

Integration of OpenCalphad thermo-chemical solver in PLEIADES/ALCYONE fuel performance code

C. Introini, J. Sercombe, J.-C. Dumas, P. Goldbronn, V. Marelle

▶ To cite this version:

C. Introini, J. Sercombe, J.-C. Dumas, P. Goldbronn, V. Marelle. Integration of OpenCalphad thermochemical solver in PLEIADES/ALCYONE fuel performance code. NUMAT 2018 - The Nuclear Materials Conference 2018, Oct 2018, Seattle, United States. cea-02339455

HAL Id: cea-02339455 https://cea.hal.science/cea-02339455

Submitted on 25 Feb 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DE LA RECHERCHE À L'INDUSTRIE

Integration of the OpenCalphad thermochemical solver in PLEIADES/ALCYONE fuel performance code

NuMat 2018 C. INTROÏNI, J. SERCOMBE, J-C. DUMAS, P. GOLDBRONN, V. MARELLE CEA CADARACHE, DEN/DEC/SESC, FR-13108 ST-PAUL-LEZ-DURANCE

14-18 OCTOBER 2018, SEATTLE, WA, USA

Work done in collaboration with the team and the support of B. Sundman OpenCalphad

www.cea.fr

- Industrial context
 - Iodine-Stress Corrosion Cracking during Pellet-Cladding Interaction
 - Numerical simulation of the lodine-Stress Corrosion phenomenon
- Overview of the PLEIADES/ALCYONE 2.0 fuel performance code
- On the use of thermochemistry in PLEIADES/ALCYONE 2.0
 - The ANGE thermo-chemical solver
 - The OECD-NEA TAF-ID project
 - The OpenCalphad thermo-chemical solver & its integration in ALCYONE
- Numerical simulations of in-reactor power transients (1D,2D,3D)
 - Validation of the integration of OpenCalphad in PLEIADES/ALCYONE 2.0
 - Performance of the ALCYONE/OpenCalphad solver
 - Capacity of the ALCYONE/OpenCalphad with TAF-ID database
- Conclusions & Future work

Industrial context

Iodine-Stress Corrosion Cracking during Pellet-Cladding Interaction (PCI/I-SCC)

- One of the physical phenomena of major interest for cladding design and long term operation of Pressurized Water Reactors (PWRs)
- Chemistry of volatile fission products (iodine, cesium, tellurium) is of some importance with regards to PCI/I-SCC failures
 B. Baurens, et al., (2014). 3D thermo-chemical-mechanical simulation of power ramps with ALCYONE fuel code, J. Nucl. Mater. 452, 578-594.
- A "realistic" modelling of this phenomenon needs a precise description of FPs thermochemistry and their migration/release in the fuel under irradiation

Numerical simulation of Iodine-Stress Corrosion Cracking phenomenon

- Requires to have accurate, efficient and robust thermo-mechanical and thermochemical solvers
- ⇒ Use of the validated PLEIADES/ALCYONE 2.0 fuel performance code V. Marelle & al., "New developments in ALCYONE 2.0 fuel performance code", Top Fuel, Boise ID. (2016)

Overview of PLEADES /ALCYONE 2.0

A fuel performance code for Pressurized Water Reactors fuel rods

- Co-developed by CEA, EDF, Framatome
- Provides a multidimensional modeling for detailed analyses of PWR fuel elements behavior under irradiation
 - 1.5D scheme : rod discretized in axial segments
 - 2D(r,θ) scheme : mid-pellet plane of a pellet fragment
 - 3D scheme : one quarter of a pellet fragment
- Using the Finite Elements code CAST3M (CEA) to solve the thermo-mechanical problem
- Major phenomena considered in the 1D, 2D and 3D schemes

Fuel pellet

Power deposition, Heat conduction, Fission Gas Release, Diffusion of Fission Gas, Creep & cracking of the fuel pellet, Pellet densification, Pellet FG-induced swelling, Relocation of pellet fragments (1D), Properties depending on irradiation

Cladding material

Heat conduction, Irradiation creep, Thermal creep, Plasticity, Properties depending on irradiation

Pellet-Cladding interface

Heat convection, Contact with friction (3D), Pressure update (FG release, rodlet deformation)

On the use of thermochemistry in **READES**/ALCYONE

From ANGE thermo-chemical solver to OpenCalphad thermo-chemical solver (1/3)

ANGE (Advanced Numeric Gibbs Energy minimizer)

- A modified version of the equilibrium code SOLGASMIX Eriksson, G. et al., (1975). Thermodynamic studies of high temperature equilibria. XII. SOLGASMIX, A computer program for calculation of equilibrium compositions in multiphase systems, Chemica Scripta 8, 100-103.
- Integrated in PLEIADES/ALCYONE 1.4 as a first step towards I-SCC simulations B. Baurens, et al., (2014). 3D thermo-chemical–mechanical simulation of power ramps with ALCYONE fuel code, J. Nucl. Mater. 452, 578-594.
- ✓ Coupled with Lassmann's oxygen distribution model OXIRED K. Lassmann, (1987), The OXIRED model for redistribution of oxygen in nonstoechiometric Uranium-Plutonium-Oxides, J. Nucl. Mater. 150, 10-16

⇒ a numerical approach based on Finite Volumes (1D) and Finite Elements (2D,3D) methods is developed to solve the oxygen thermodiffusion problem coupled with equilibrium calculations P. Konarski & al., 3D Simulation of power ramps with ALCYONE including fuel thermochemistry and oxygen thermodiffusion, Top Fuel (2018)

Minimization of the Gibbs free energy of the system under species balance constraint at fixed T,P,V with associate species description for (U,Pu,PF)O_{2±x} solid solution *T.M. Besmannn*, (2012), Computational Thermodynamics : Application to Nuclear Materials, Compr. Nucl. Mater. 1 455–470 and with thermodynamic functions from the TBASE database *E.H.P. Cordfuncke*, *R.J.M. Konings*, (1993), J. Phase Equilibria 14 : 457

Cannot be used to solve chemical systems based on the Compound Energy Formalism as proposed in the TAF-ID database (https://www.oecd-nea.org/science/taf-id/) C. Guéneau et al., (2011). Thermodynamic modelling of advanced oxide and carbide nuclear fuels : Description of the U-Pu-O-C systems, J. Nucl. Mater., 419, 145-167

On the use of thermochemistry in REMADES/ALCYONE

From ANGE thermo-chemical solver to OpenCalphad thermo-chemical solver (2/3)

- OECD-NEA TAF-ID project (*Thermodynamics of Advanced Fuels International Database*) (cf. C. Guéneau NuMat PS03 for more details about TAF-ID)
 - Aims at making a comprehensive, internationally recognised and quality-assured database of phase diagrams and thermodynamic properties for nuclear advanced fuels (Generation II-III reactors and Generation IV systems)
 - Development of the TAF-ID database consistent with the CALPHAD CAlculation of PHAse Diagrams method
 - → calculation of phase diagrams and thermodynamic properties (heat capacity, enthalpy,...) as mathematical of the Gibbs free energy over a large composition, temperature and pressure range
- TAF-ID database vs. TBASE database

TBASE database

- · 24 elements of the periodic table
- Associate species description for the oxide (*i.e.* sub-lattice description, cristalline structure)
- ~ 100 stoichiometric compounds
- · No description of the liquid phases mixture

TAF-ID database

- 41 elements of the periodic table
- Compound Energy Formalism for the oxide (*i.e.* sub-lattice description, cristalline structure)
- ~ 150 stoichiometric phases
- Description of the liquid phases mixture (interesting for high temperatures)
- ✓ TAF-ID database provides a more complex description of the irradiated fuel (more complicated models, possible

phases greater in number than in the TBASE database) and enables to describe the formation of liquid phases

⇒ An upgrade of the thermo-chemical modeling in the PLEIADES 2.0 platform is necessary to use the TAF-ID database

C. INTROÏNI | NuMat 2018 | 14-18 October 2018, Seattle, WA, USA | PAGE 5/16

DE LA RECHERCHE À L'INDUSTR

On the use of thermochemistry in **PLEADES**/ALCYONE

OpenCalphad a free, efficient and robust thermo-chemical solver

- Developed under GNU GPL license by B. Sundman http://www.opencalphad.org/ B. Sundman, et al, (2015), The implementation of an algorithm to calculate thermodynamic equilibria for multi-component systems with non-ideal phases in a free software, J. Nucl. Mater. 150, 10-16
- OpenCalphad 5.0 integrated in PLEIADES/ALCYONE 2.0 under CeCILL-C license (cf. J-C. Dumas NuMat 03.02 for details about the use of OpenCalphad in PLEIADES/GERMINAL (SFR))
- A first minimizer : iterative algorithm similar to the one implemented in ANGE
 - Based on the Hillert's algorithm proposed in 1981
 - Strongly dependent on the initial set of phases and their constitutions
- The "global minimisation" (not available in ANGE)
 - An initial calculation of the Gibbs energy of all phases (assumed stoichiometric) is done over a grid of compositions to find initial values for the iterative algorithm --- ensures that the calculated equilibrium is a global minimum
 - Minimizer that automatically detects miscibility gaps
 - ▲ More accurate but more expensive in terms of CPU time
- Can use the TBASE and OECD-NEA TAF-ID databases
- ✓ Many functionalities provided by the stand-alone version of OpenCalphad (*e.g.* iterative calculations, phase diagrams, calculation of thermodynamic properties) with most of them available when OC is interfaced with a fuel performance code

Integration of OpenCalphad in PLEIADES/ALCYONE 2.0

Integration of the OpenCalphad solver in the ALCYONE coupling scheme

C. INTROÏNI | NuMat 2018 | 14–18 October 2018, Seattle, WA, USA | PAGE 7/16

cea

Numerical strategies implemented to reduce the CPU time

Spatial strategy

- At each time-step, the mesh nodes are sorted in function of temperature (predominant variable of interest)
 - The mesh nodes can be sorted in descending (default, natural order in 1D) or ascending order of temperature
- Each calculated equilibrium at a node is used as the start value for the calculation done on the thermally closest neighboring node

- Contrary to the other nodes, the hottest (resp. the coldest) is always calculated with the "global minimization" and an automatic recalculation with the other minimizer is done in case of non convergence of the calculations
- A periodic use of the global minimizer remains possible depending on the complexity of the multi-component systems considered

⇒Fast convergence and, consequently, reduction in CPU time are expected

C. INTROÏNI | NuMat 2018 | 14-18 October 2018, Seattle, WA, USA | PAGE 8/16

cea

Time strategy

- For each mesh node, the equilibrium calculated at the previous time-step is used as start value at the current time-step
 - Strategy automatically activated during the conditioning and the holding periods based on a linear power criterion
 - Spatial strategy is always used during the power increase period
 - Strategy using the backup/recovery functionalities proposed by the OpenCalphad code (~ file read/write function).
- ⇒What is the impact of "read/write file" function on CPU time?

Management of the negligible species (not detailed)

At each time-step, a table of correspondence between a set of nodes and a given set of elements is made by eliminating elements in negligible quantities ($c \le 10^{-9} \text{ mol/mol}$)

Numerical simulations

Multi-dimensional simulations performed with the TBASE & TAF-ID databases

ALCYONE/OpenCalphad vs. ALCYONE/ANGE with an equivalent TBASE database

- A set of 1.5D, 2D(r, θ) and 3D calculations are done by considering different combinations of numerical strategies
- ⇒ to verify the implementation of the OC thermo-chemical solver against ANGE solver
- ⇒ to assess the performances of ALCYONE/OpenCalphad versus those of ALCYONE/ANGE
- ALCYONE/OpenCalphad with TBASE vs. ALCYONE/OpenCalphad with TAF-ID
 - A set of 1.5D, 2D(r,θ) and 3D calculations are done with nodes treated in descending order of temperature
 - ⇒ to assess and compare the performances of ALCYONE/OpenCalphad with TAF-ID to those obtained with TBASE
 - ⇒ to assess the capacity of ALCYONE/OpenCalphad to simulate multi-component systems with TAF-ID
- ALCYONE/OpenCalphad with TAF-ID
 - 2D(r,θ) and 3D calculations are performed in parallel with default spatial strategy
 - ⇒ to illustrate the gain in terms of CPU time when equilibrium calculations are parallelized
 - A 3.5D calculation is performed with nodes treated in descending order of temperature
 - ⇒ to show the capacity of PLEIADES/ALCYONE 2.0 to simulate in-reactor power transients involving complex multi-component systems with TAF-ID database

Characteristics of the simulated long hold time power ramp (release of FPs greater than 10%)

	Fuel		Cladding				
	Cr Doped UO ₂		M5 [®]		Representative	Creation	Family
	Conditioning period Holding		period	Elements	[mol/molUO ₂ /at%] Family	
	P(W/cm) Time (h) P (P (W/cm)	Time (h)	Xe+Kr	3.058e-3	Inort fission app
	196	18.68	468	12	Cs(+Rb)	1.699e-3	ment lission gas
	100 10.00 400			12	I(+Br)	1.308e-4	Volatilo EPc
	Evolution in time of the Linear Heat Rate (LHR) during the simulation of the power ramp				Te(+Se)	3.022e-4	Volatile FFS
	500 Max, LHR Max, LH			+ 12h	Ba(+Sr)	1.381e-3	stable ovides
		holding period		Zr(+Nb)	2.622e-3	Stable Unices	
	400 -	400 -		-	Mo	2.334e-3	
	300 - 5				Ru+Tc+Rh	2.440e-3	Motallia EPs
			-	Pd(+Ag+In+Sn+)	1.020e-3	Metallic 115	
				Ce	1.239e-3		
	ž 200			Eu(+Sm)	3.808e-4	FPs in solid	
	Start of Transant			La(+Y)	9.310e-4		
	100 -			Gd(+Nd+Pm)	1.918e-3	solution in UO ₂	
			1	Cr	5.062e-3	dopant	
					0	2.007	
	0	0 5 10 15 20 25 30		35	3D calculations		alculations
	1.50	1.5D calculations				1/32 fuel pellet	3 5D calculation
41 nodes per slice 10 slices computed on 10 CPUs (MPI functionalities of PLEIADES 2.0)				2D(r,	θ) calculations	1417 nodes	26 slices over 26 CPI Is
			0 CPUs	1 pellet fr	agment (MP plane)	1417 1100000	1/32 fuel pellet per slice
			ADES 2.0)		145 nodes		1417 nodes nevelies
							1417 nodes per slice
				-			
						115ablector	

All calculations have been performed on the computing server : 44 cores, 352Go, Intel Xeon E5 2699Av42.40GHz

C. INTROÏNI | NuMat 2018 | 14-18 October 2018, Seattle, WA, USA | PAGE 11/16

ALCYONE/OpenCalphad vs. ALCYONE/ANGE (TBASE)

ALCYONE/OpenCalphad vs. ALCYONE/ANGE : non-regression of the integration (1/2)

Radial profiles of lodine (left), Cesium (center) and Tellurium (right) at the end of the holding period (1.5D)

Temperature & Volatile FPs (Tellurium (top), lodine (bottom)) at the end of the holding period [2D(r, θ) (left), 3D (right)]

High release of volatile FPs at the pellet center during the holding period (T ≥ 2000K)

Similar quantities of volatile FPs given by OpenCalphad & ANGE (1.5D,2D(r, θ),3D)

⇒Validation of ALCYONE/OpenCalphad implementation vs. ALCYONE/ANGE

C. INTROÏNI | NuMat 2018 | 14-18 October 2018, Seattle, WA, USA | PAGE 12/16

ALCYONE/OpenCalphad vs. ALCYONE/ANGE (TBASE)

ALCYONE/OpenCalphad vs. ALCYONE/ANGE : performance (2/2)

Ratio of the CPU Times OC over ANGE (only the thermochemistry part) Effect of the numerical strategies on the CPU time

ALCYONE/OpenCalphad faster than ALCYONE/ANGE

- Time strategy less efficient than spatial strategy
- ⇒ "backup/recovery" functionalities too expensive
- Spatial strategies more efficient than time strategy
- ⇒ The most efficient strategy in 1.5D & 2D(r,θ) consists in treating mesh nodes in ascending order of temperature
- ⇒ The most efficient strategy in 3D consists in treating mesh nodes in descending order of temperature
- \Rightarrow The more nodes there are, the more efficient the strategy is

In these tests, ALCYONE/OC is 2-3.5 times faster than ALCYONE/ANGE

- Higher performance are obtained during simulations with moderate FPs release
- ALCYONE/OpenCalphad remains faster than ALCYONE/ANGE with the oxygen distribution model OXIRED (not presented here)

ALCYONE/OpenCalphad : TBASE vs. TAF-ID

ALCYONE/OpenCalphad (TBASE) vs. ALCYONE/OpenCalphad (TAF-ID) : qualitative comparisons

Radial profiles of lodine (left), Cesium (center) and Tellurium (right) at the end of the holding period (1.5D)

Temperature, Tellurium, Cesium, Iodine at the end of the holding period

Some performance results (2D(r, θ), 3D)

Expected increase of the CPU time because of more complicated models

Volatile FPs release consistent with temperature profile Lower release of FPs (I,Cs,Te) with TAF-ID (results analysis in progress)

C. INTROÏNI | NuMat 2018 | 14-18 October 2018, Seattle, WA, USA | PAGE 14/16

ALCYONE/OpenCalphad with the TAF-ID database

First promising results obtained on a 3.5D simulation of a long power ramp with TAF-ID

The results illustrate the capacity and robustness of ALCYONE/OpenCalphad to simulate complex in-reactor power ramp using thermodynamics data coming from TAF-ID database

- 26 fuel pellets/26 CPUs : 1 slice per pellet, 1 slice per CPU, 1417 nodes per pellet
 - \Rightarrow CPU time of the 3.5D simulation \sim CPU time of 3D pellet fragment
 - \Rightarrow total CPU time ~20h : thermomechanics (~ 8h) + thermochemistry (~12h)

Conclusions & Future work

Integration of OpenCalphad thermo-chemical solver in PLEIADES/ALCYONE 2.0

ALCYONE/OpenCalphad is much faster than ALCYONE/ANGE with TBASE database

- 2-3.5 times faster on a simulated power ramp
- Performance clearly enhanced when the mesh nodes are treated in order of descending temperature
- Higher performances are seen on simulations with moderate fission gas release

Capacity and robustness of ALCYONE/OpenCalphad to simulate multi-dimensional power transients with TAF-ID database

- OpenCalphad/TAF-ID : an advanced thermo-chemical model in PLEIADES/ALCYONE 2.0
- Expected increase of the CPU time because of more complicated models
- Parallelization of equilibrium calculations reduces the increase of CPU time (optimization in progress)

Towards a more important use of TAF-ID with new physical couplings

- First promising results with TAF-ID but the validation of this database is needed for in-reactor power transients calculations
- Future developments will be dedicated to the coupling of thermal diffusion, oxygen redistribution and local equilibrium calculations with fuel melting based on phase-field approach

M.J. Welland, et al., (2011), Review of high temperature thermochemical properties and application in phase-field modelling of incipient melting in defective fuel, J. Nucl. Mater. 412, 342-349

C. INTROÏNI | NuMat 2018 | 14-18 October 2018, Seattle, WA, USA | PAGE 16/16

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Cadarache I DENDEC/SES.DISI - 13108 Saint-Paul-Lez-Durance T. +33 (0)4.42.25.23.66 | F. +33 (0)4.42.25.47.47 Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019

Direction de l'Energie Nucléaire Département d'Études des Combustibles Service d'Études et de Simulation du comportement des Combustibles