DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

On the effect of buoyancy on lateral migration of bubbles in turbulent flows: insights from Direct Numerical Simulations

Guillaume Bois¹, A. du Cluzeau¹, A. Toutant²

¹ DEN – Service de Thermo-hydraulique et de Mécanique des Fluides CEA, Université Paris – Saclay, F-91191 Gif-sur-Yvette, France

² PROMES-CNRS UPR 8521 Rambla de la Thermodynamique Tecnosud, 66100 Perpignan, France

International Conference on Multiphase Flow (ICMF) Rio de Janeiro, Brazil, 19-24 May 2019

guillaume.bois@cea.fr

Context: upscaling of information

Effect of void fraction profiles in bubbly flow

- Broad application: Critical Heat Flux prediction in PWR conditions (high T&P);
- Focus on the effects of void accumulation at the wall / core due to lateral migration of bubbles;
- Separate effects analysis: adiabatic conditions;
- Up-scaling DNS understanding into CMFD models.

Governing equations (exact, averaged)

Momentum interfacial

transfer defined from

- Definition of "two-fluid" variables for CMFD:
 - $\overline{\phi_k}^k \triangleq \frac{\chi_k \phi_k}{\overline{\chi_k}}$ (weighted average by the phase indicator)
 - Void fraction: $\alpha_n = \overline{\gamma_n}$
 - Fluctuating velocities: $u_k' = u_k \overline{u}_k^k$
- Phase-averaged momentum equation:

Phase-averaged momentum equation:
$$\frac{\partial \alpha_k \rho_k \overline{\boldsymbol{u}}_k^k}{\partial t} + \nabla \cdot \left[\alpha_k \rho_k \left(\overline{\boldsymbol{u}}_k^k \overline{\boldsymbol{u}}_k^k + \boldsymbol{R}_{ij}^k\right)\right] = -\nabla \left(\alpha_k \overline{\rho}_k^k\right) + \alpha_k \rho_k \boldsymbol{g} + \nabla \cdot \left[\alpha_k \overline{\boldsymbol{\tau}}_k^k\right] - \overline{\left(p_k \boldsymbol{n}_k - \boldsymbol{\tau}_k \cdot \boldsymbol{n}_k\right) \cdot \nabla \chi_k}$$
Correlation between fluctuations, Reynolds stresses: $\boldsymbol{R}_{ij}^k = \overline{u_i' u_j'}^k$

- Constitutive equations on R_{ij}^k and M_k are required to close the system.
- This presentation focuses on lateral motion induced by migration forces (M_k closure)
- See abstract 168047. Talk at 11:30am on Thursday for a focus on turbulence modelling.

Modeling of Bubble-Induced Fluctuations in turbulent bubbly up-flow from Direct Numerical Simulations, A. du Cluzeau, G. Bois, A. Toutant & A. Burlot.

Instantaneous velocity Reynolds stresses

Space fluctuations of the velocity (WIF) Time fluctuations of the velocity (WIT)

CMFD equations: modelling

Two-fluid One-pressure model: hypotheses

They are in disequilibrium because of surface tension:

$$M_l + M_v = \overline{\sigma \kappa V \chi_v}$$

- Beware, M_{ν} is not the net force on the gas phase!
- Classical interfacial momentum transfer is turned into a trajectory equation for the gas phase:

Net force on the gas phase
$$\alpha_{v}\rho_{v}\frac{d\overline{\boldsymbol{u}}_{v}^{v}}{dt}=\boldsymbol{\mathsf{M}}_{v}^{\text{tot}}$$

$$=\alpha_{v}(\rho_{v}-\langle\rho\rangle)\mathbf{g}-\alpha_{v}\alpha_{l}(\rho_{l}-\rho_{v})\mathbf{g}-\alpha_{v}\left[\rho_{v}\overline{\boldsymbol{u}_{v}^{\prime}\boldsymbol{u}_{v}^{\prime}}^{v}-\rho_{l}\overline{\boldsymbol{u}_{l}^{\prime}\boldsymbol{u}_{l}^{\prime}}^{l}\right]\cdot\nabla\alpha_{v}+\alpha_{v}\overline{\sigma_{v}}\nabla\chi_{v}^{v}-\alpha_{v}\nabla\left[\left(\overline{p}_{v}^{v}-\overline{p_{l}^{\prime}}\right)\alpha_{v}\right]$$

$$-\alpha_{v}\nabla\overline{p_{l}^{n}}^{l}-\alpha_{v}\left[\alpha_{l}\nabla\cdot\left(\rho_{l}\overline{\boldsymbol{u}_{l}^{\prime}\boldsymbol{u}_{l}^{\prime}}^{l}\right)+\alpha_{v}\nabla\cdot\left(\rho_{v}\overline{\boldsymbol{u}_{v}^{\prime}\boldsymbol{u}_{v}^{\prime}}^{v}\right)\right]$$
Classically neglected in the standard two-fluid one-pressure model

- Negligible in our conditions (from DNS and for readability): added-mass force, viscous terms
- Physical assumptions (classical two-fluid one-pressure modeling):
 - Fluctuations are neglected in the vapor phase;
 - Differences between pressures are neglected: $\bar{p}_{v}^{v} = \bar{p}_{v}^{i} = \bar{p}_{l}^{l}$
 - Lateral forces are made of lift, turbulent dispersion and wall lubrication forces only.

Governing equations

ICMF 2019

Reformulation and physical interpretation

A deeper analysis of this trajectory equation for the gas phase (Newton's second law):

Complex combination of single-phase pressure gradient and lift force due to pressure (induced by surface tension, NEW)

The turbulent part (NEW) can cause core-peaking ($\mathcal{C}_{TL} < 0$) It cannot be assessed on isolated bubbles (like Tomyiama's) Turbulent lift is still $\propto \rho_l \boldsymbol{u}_r \nabla \wedge (\boldsymbol{u}_l)$

- Viscous terms and added mass are neglected
- We derived an exact relation with the definition of forces from local variables!
- Classical closures pile up assumptions and lack physical understanding of collective effects;
- We propose to generate and leverage DNS data to evaluate this equilibrium equation...

Upscaling of DNS information

- Interfacial transfers and turbulence in bubbly flows;
 - DNS of a bubbly turbulent channel flow with a Front-Tracking algorithm (TrioCFD/TriolJK);
 - « Numerical experiments »: separated effects unit-tests (adiabatic, no contact line or coalescence);
 - Mean profiles and higher-order statistics are computed.

DNS of turbulent bubbly flows (1/4)

ICMF 2019

Set-up description & operating conditions

- Lu & Tryggvason (Physics of Fluids, 20, 2008).
 - ⇒ Code benchmark for validation;
 - ⇒ Additional statistical analysis.
- Extended to higher Reynolds numbers;
 - Study on deformability and gravity (relative velocity).

	2n	
Pseudocolor Var: COURBURE_SOM_INTERFACES -2.030	300	
~8.500 ~19.00		\overrightarrow{D}_{p}
-29.50 -40.00 Max: 4.66 Min: -54.61	830	·
TriolJK =	288	_
wall		wall
	600	g
Averaging	800	🌓
plane		
$\int_{-\infty}^{\infty} y$	360	
Ž	000	

	S	D	
$Re_{\tau} = u_{\tau}h/v_{l}$	180		
$Eo = \rho g d^2/\sigma$	0.47	3.6/3.74	
α_v (%)	3		
D_b/h	0.3		
N_b	80		
Size	$\pi h \times 2h \times \pi h/2$		
Resolution	$384 \times 1152 \times 192 \approx 85 \text{M}^{\text{ons}}$		
Mesh size	0.3 to 3 h/Re_{τ}		
Fluid	Fictitious		
Gravity	0.1/0.8 (non-dimensional)		

DNS of turbulent bubbly flows (2/4)

Flow transition from wall to core peaking

DNS of turbulent bubbly flows (2/4)

Flow transition from wall to core peaking

DNS of turbulent bubbly flows – Results (3/4)

Void fraction profiles exhibit different behaviors

On the effect of buoyancy on lateral migration of bubbles in turbulent flows: insights from DNS. BOIS Guillaume | CEA | PAGE 10

DNS of turbulent bubbly flows - Results (4/4)

ICMF 2019

Surprising contributions to the migration forces

Single-phase pressure gradient and lift force (induced by surface tension)

Conclusion & Prospects

- Core, wall and intermediate peaking are depicted from DNS (through variations of σ and g)
 - Wall-to-core peak transition cannot be reduced to the inversion of the lift coefficient due to the bubble deformability (*Eo*).
 - Other classical hypotheses are in failure (surface tension effect, laminar Reynolds stresses...)
- Dominant role of the closure relations (interfacial forces and turbulence) on the flow dynamics
 ⇒ In-depths revision of hypotheses and closures.
 - Bubble-induced turbulence level plays a key role in the transition and must be predicted accurately see Session XIV – Thursday 11:30am – #168047 – A. Burlot Reynolds stresses splitted into classical & bubble-induced turbulence, wake induced fluctuations;
 - Interfacial momentum transfer:
 - > The new formulation of the trajectory equation is an alternative to the classical particle approach;
 - New forces are essential in the equilibrium (related to surface tension, pressure difference and laminar Reynolds stresses (WIF) effects).
- The database in construction is:
 - Validated against other numerical work (further experimental validation is of interest);
 - Very rich: a lot of statistical information to build all kinds of models;
 - Well-designed for step-by-step analysis: DNS allows One At a Time (OAT) variations.
- Further analysis and model development are under way.
 - To derive and assess models for averaged to 2-phase RANS CFD calculations;
 - Extend the analysis to a broader parametric study and to bubble swarms.

Acknowledgments

- This work was granted access to the HPC resources of CINES under the allocations x20162b7712, A0022b7712 and A0042b7712 made by GENCI.
- Acknowledgment to CEA/DEN for the HPC ressources allocated on COBALT super-computer at TGCC.

G. Bois & A. du Cluzeau CEA/DEN 2018-2019

Thank you for your attention.

Questions?

Dr Guillaume BOIS - Research engineer DEN/DM2S/STMF/LMSF

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 69 86 | F. +33 (0)1 69 08 68 86

Etablissement public à caractère industriel et commercial | R.C.S Paris B 775 685 019

DNS of turbulent bubbly flows

ICMF 2019

Validation

- Very good agreements;
- Small discrepancies can reasonably be attributed to:
 - Higher statistical convergence of our results (longer time);
 - Small differences in lagrangian mesh management;
 - Discontinuous properties and sharp interfacial force treatment;
 - Uniform vs. non-uniform eulerian mesh.

Governing equations

One-fluid formulation (local instantaneous description) M F 2019

- OK MF 2019
- Local instantaneous description (continuum fluid mechanics)
- Navier-Stokes equations:

$$\frac{\partial \rho_k \boldsymbol{u}_k}{\partial t} + \nabla \cdot (\rho_k \boldsymbol{u}_k \boldsymbol{u}_k) = -\nabla p_k + \rho_k \boldsymbol{g} + \nabla \cdot \boldsymbol{\tau}_k \text{ with } \boldsymbol{\tau}_k = \mu_k (\nabla \boldsymbol{u}_k + \nabla^T \boldsymbol{u}_k)$$

- Interfacial jump conditions:
 - Velocity continuity: $u_1^n = u_2^n$ and $u_1^t = u_2^t$
 - Interfacial normal stress balance: $\sum_{k} (p_k \mathbf{n_k} \boldsymbol{\tau}_k \cdot \mathbf{n}_k) = -\sigma \kappa \mathbf{n}$

Extension to full space

Multiply by phase indicator function χ_k : 1 in phase k, 0 otherwise.

$$\frac{\partial \chi_k \rho_k \mathbf{u}_k}{\partial t} + \nabla \cdot (\chi_k \rho_k \mathbf{u}_k \mathbf{u}_k) = -\nabla (\chi_k p_k) + \chi_k \rho_k \mathbf{g} + \nabla \cdot [\chi_k \mu_k (\nabla \mathbf{u}_k + \nabla^T \mathbf{u}_k)] - (p_k \mathbf{n}_k - \boldsymbol{\tau}_k \cdot \mathbf{n}_k) \cdot \nabla \chi_k$$

- One-fluid formulation
- Definition of "one-fluid" fields: $\phi \cong \sum_k \chi_k \phi_k$
- Adding up and using jump conditions:

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = -\nabla p + \nabla \cdot [\mu(\nabla \mathbf{u} + \nabla^T \mathbf{u})] + \sigma \kappa \mathbf{n} \, \delta^i$$

- Combined "one-fluid" formulation valid at any point in the sense of distributions
- Phase-indicator function χ_k is advected by the local velocity field (mixed VOF/FT algorithm)

DNS of turbulent bubbly flows

Local instantaneous Navier-Stokes equations...

$$\frac{\partial \rho_k \boldsymbol{u}_k}{\partial t} + \nabla \cdot (\rho_k \boldsymbol{u}_k \boldsymbol{u}_k) = -\nabla p_k + \rho_k \boldsymbol{g} + \nabla \cdot \boldsymbol{\tau}_k \text{ with } \boldsymbol{\tau}_k = \mu_k (\nabla \boldsymbol{u}_k + \nabla^T \boldsymbol{u}_k)$$

- ... and interfacial jump conditions:
 - Velocity continuity: $u_1^n = u_2^n$ and $u_1^t = u_2^t$
 - Interfacial normal stress balance: $\sum_{k} (p_k \mathbf{n}_k \boldsymbol{\tau}_k \cdot \mathbf{n}_k) = -\sigma \kappa \mathbf{n}$
- ... are solved by the "one-fluid" formulation valid at any point in the sense of distributions:

$$\frac{\partial \rho \boldsymbol{u}}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} \boldsymbol{u}) = -\nabla p + \nabla \cdot [\mu(\nabla \boldsymbol{u} + \nabla^T \boldsymbol{u})] + \sigma \kappa \boldsymbol{n} \, \delta^{\boldsymbol{i}}$$

"one-fluid" fields:

 $\phi = \sum_{k} \chi_{k} \phi_{k}$ with χ_{k} the phase indicator function.

- The phase-indicator function χ_k is advected by the velocity field (mixed VOF/FT algorithm)
 - Interfaces are explicitly tracked;
 - All scales are resolved in each phase

Normal, curvature -Phase indicator, velocity, pressure (MAC arrangement)

