net displacement (with no projections) over all possible thermodynamic states of the system. Finally, the code computes the parti-tion function Z = t g t exp E t b /k B T , where t marks the thermodynamic interaction, E t b the binding energy (positive means attraction) and g t the geometric multiplicity, i.e. the number of symmetry equivalents (which fully accounts for configurational entropy inside the cluster). At this point, the symbolic calculation is done and the results are stored in a file to be loaded back by the numerical part of the code.

Strained systems. The symmetry-based approach allows for a straight-forward treatment of strained systems. The user can define a strain tensor to deform the crystal and reduce its symmetry. The code automatically finds the subset of symmetry operations that remain valid, and evaluates if the broken symmetry gives rise to new symmetry-unique sublattices or jump mechanisms that were equivalent in the unstrained system, updating the list of effective interactions and jump frequencies accordingly. The calculation of the symbolic expressions then proceeds in the same way. Strains usually generate anisotropic diffusion terms [START_REF] Garnier | Stress-induced anisotropic diffusion in alloys: Complex si solute flow near a dislocation core in ni[END_REF], which appear in the code as nonnull terms along the directions perpendicular to the chemical potential gradient direction. Note that we introduce single component effective interactions to account for kinetic correlations of a single defect in a non-Bravais strained lattice.

Numerical evaluation. For the numerical calculations, the user provides a range of temperatures and (optionally) strain values, as well as the binding and saddle point energies for each of the symmetryunique configurations and jump frequencies found in the symbolic part of the code. The latter are listed in separate files, so that they can be inspected in an atomic visualization software, and computed with the usual methods (density functional theory, interaction models, interatomic potentials, etc.). For strain calculations, the user needs to provide as well values of the elastic dipoles of each equilibrium and saddle-point configuration; the energy variation due to elastic energy is computed automatically within the linear elasticity theory [START_REF] Varvenne | Point defect modeling in materials: Coupling ab initio and elasticity approaches[END_REF]. The calculation at this point simply consists in solving numerically the system of equations of Eq. 13, and combining the results with matrices Λ and Λ 0 as in Eq. 23. Additional options allow the user to perform parametric studies as functions, for instance, of the kinetic radius (see Sec. 4.1.2), of particular jump frequencies, as well as sensitivity studies to identify the jump frequencies that have the largest impact on the cluster transport coefficients (see Sec. 4.1.3).

After computing the coefficients for each cluster (one calculation each), the total transport coefficients in Eq. 3 must be computed as a post-processing step, depending on the cluster concentrations [c] that can be obtained either in equilibrium or non-equilibrium conditions, for instance by linking with a clusterdynamics model.

Computational load. From a computational perspective, the code is light and can easily run on personal laptops. Distributed under an LGPL license, it can be downloaded freely together with the user documentation and a set of input file examples [START_REF] Schuler | Kineclue repository[END_REF]. The computational time can be as short as one second for two-component clusters, and increases with cluster size, kinetic radius, and the amount of jump mechanisms. Increasing the kinetic radius or the number of components involves in both cases a wider configuration space and a higher amount of kinetic equations, the construction of which is the bottleneck of the symbolic calculation. See Sec. 4.1.1 for a more detailed evaluation of the computational time with cluster size and kinetic radius.

Current limitations. Among the limitations of the current version of KineCluE, the most important to mention is that it proceeds in the canonical ensemble (fixed number of atoms of each species) and with a fixed number of defects and solutes. The first condition implies that users keep track of the number of matrix atoms involved in their system, even though they are not declared explicitly. One example is an interstitial solute becoming a substitutional solute where an implicit matrix atom was located. As in a Monte Carlo simulation in the canonical ensemble, this matrix atom cannot disappear, and must become for instance a self-interstitial atom. Users must also pay attention to the second condition. For instance, recombinations between self-interstitials and vacancies cannot be modeled at this stage, because such a reaction would lead from a two-component cluster (the two point defects) to no defects. This limitation can sometimes be overcome by allowing two defects to be located at the same site (cf. the code documentation, and the kick-out mechanism described in Sec. 4.2.3). Finally, no transmutations (change of defect type or solute species) are allowed in the definition of the jump mechanisms.

Configuration space exploration algorithm

We present in more details our-to the best of our knowledge-original algorithm to explore and build the cluster configuration space. Such an algorithm can be useful outside the scopes of KineCluE, for instance to sample the configuration space and perform exact thermodynamic averages, in replacement of traditional rigid-lattice Monte Carlo simulations. From a starting configuration (that can be either provided by the user or automatically generated) the algorithm applies the user-defined jump mechanisms to move from one configuration to the next one. In this sense, the configuration space can be seen as a graph where the nodes (the configurations) are connected with each other by a jump. Symmetry operations are used at each newly found configuration to ensure that symmetry-equivalent configurations are visited only once.

Figure 3 summarizes the main steps of the algorithm. Configurations to analyze are progressively appended to an exploration list, which initially includes the starting configuration only, and all found configurations are stored in the final configuration list. The exploration stops when the exploration list is empty. For each new configuration C in the exploration list, the code first generates all symmetryequivalent configurations and appends them to the configuration list, then considers all jumps applicable from C. Each final configuration reached by the latter jumps is added to the exploration list, unless it is found to be disconnected, i.e. if any component of the cluster is found at a distance larger than the defined kinetic radius from any other cluster component. Therefore, if the starting configuration is the most compact one, the algorithm builds the configuration space by moving progressively to configurations where the cluster constituents are further and further apart, until one or more of them are beyond the kinetic radius. However, the starting configuration does not need to be the most compact one: if defects, species permissions, and jump mecha- nisms have been well defined, the resulting configuration space should be well connected and independent from the chosen initial configuration. This is also ensured by the fact that reverse jumps are added automatically by the code if they are not found by symmetry operations.

Finally, it should be noticed that a correct definition of the jump mechanisms is crucial for the algorithm to visit all configurations existing within the defined kinetic radius, and that not necessarily all the connected configurations are reachable with a given set of jumps. For instance, in the case of a dumbbellsolute pair with radius equal to the 1NN distance, the so-called tensile configurations (solute in a nontarget 1NN position) are not accessible, unless an onsite rotation jump is defined [37].

Testing and applications

In this section we assess the technical performance and current limitations of the code, discuss the convergence of transport coefficients with respect to the kinetic radius, and explain how to perform sensitivity studies to identify the most important jump frequencies of the system.

Performance and functionality assessment

Assessment of computation time and memory

In the analytical part of the code, most of the time is spent on the construction of the configuration space and of the analytical system of equations. Therefore, the parameters most affecting the computational performance are the kinetic radius and the cluster size, because they are both proportional to the amount of configurations and of kinetic interactions. Figure 4 shows measurements of the computational time as functions of these two quantities, in the following sample cases: vacancy-solute and dumbbell-solute pairs (kinetic radius, left panel); clusters of vacancies and substitutional or interstitial solutes (cluster size, right panel). The tests were run on a workstation equipped with an Intel R Xeon R CPU E5-2680 v4 processor (2.40 GHz). The timing of the numerical code was averaged on the amount of temperature-strain data points.

For both parameters, the computation time increases quickly on the logarithmic scale. For what concerns the kinetic radius, this is of no issue because results are usually already well converged after a few lattice parameters, as is showed in the next section. It is thus unneeded to go to very large radii, and in the vast majority of cases it is possible to run calculations in a matter of seconds or minutes, in any case no longer than an hour. On the contrary, computation time represents at the moment a technical limitation for the cluster size that can be handled in KineCluE. It will be necessary, in order to extend its capabilities to larger clusters, to implement parallelization strategies on the construction of the system of equations and of the configuration space. Furthermore, another limitation is given by memory requirements: in Figure 4, the tests could not be performed beyond 45-50 a 0 and 4-5 components because the RAM memory of the workstation was completely filled up. The main limiting factors also in this case are the amount of configurations and effective interactions: for instance, a computation with 1.08 million configurations and 136 thousands interactions required about 2.4 GB of RAM. This issue will be addressed in future versions of the code.

In conclusion, the current version of KineCluE is limited to clusters of size 4 or 5, depending on the chosen kinetic radius, whereas for pairs it is possible to obtain very well converged results in reasonably short times on standard personal workstations.

Convergence of pair transport coefficients

The larger the kinetic radius, the more kinetic trajectories are included in the calculation. At infinite kinetic radius, all possible trajectories are included so the formalism adopted in KineCluE should theoretically converge towards the exact value for an isolated cluster in an infinite medium. This paragraph shows that cluster transport coefficients converged within practical errors are obtained for kinetic radii no larger than a few lattice parameters. The investigation is summarized in Fig. 5, and was performed for various crystallographic systems, jump mechanisms and temperatures, each informed by previously published ab initio calculations [START_REF] Agarwal | Exact model of vacancy-mediated solute transport in magnesium[END_REF][START_REF] Bocquet | Migration mechanism for oversized solutes in cubic lattices: The case of yttrium in iron[END_REF][START_REF] Messina | Multiscale modeling of atomic transport phenomena in ferritic steels[END_REF][START_REF] Barouh | [END_REF], so convergence varies from one system to another. In a dilute system containing only monomers and pairs, all the off-diagonal contributions to the Onsager matrix come from interactions within the defect-solute (dS ) pair cluster. Hence, we know that the product between the off-diagonal cluster transport coefficient L dS (dS ) and the pair partition function Z dS converges towards a well-defined physical quantity. Therefore, we choose the absolute value of the relative error on the Z dS × L dS (dS ) product, to evaluate convergence and to choose the most appropriate kinetic radius, which should: 1) be sufficiently high so that all important kinetic trajectories are taken into account (converged quantity); 2) be sufficiently low so that all cluster in the solid solution remain isolated from each other (dilute hypothesis, see Sec. 2.1). Once the kinetic radius is set for the pair cluster, it should be kept identical for all clusters in the system, otherwise illogical configurations would arise, for instance a three-body configuration where all components interact as pair clusters but the configuration is not considered as a three-body cluster (or the opposite).

Figure 5 shows the absolute value of the relative error on Z dS × L dS (dS ) with respect to its value at R kin = 20 a 0 taken as reference. First of all, this contribution is indeed converging monotonically with increasing kinetic radius. Second, the sign of the relative error (shown as solid and dashed lines) varies from one example to another, but it is correlated with the actual sign of off-diagonal transport coefficients. In the end, choosing a lower kinetic radius always leads to underestimated values of the absolute value of off-diagonal transport coefficients, which is logical since this coefficient mainly contains contributions from correlated trajectories. The larger the kinetic radius, the more of these correlated trajectories are added to the calculation, even though their thermodynamic weight decreases with increasing distance. This is consistent with findings from variational approaches of transport coefficients [START_REF] Spohn | Large Scale Dynamics of Interacting Particles[END_REF][START_REF] Arita | Bulk diffusion in a kinetically constrained lattice gas[END_REF]. Another interesting point is the evolution of convergence with temperature. We found that increasing the temperature always leads to a decrease in the value of off-diagonal transport coefficients, such that the relative error increases if these coefficients are positive, while it decreases if they are negative. This behavior is observed in Fig. 5 by looking at the order of the curves depending on whether they are solid or dashed. Finally it is noteworthy that all relative errors drop below 10% at a kinetic range of three lattice parameters. Although this may not be true for other examples, the variety of jump mechanisms and interactions strongly points towards the validity and applicability of our cluster transport coefficients formalism to a wide variety of systems.

Sensitivity study

In this section we demonstrate how to use the sensitivity study routine of KineCluE, and how it can be useful in parameterizing the kinetic model efficiently. As an example, we consider the diffusion of a vacancy-carbon pair (VC) in Fe, and rely on previously published ab initio data [START_REF] Barouh | [END_REF]. After the analytical part of the code, a set of jump frequencies are identified, and the user needs to supply numerical values for the saddle-point energies corresponding to all of these jump frequencies. If saddle-point energies are not provided, KineCluE will use by default the kinetically-resolved activation (KRA) barrier approximation [START_REF] Van Der Ven | First principles calculation of the interdiffusion coefficient in binary alloys[END_REF] based on the binding energies of the initial and final state (in our example we assume that all binding energies have been computed accurately):

E α sp = Q α - E ini b + E fin b 2 , ( 24 
)
where E α sp is the saddle-point energy for a jump performed by species α between two configurations which are characterized by binding energies E ini b and E fin b (positive binding energy means attraction). Q α is a species-specific activation energy, usually taken as the bulk migration energy of this species when it is isolated.

Unfortunately, we cannot tell beforehand how well this approximation performs for a given jump, and a change in saddle-point energies may lead to qualitative changes in transport coefficients. Still, we use the default (i.e. KRA) value of saddle point energies as a starting point for the sensitivity analysis. The theory behind this analysis is described in details in the Appendix section. It is an iterative process, and each row of Fig. 6 corresponds to one step of the process. Each step itself consists of two parts. The first part is the computation of the gradient of cluster transport coefficients in the jump frequency space, which is simply the partial derivative of cluster transport coefficient with respect to each jump frequency. The larger the partial derivative, the larger the change in transport coefficients resulting from a change in the saddle-point energy of the corresponding jump frequency. Note that dissociation jump frequencies should be removed from this analysis. Indeed, numerous jump frequencies can be assigned to a disso-ciation frequency, e.g. all jumps between the thermodynamic and kinetic radius. This way, dissociation jump frequencies are made artificially important because of how we regroup jump frequencies together to speed up the calculation. Moreover, they should in principles represent jumps where cluster components do not interact anymore, such that the KRA approximation in Eq. 24 is expected to hold. The second part is to compute the values of cluster transport coefficients for different values of the most critical jump frequencies, which helps in deciding if it is worth computing these jump frequencies accurately, for instance using ab initio methods.

The left-hand side column of Fig. 6 shows the normalized gradient at each step, and allows to identify the most important jump frequencies. Obviously, some jump frequencies affect a lot some coefficients of the Onsager matrix and do not have much effect on other coefficients. To simplify the discussion in this example, we focus on the off-diagonal coefficient at T = 600 K. The first step of the calculation identifies jump frequencies C 56 and C 12 as having the most effect on the L VC coefficient. The right-hand side column of Fig. 6 shows the ratio between the L VC coefficient for various values of these two jump frequencies and the current L VC value. We see that variations of 0.2 eV in saddle-point energies can produce a change in the qualitative nature (i.e., sign) of flux coupling between vacancy and carbon. It is thus important to have an accurate estimation of these jump frequencies. In Ref. [START_REF] Barouh | [END_REF]-using ab initio calculations-the saddle-point energies are found respectively -0.055 eV and -0.445 eV higher than the KRA-predicted value, which results in a change of sign of the L VC coefficient as well as a one order of magnitude increase in its absolute value. Going to the second iteration of the process, jump frequencies C 56 and C 12 are set to their ab initio values and thus removed from the analysis. Jump frequencies V 25 and V 12 are now identified as the most critical ones. Again, the right-hand side plot shows that a small variation of the V 12 jump frequency value could lead to a change of sign of L VC , so this jump frequency needs to be calculated accurately. On the contrary, jump frequency V 25 does not seem to have much effect on L VC unless the saddle-point energy is found about 0.3 eV lower than the current KRA value. In fact, ab initio calculations show that the V 12 jump is not possible (which leads to a change of sign of L VC ), and that the V 25 saddle-point energies is only 0.05 eV higher than the KRA-predicted value. Moving on to the third step and removing jump frequencies V 25 and V 12 from the analysis, jump frequencies C 25 and C 68 are identified as the most critical ones. But when we look at the right-hand side plot, we see that the impact of these two jump frequencies is rather small, unless the KRA approximation is off by about 0.5 eV for both jump frequencies, which is unlikely. Hence we can consider that we have already computed all the most important jump frequencies, and that the parameterization step can be stopped here.

On this simple example where the code identified 12 jump frequencies, the sensitivity analysis shows that one only needs to compute 4 of these jump frequencies to get a reasonable estimation of the L VC coefficient. The value obtained after step 2 (L VC = -2.263 × 10 -14 m 2 s -1 ) is found to be within a 5% relative error with respect to the coefficient obtained when all 12 jump frequencies were computed ab initio (L VC = -2.388 × 10 -14 m 2 s -1 ). In larger clusters were hundreds of jump frequencies are identified by the code, this sensitivity analysis can result in important computational savings for the parameterization of the model while having accurate cluster transport coefficient values.

Benchmarking to literature studies

We briefly present in this section a few validation studies in a broad range of crystal lattices and diffusion mechanisms, including strained systems.

Self-diffusion correlation factors in various

systems A first validation consists in computing the selfdiffusion correlation factors f 0 for several diffusion mechanisms. This is easily done in KineCluE by defining the tracer atom as a foreign species having the same exact energetics as the matrix host atoms. The latter entails null interaction energies, and jump frequencies equal to those in the pure metal.

Before anything else, let us define correlation factors: to us, a correlation factor is the ratio between a transport coefficient and the uncorrelated part of that same coefficient, meaning that coefficient reduced to 
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Example of sensitivity analysis using ab initio data [START_REF] Barouh | [END_REF] a vacancy (V)-carbon (C) pair in Fe at T =600 K. Each row corresponds to a step of the sensitivity study, the lefthand plot being the analysis of the most critical jump frequencies (i.e. the ones with the highest components in the normalized gradient vector), and the right-hand plot being the computation of transport coefficients for various saddle-point energy values for the two most critical jump frequencies. In the latter, the axes show saddle-point energy differences with respect to the KRA-computed value, while the color surface shows the absolute value of the ratio between the corresponding L VC and its reference value before this step of the sensitivity study. The black contour indicates a change in the sign of L VC . The filled circled represents the saddle-point energy values at which the reference L VC was computed (0,0) and the arrow points towards the direction of highest variation of L VC . Finally, the open circle shows the value of saddle-point energies differences once they were computed ab initio [START_REF] Barouh | [END_REF]. Jump frequencies are labeled α i j for a jump where species α jumps between a configuration where V and C are i th nearest-neighbors and a configuration where they are j th nearest-neighbors. its Λ 0 d component in Eq. 23. The uncorrelated part of a transport coefficient is a sum over all possible configurations and possible jumps from these configurations of the associated jump frequencies weighted by square jump distances. Most of the time, this definition of the uncorrelated contribution amounts to the definition given by a random walk. Yet, when defects go through different non-equivalent configurations, users needs to define macro-jumps between equivalent configurations to be able to compute a true random walk [79]. The arbitrary choice of macrojumps may lead to different f 0 values because the sum only runs over a restricted number of configurations. For instance, considering dumbbell migration in FCC metals, f 0 is found equal to 0.439454 [START_REF] Benoist | La correlation entre sauts atomiques: Une nouvelle methode de calcul[END_REF] or 0.878908 [79] depending on whether the random walk is defined between jumps or macro-jumps consisting of two successive jumps. Our definition based on Λ 0 d does not require any definition of macrojumps, which makes it more general and systematic. Note that this definition only affects the f 0 coefficient, not transport coefficients.

Table 1 shows the computed f 0 in comparison with previous analytical or Monte Carlo calculations [START_REF] Bocquet | Exact value of the correlation factor for the divacancy mechanism in fcc crystals: the end of a long quest[END_REF]36,[START_REF] Bocquet | Migration mechanism for oversized solutes in cubic lattices: The case of yttrium in iron[END_REF][79][START_REF] Benoist | La correlation entre sauts atomiques: Une nouvelle methode de calcul[END_REF][81][START_REF] Compaan | Correlation factors for diffusion in solids[END_REF][START_REF] Chen | Correlation factors for interstitialmediated self-diffusion in the diamond lattice: Kinetic lattice monte carlo approach[END_REF][84][85], and when available with the Green function (GF) method by Trinkle [START_REF] Trinkle | Automatic numerical evaluation of vacancy-mediated transport for arbitrary crystals: Onsager coefficients in the dilute limit using a green function approach[END_REF]. As opposed to the latter, the results in KineCluE depend on the chosen kinetic radius R kin , i.e., on the amount of kinetic trajectories included in the calculation. However, with increasing R kin the results converge well to the reference values, and it is not necessary to go to very large radii to obtain an already satisfactory precision. For instance, a calculation with R kin = 6a 0 runs in a few seconds and ensures a precision to the third or fourth decimal digit, which is usually fully satisfactory for the purposes of a diffusion study. It is interesting to mention that, in agreement with the convergence analysis in Section 4.1.2, the value of f 0 systematically decreases with increasing kinetic radius, as the contribution of correlations becomes larger.

We have investigated vacancy-exchange mechanisms in several crystals, including two-dimensional ones, and some dumbbell mechanisms in BCC and FCC alloys. The case of dumbbell-solute pairs in BCC has been more extensively treated in another work [START_REF] Messina | Multiscale modeling of atomic transport phenomena in ferritic steels[END_REF], where KineCluE has allowed for the extension of the previous SCMF framework [37] from first nearest-neighbor (1nn) interactions to arbitrarily long kinetic radii. The correlation factor obtained for the rotation-translation mechanism of 100 dumbbells in FCC is in full agreement with Monte Carlo simulations [START_REF] Siegel | Point defects and defect interactions in metals[END_REF] and Bocquet's earlier analytical model [START_REF] Benoist | La correlation entre sauts atomiques: Une nouvelle methode de calcul[END_REF].

In addition, we have successfully tested the code on a few more complex mechanisms, for which analytical calculations are available, namely: tracer diffusion in FCC via a di-vacancy mechanism [START_REF] Bocquet | Exact value of the correlation factor for the divacancy mechanism in fcc crystals: the end of a long quest[END_REF], the diffusion of oversized atoms in BCC and FCC alloys [START_REF] Bocquet | Migration mechanism for oversized solutes in cubic lattices: The case of yttrium in iron[END_REF], and several kick-out and combined dumbbelldirect interstitial mechanisms in diamond [START_REF] Chen | Correlation factors for interstitialmediated self-diffusion in the diamond lattice: Kinetic lattice monte carlo approach[END_REF]. The latter two cases are discussed in more detail in Sections 4.2.2) and 4.2.3, respectively. 4.2.2. Oversized solute mechanism in BCC and FCC crystals Thanks to the high degree of flexibility in the jump mechanism definition, KineCluE can handle complex diffusion mechanisms, such as for instance the recently discovered diffusion pattern of oversized solute atoms (OSA) in BCC and FCC alloys [START_REF] Bocquet | Migration mechanism for oversized solutes in cubic lattices: The case of yttrium in iron[END_REF]. According to this mechanism, OSA diffusion does not occur via a direct exchange with vacancies; instead, when neighboring a vacancy, the oversized atom leaves the substitutional position and relaxes towards the center of the empty lattice space, forming a complex with two half vacancies. In this "split-vacancy" configuration, either of the two half vacancies can exchange with one of the neighboring matrix atoms. This entails the dissociation of the complex and the return of the solute into a substitutional position (Fig. 1 of the previous work [START_REF] Bocquet | Migration mechanism for oversized solutes in cubic lattices: The case of yttrium in iron[END_REF]). A net displacement of the solute has occurred if the new substitutional position is different from the one before the complex formation. In FCC structures, it is also possible for the half-vacancy to perform non-dissociative jumps within the 1nn triangle (Fig. 3 of the previous work [START_REF] Bocquet | Migration mechanism for oversized solutes in cubic lattices: The case of yttrium in iron[END_REF]). Bocquet and coworkers developed the analytical framework to compute the solute correlation factor and diffusion coefficient for this new mechanism, and then considered the case of yttrium in BCC and FCC iron by computing the ab initio migration barriers, with solute-vacancy thermodynamic interactions limited to 1nn and 2nn.

Table 1: Self-diffusion correlation factors for various mechanisms, as computed with KineCluE, in comparison with the Green function method [START_REF] Trinkle | Automatic numerical evaluation of vacancy-mediated transport for arbitrary crystals: Onsager coefficients in the dilute limit using a green function approach[END_REF] and previous calculations [START_REF] Bocquet | Exact value of the correlation factor for the divacancy mechanism in fcc crystals: the end of a long quest[END_REF]36,[START_REF] Bocquet | Migration mechanism for oversized solutes in cubic lattices: The case of yttrium in iron[END_REF][START_REF] Benoist | La correlation entre sauts atomiques: Une nouvelle methode de calcul[END_REF][81][START_REF] Compaan | Correlation factors for diffusion in solids[END_REF][START_REF] Chen | Correlation factors for interstitialmediated self-diffusion in the diamond lattice: Kinetic lattice monte carlo approach[END_REF][84][85]. The third column refers to the absolute error with respect to the reference value in the last column (or the GF method when available), when the calculation is performed with a smaller kinetic radius (6 a 0 ). With the appropriate definition of configurations and jumps, it is possible to reproduce the same mechanism in KineCluE. The split-vacancy configuration is defined by introducing a second sublattice in the intermediate position between two substitutional atoms, and by setting permissions so that each species (vacancy and solute) is allowed on that sublattice only when sharing the site with the other species. In addition, the usual 1nn substitutional configuration must be forbidden by setting its prefactor to zero in the numerical part of the code. Finally, the solute jump needs to be described with several dissociative jumps, each of which departs from the split-vacancy configuration and brings the vacancy either to a 2nn, 3nn, or 5nn configuration in BCC (2nn, 3nn, or 4nn in FCC). In FCC, it is also necessary to add the 1nn-1nn non-dissociative jump. Sample input files can be found in the code documentation. Figure 7 shows the perfect match between the Y correlation factor and diffusion coefficient obtained with KineCluE and Bocquet's analytical model. A satisfactory agreement is also obtained for the selfdiffusion correlation factors shown in Table 1.

In addition, KineCluE provides a more complete picture of solute-defect correlations thanks to the calculation of the off-diagonal transport coefficient for kinetic radii larger than a few nearest neighbors. We have therefore computed the drag ratios L YV /L YY and L YV /L VV (Fig. 8) with Bocquet's ab initio migration barriers, setting the thermodynamic and kinetic radii to 3a 0 and 4a 0 , respectively. This leads to 38 distinct jump frequencies in BCC (78 in FCC); jumps beyond the 2nn shell were set to the isolated vacancy jump frequency. The L VV coefficient is obtained by adding the contribution of the monomers (single vacancies) to that of the OSA-vacancy pair according to Eq. 3, and assuming the pair concentration as

C VY = C V C Y Z VY (C Y = 1%
). The partition function Z VY is output by KineCluE, while the drag ratios are independent from the vacancy concentration. The results show that Y will diffuse by vacancy drag up to very high temperatures and across the phase transformation to FCC. Therefore, not only the diffusion of Y atoms is faster than Fe self diffusion-as was highlighted by Bocquet-but it is expected that the highly stable split-vacancy complex leads to strong positive (i.e. same direction) flux coupling between Y solutes and vacancies. Note that the values of the L VY /L VV coefficients in Fig. 8 are in principle dependent on the kinetic radius. Indeed, as the kinetic radius increases, more and more V monomer contributions are included in the V-Y pair L VV coefficient. Yet, because there is a strong attractive interaction between V and Y (1.2 eV in BCC and 1.3 eV in FCC), these V monomer contributions are negligible compared with the V-Y pair contribution unless the calculation is performed with a very large kinetic radius.

Kick-out and multiple interstitial mechanisms in diamond structures

In semi-conductors with a diamond crystallographic structure, kick-out and multiple interstitial diffusion mechanisms associated with near-value activation energies may contribute to the atomic transport [START_REF]Range-separated approach to the rpa correlation applied to the van der waals bond and to diffusion of defects[END_REF]. KineCluE is able to handle these complex diffusion mechanisms. A mechanism frequently invoked is the one combining hops of a dumbbell and direct interstitial (described as the stable-split mechanism in Ref. [START_REF] Chen | Correlation factors for interstitialmediated self-diffusion in the diamond lattice: Kinetic lattice monte carlo approach[END_REF] and as a multiple diffusion mechanism here). The dumbbell is oriented along the < 110 > direction and one of the atoms of the dumbbell is hopping onto a neighboring interstitial site (tetrahedral or hexagonal site). There is also the so-called kick-out mechanism (also called indirect mechanism): an atom sitting on an interstitial site A hops onto a neighboring lattice site B and kicks the substitutional atom which was occupying the lattice site B out onto a neighboring interstitial site C. The interstitial network is either made of tetragonal or hexagonal interstitial sites. For the hexagonal interstitial network, we distinguish three sub-mechanisms depending on the cosine of the angle made between vectors AB and BC: the first sub-mechanism starting from a given site interstitial site A involves two final hexagonal sites C (labeled [START_REF]Diffusion in Solid Metals and Alloys[END_REF][START_REF] Leclaire | Liii. correlation effects in diffusion in crystals[END_REF] in [START_REF] Chen | Correlation factors for interstitialmediated self-diffusion in the diamond lattice: Kinetic lattice monte carlo approach[END_REF]) forming a cosine equal to 9/11, the second sub-mechanism involves two hexagonal sites C labeled [START_REF] Allnatt | Atomic Transport in Solids[END_REF][START_REF] Martin | Electronic Structure, Basic Theory and Practical Methods[END_REF] forming a cosine equal to 5/11 and the third set involving four hexagonal sites C labeled [START_REF] Meslin | [END_REF][START_REF] Messina | Systematic electronic-structure investigation of substitutional impurity diffusion and flux coupling in bcc iron[END_REF][START_REF] Barkema | Event-based relaxation of continuous disordered systems[END_REF]8) forming a cosine equal to 1/11. The agreement between the correlation factor f 0 obtained from KineCluE and the values extracted from atomic kinetic Monte Carlo simulations [START_REF] Chen | Correlation factors for interstitialmediated self-diffusion in the diamond lattice: Kinetic lattice monte carlo approach[END_REF] is very good for for both the kick-out and multiple diffusion mechanisms. Note that to compare with data from Ref. [START_REF] Chen | Correlation factors for interstitialmediated self-diffusion in the diamond lattice: Kinetic lattice monte carlo approach[END_REF], we have used the measured average cosine value cos tr θ of the angle between successive jumps of a tracer atom to compute the corresponding f 0 using the formula: f 0 = 1+cos tr θ. In addition, KineCluE with kinetic radius larger than 20a 0 has a better precision because the resulting correlation factors are systematically lower than the corresponding Monte Carlo value. The precision of the Monte Carlo simulation is around 10 -2 , a precision that we get in KineCluE with a kinetic radius approximately equal to 3a. Thus, although not informed by the authors, we estimate the size of the Monte Carlo simulation box to be around 2 × 3a 0 . This is based on the idea that kinetic correlations associated with defect trajectories coming out of a Monte Carlo simulation box are not properly taken into account due to the periodic conditions.

Transport coefficients in strained systems

KineCluE allows for a seamless application of the SCMF cluster-expansion method to strained systems, thus widely improving the state-of-the-art models for computing full strain-dependent transport matrices. Strain-dependent diffusion coefficient were measured by molecular dynamics [START_REF] Chan | Anisotropic diffusion of point defects in metals under a biaxial stress field simulation and theory[END_REF] and by Monte Carlo simulations [START_REF] Ziebarth | Influence of dislocation strain fields on the diffusion of interstitial iron impurities in silicon[END_REF], but it was shown that measuring the elasto-diffusion tensor with the latter method is tricky [START_REF] Li | Kinetic monte carlo investigation of tetragonal strain on onsager matrices[END_REF]. Previous analytical models allowing for such kind of calculations were based on:

-the SCMF method (before cluster expansion) by Garnier and coworkers for diffusion of substitutional solutes via a vacancy mechanism in FCC alloys [START_REF] Garnier | Stress-induced anisotropic diffusion in alloys: Complex si solute flow near a dislocation core in ni[END_REF][START_REF] Garnier | Diffusion of si impurities in ni under stress: A firstprinciples study[END_REF][START_REF] Garnier | Calculation of strain effects on vacancy-mediated diffusion of impurities in fcc structures: General approach and application to ni1-xsix[END_REF];

-the Green function method for isolated interstitial solutes and vacancy-solute pairs in any lattice [START_REF] Trinkle | Automatic numerical evaluation of vacancy-mediated transport for arbitrary crystals: Onsager coefficients in the dilute limit using a green function approach[END_REF][START_REF] Trinkle | Diffusivity and derivatives for interstitial solutes: activation energy, volume, and elastodiffusion tensors[END_REF]. KineCluE greatly expands the range of systems that can be treated under strain, taking accurately into account all effects on correlations and energetics; for instance, it can correctly describe the effects of strain on the flux coupling between dumbbells and substitutional solutes, for which no model currently exists.

In the analytical part code, the symmetry analysis allows for the correct identification of the broken symmetries in the strained crystal, whereas the effect of strain-field elastic energy is automatically included in the numerical code in the framework of linear elasticity theory [START_REF] Varvenne | Point defect modeling in materials: Coupling ab initio and elasticity approaches[END_REF].

The implementation has been successfully tested on the aforementioned studies. Figure 9 shows the drag ratio L BV /L BB for a vacancy-solute pair in a FCC model alloy, as a function of different jump frequency ratios in the unstrained crystal (left panel), under a tetragonal strain ε 33 (middle panel), and under a shear strain ε = 2ε 12 = 2ε 21 (right panel). The nomenclature is the same as in the reference SCMF-based work [START_REF] Garnier | Calculation of strain effects on vacancy-mediated diffusion of impurities in fcc structures: General approach and application to ni1-xsix[END_REF] (Figures 1 and2 therein). The diffusion direction (e.g. [001]) is controlled in KineCluE with the chemical potential gradient direction, and by optionally adding two other non-collinear diffusion directions in case nonisotropic terms arise. The KineCLuE calculations were performed with a larger kinetic radius (4a 0 ) than Garnier's model ( √ 2a 0 ), which entails larger correlations (larger |L BV |) and slower solute diffusion (smaller L BB ). Hence, the drag ratios computed with KineCluE are larger in absolute value then the ones computed by Garnier, as shown in Fig. 9. In the example of L BV /L BB [100] under shear strain, atomic kinetic Monte Carlo simulations [START_REF] Garnier | Calculation of strain effects on vacancy-mediated diffusion of impurities in fcc structures: General approach and application to ni1-xsix[END_REF] performed in a (6a 0 ) 3 cell (corresponding approximately to a kinetic radius of 3a 0 ) are expected to be located in between the results from KineCluE (R kin = 4a 0 ) and those from Garnier (R kin = √ 2a 0 ). The fact that they are not is most probably due to statistical uncertainties, especially as the difference appears at large jump frequency ratio.

KineCluE compares well also with the elastodiffusion calculations performed with the Green Function (GF) method for interstitial carbon diffusion in BCC iron [START_REF] Trinkle | Diffusivity and derivatives for interstitial solutes: activation energy, volume, and elastodiffusion tensors[END_REF]. Figure 10 shows the nonnull components of the elasto-diffusion tensor d xy = dD xy /dε, obtained in KineCluE by finite differences: d = (L(ε 1 ) -Lε 0 )/(ε 1 -ε 0 ), with ε 0 = 0 and ε 1 = 10 -6 . The change of sign of the d 11 coefficient at T = 425.1 K is in perfect agreement with the GF calculations; this has been achieved by setting a sufficiently small ∆ε. Given that the code is already capable of computing derivatives of the transport coefficients (used for instance in the sensitivity study, cf. Section 4.1.3), it will be possible in future implementations to obtain the exact value of the derivative dD xy /dε, without the need for finite differences.

Conclusion

We introduced the KineCluE code that computes cluster transport coefficients from atomic-scale jump frequencies. The code is highly versatile in terms of crystallographic system, chemical species and defects, interaction ranges, and jump mechanisms, which allows for the treatment of a wide range of systems. It is an important tool to bridge two gaps: a "scale" gap and a "concentration" gap. For the former, the cluster expansion of the Onsager matrix enables for an efficient evaluation of kinetic properties as functions of cluster concentrations, since cluster transport coefficients only have to be computed once. Coupling with cluster dynamics and phase field methods is thus straightforward, and KineCluE allows to truly link these methods with atomic-scale information such as energies of configurations and migration barriers under well-controlled approximations. Also, cluster quantities are directly useful to object kinetic Monte Carlo methods. In the end, KineCluE offers new possibilities for studying micro-structure and defect population evolution over significant time scales informed by atomic scale data. Regarding the concentration gap, available analytical kinetic models have always been separated into exact models for infinitely dilute systems and mean field approaches for concentrated models. Starting from a dilute system framework, KineCluE allows for the treatment of larger clusters than what has been done previously, and these clusters contain some of the physics of concentration effects on transport properties. Thus, it is a first but important step in unifying both dilute and concentrated approaches in a unique formalism that would be able to correctly describe intermediate concentrations (a few percent) which are probably the most useful but also the most challenging to compute.

10 -4 10 -2 10 0 10 2 10 4 w (1) ijk / w (0) w (1) 1b1b1a [001] w (4) 1b1b∞ [001]

w (1) 1a1b1b [100] w (4) 1a1a∞ [100] computing the local derivatives of cluster transport coefficients with respect to jump frequencies. Starting from a set of jump frequencies-which might not be very accurate-this routine identifies the most critical jump frequencies, i.e. the ones that need to be computed accurately to have reliable transport coefficients. Because the method is only local, several iterations might be necessary to identify the full set of critical jump frequencies.

Let us assume that we have a set of jump frequencies W 0 = ω 0 i ; we are then able to compute a numerical value for L d (W 0 ). Now we want to know how L d (W 0 ) would change if some of the jump frequencies ω i would be modified. To this end, we will compute the gradient of L d in the jump frequency phase space which points towards the direction of the highest change in L d :

∇L d = ∂L d ∂ω i W 0 . ( 25 
)
We compute the partial derivatives using the matrix form of cluster transport coefficients: (26) Note that all the above matrices and derivatives are evaluated at W 0 . The terms in matrices Λ 0 , Λ and T are linear combinations of jump frequencies, and we have computed their analytical form in the first part of the KineCluE code, so their derivatives with respect to a given jump frequency ω i are straightforward to compute. The remaining issue is that we do not have the analytical expression of T-1 , and it can be prohibitively long to compute because T is a square matrix of size the number of effective interactions in the system. Thus, we use the following identity:

L d (c) = Λ 0 d -Λ d T-
T T-1 = I ⇒ ∂ T ∂ω i T-1 + T ∂ T-1 ∂ω i = 0 ⇒ ∂ T-1 ∂ω i = -T-1 ∂ T ∂ω i T-1 . (27) 
Inserting Eq. 27 in Eq. 26 amounts to a practically convenient expression:

∂L d ∂ω i = ∂Λ 0 d ∂ω i + ∂Λ d ∂ω i T-1 Λ µ -Λ d T-1 ∂ T ∂ω i T-1 Λ µ + Λ d T-1 ∂Λ µ ∂ω i . (28) 
Now all the derivatives can be easily computed from the analytical expressions of Λ 0 , Λ and T. Then, for a given set of jump frequencies W 0 , all terms located in Eq. 28 are directly computed numerically, and the numerical value of T-1 is already known from the calculation of L d (W 0 ). The direction V in jump frequency space along which L d varies the most around W 0 is given by the normalized gradient:

V = ∇L d ∇L d = ∇L d √ ∇L d .∇L d . ( 29 
)
Practically speaking, vector V gives the weighted combination of jump frequencies that is able to affect the most L d (W 0 ). These weights then show which are the most critical jump frequencies to get an accurate estimation of L d around W 0 . These jump frequencies should be computed accurately (e.g. using first-principles calculations) to obtain a new estimation of L d around a new point in the jump frequency space, W 1 . Then again, the corresponding V vector is obtained to see which are the most relevant jump frequencies around that point, and so on and so forth.

The remaining question is: when should we stop? Because the analysis is only local, when we change some of the jump frequencies, we will not get the same set of critical jump frequencies, and eventually we might end up computing all of these, which we wanted to avoid originally. The idea is to take a set of jump frequencies among the ones with the highest V vector components and compute the numerical value of transport coefficients for changes in these jump frequency values. A batch calculation feature is provided in KineCluE for this purpose. Then, one can decide if it is worth computing precisely the value of a given saddle-point configuration, or if it does not affect cluster transport coefficients within a tolerance chosen by the user. An example of such procedure is presented in Sec. 4.1.3.

Another possible approach which is not yet part of the KineCluE code, is to compute the Taylor expansion of transport coefficients around a reference point in jump frequency space. This may be numerically advantageous because any order derivative of cluster transport coefficients uses the same derivatives as the gradient, so there is no additional analytical effort needed, it is only a numerical application which requires matrix multiplications. The N th -order Taylor expansion for multivariate functions reads:

L d = N |n|=0 n i=0          ω i -ω 0 i n i n i ! ∂ n i L d ∂ω n i i W 0          (30) 
where |n| = k denotes a sum over all possible values of {n i } where i n i = k. The n th order derivative (for n > 1) of L d with respect to n jump frequencies (eventually some jump frequencies may appear more than once) is expressed as:

∂ n L d ∂ω n = Λ d ∂ n T-1 ∂ω n Λ t µ + n γ=1       ∂Λ d ∂ω γ ∂ n-1 T-1 ∂ω n-1 γ Λ t µ + Λ d ∂ n-1 T-1 ∂ω n-1 γ ∂Λ t µ ∂ω γ       + 1≤γ<δ≤n        ∂Λ d ∂ω γ ∂ n-2 T-1 ∂ω n-2 γ,δ ∂Λ t µ ∂ω δ + ∂Λ d ∂ω δ ∂ n-2 T-1 ∂ω n-2 γ,δ ∂Λ t µ ∂ω γ        . (31) 
The n th order derivative of the inverse of the T matrix is given as:

∂ n T-1 ∂ω n =         ρ n i=1 -T-1 ∂ T ∂ω ρ(i)         T-1 , (32) 
where the sum over ρ denotes a sum over the possible permutations of jump frequencies and a short-hand notation is used in the two previous equations:

∂ n-1 A ∂ω n-1 j = ∂ n-1 A ∂ω 1 ...∂ω j-1 ∂ω j+1 ...∂ω n (33) 
This way of computing the local variations of cluster transport coefficients in the jump frequency space might be more efficient from a numerical point of view than re-computing transport coefficients for each values of the most important jump frequencies. If testing shows that this Taylor expansion formalism is more efficient, it will be implemented in future versions of KineCluE.
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 2 Figure 2: Examples of vacancy (green square) jumps in the vicinity of a solute (blue sphere) for various lattices: a) hexagonal close pack, the smaller and lighter spheres representing atoms that are below and above the basal plane; b) facecentered cubic with a substitutional solute; c) face-centered cubic with an interstitial solute. For each system, the two jumps shown with green arrows are not equivalent because of differing saddle-point configurations, even though the initial and final configurations are symmetrically identical.
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 3 Figure3: Algorithm for the exploration of the configuration space, using symmetry operations to minimize the number of configurations to explore.

Figure 4 :

 4 Figure 4: Measured computational times as functions of kinetic radius (left) and cluster size (right) on an Intel R Xeon R CPU E5-2680 v4 (2.40 GHz). The measurements of numerical calculations, marked with dashed lines and empty markers, refer to the average time per computed temperature data point.
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 5 Figure 5: Convergence of cluster transport coefficients as a function of the kinetic radius for various crystallographic systems and jump mechanisms. ξ dS is the absolute value of the relative error on the Z dS × L dS (dS ) product, the reference value being taken at a kinetic radius of 20 lattice parameters. Solid (resp. dashed) lines represent positive (resp. negative) values of the relative error. Note that in the bottom-left plot, all curves from T = 900 K upwards are superimposed.
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Figure 7 :

 7 Figure 7: Diffusion coefficient (above) and correlation factor (below) of yttrium in BCC and FCC iron via the oversized solute diffusion mechanism, compared with the analytical calculations (markers) by Bocquet et al.[55].
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 8 Figure 8: Variation with temperature of the off-diagonal to diagonal transport coefficient ratios, for diffusion of yttrium in BCC and FCC iron via the oversized solute mechanism.
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Figure 9 :

 9 Figure9: Drag ratios for substitutional solute diffusion by vacancies in an FCC model alloy without strain (left), under a tetragonal strain ε 33 (middle), and under a shear strain (right), as functions of different frequency ratios, compared with the SCMF calculations of a previous work[START_REF] Garnier | Calculation of strain effects on vacancy-mediated diffusion of impurities in fcc structures: General approach and application to ni1-xsix[END_REF] (full markers) and using the nomenclature therein. Empty markers report the corresponding KMC calculations in the same work. Each strain calculation refers to a specific diffusion direction (in the shown cases, directions [100] and [010] are equivalent).

Figure 10 :

 10 Figure10: Components of the elasto-diffusion tensor for interstitial carbon diffusion in BCC iron, compared with the Green function method (markers)[START_REF] Trinkle | Diffusivity and derivatives for interstitial solutes: activation energy, volume, and elastodiffusion tensors[END_REF]. In perfect agreement with the reference work, the d 11 coefficient shows a sign change at T = 425.1 K (negative values are marked with a dashed line), and the d 44 coefficient is exactly equal to the carbon diffusivity in the unstrained crystal.

  1 Λ t µ (Eq. 23):

	∂L d ∂ω i	=	∂Λ 0 d ∂ω i	+	∂Λ d ∂ω i	T-1 Λ t µ + Λ d	∂ T-1 ∂ω i	Λ t µ + Λ d	T-1 ∂Λ t µ ∂ω i	.
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Appendix: Sensitivity study

Transport coefficients for cluster of more than two components depend on a large number of jump frequencies, and this number increases exponentially with the number of components in the cluster. The sensitivity study is a routine of KineCluE designed to identify the most important jump frequencies by