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Industrial context

Iodine-Stress Corrosion Cracking during Pellet-Cladding Interaction (PCI/I-SCC)

One of the physical phenomena of major interest for cladding design and long term
operation of Pressurized Water Reactors (PWRs)

Chemistry of volatile fission products (iodine, cesium, tellurium) is of some importance with
regards to PCI/I-SCC failures
B. Baurens, et al., (2014). 3D thermo-chemical–mechanical simulation of power ramps with ALCYONE fuel code, J. Nucl.

Mater. 452, 578-594.

A "realistic" modelling of this phenomenon needs a precise description of FPs
thermochemistry and their migration/release in the fuel under irradiation

Numerical simulation of Iodine-Stress Corrosion Cracking phenomenon

Requires to have accurate, efficient and robust thermo-mechanical and thermochemical
solvers

⇒ Use of the validated PLEIADES/ALCYONE 2.0 fuel performance code
V. Marelle & al. , "New developments in ALCYONE 2.0 fuel performance code", Top Fuel, Boise ID. (2016)
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Overview of /ALCYONE 2.0

A fuel performance code for Pressurized Water Reactors fuel rods
Co-developed by CEA, EDF, Framatome

Provides a multidimensional modeling for detailed analyses of
PWR fuel elements behavior under irradiation

1.5D scheme : rod discretized in axial segments

2D(r,θ) scheme : mid-pellet plane of a pellet fragment

3D scheme : one quarter of a pellet fragment

Using the Finite Elements code CAST3M (CEA) to solve the
thermo-mechanical problem

Major phenomena considered in the 1D, 2D and 3D schemes

Power deposition, Heat conduction, Fission Gas Release,
Diffusion of Fission Gas, Creep & cracking of the fuel pellet,
Pellet densification, Pellet FG-induced swelling, Relocation of
pellet fragments (1D), Properties depending on irradiation

Fuel pellet

Heat conduction, Irradiation creep, Thermal creep,
Plasticity, Properties depending on irradiation

Cladding material

Heat convection, Contact with friction (3D),
Pressure update (FG release, rodlet deformation)

Pellet-Cladding interface

1.5D

2D(r,θ)

3D
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On the use of thermochemistry in /ALCYONE

From ANGE thermo-chemical solver to OpenCalphad thermo-chemical solver (1/3)

ANGE (Advanced Numeric Gibbs Energy minimizer )
A modified version of the equilibrium code SOLGASMIX
Eriksson, G. et al., (1975). Thermodynamic studies of high temperature equilibria. XII. SOLGASMIX, A computer
program for calculation of equilibrium compositions in multiphase systems, Chemica Scripta 8, 100-103.

X Integrated in PLEIADES/ALCYONE 1.4 as a first step towards I-SCC simulations
B. Baurens, et al., (2014). 3D thermo-chemical–mechanical simulation of power ramps with ALCYONE fuel code,
J. Nucl. Mater. 452, 578-594.

X Coupled with Lassmann’s oxygen distribution model OXIRED
K. Lassmann, (1987), The OXIRED model for redistribution of oxygen in nonstoechiometric
Uranium-Plutonium-Oxides, J. Nucl. Mater. 150, 10-16

⇒ a numerical approach based on Finite Volumes (1D) and Finite Elements (2D,3D) methods is developed to solve
the oxygen thermodiffusion problem coupled with equilibrium calculations
P. Konarski & al. , 3D Simulation of power ramps with ALCYONE including fuel thermochemistry and oxygen
thermodiffusion, Top Fuel (2018)

Minimization of the Gibbs free energy of the system under species balance constraint at fixed T,P,V with associate
species description for (U,Pu,PF)O2±x solid solution T.M. Besmannn, (2012), Computational Thermodynamics :
Application to Nuclear Materials, Compr. Nucl. Mater. 1 455–470 and with thermodynamic functions from the
TBASE database E.H.P. Cordfuncke, R.J.M. Konings, (1993), J. Phase Equilibria 14 : 457

B Cannot be used to solve chemical systems based on the Compound Energy Formalism as proposed in the TAF-ID
database (https://www.oecd-nea.org/science/taf-id/)
C. Guéneau et al., (2011). Thermodynamic modelling of advanced oxide and carbide nuclear fuels : Description of
the U–Pu–O–C systems, J. Nucl. Mater., 419, 145-167
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On the use of thermochemistry in /ALCYONE

From ANGE thermo-chemical solver to OpenCalphad thermo-chemical solver (2/3)

OECD-NEA TAF-ID project (Thermodynamics of Advanced Fuels - International Database)
(cf. C. Guéneau NuMat PS03 for more details about TAF-ID)

Aims at making a comprehensive, internationally recognised and quality-assured database of phase diagrams and
thermodynamic properties for nuclear advanced fuels (Generation II-III reactors and Generation IV systems)

Development of the TAF-ID database consistent with the CALPHAD CAlculation of PHAse Diagrams method

 calculation of phase diagrams and thermodynamic properties (heat capacity, enthalpy,. . . ) as mathematical
of the Gibbs free energy over a large composition, temperature and pressure range

TAF-ID database vs. TBASE database

• 24 elements of the periodic table
• Associate species description for the oxide

(i.e. sub-lattice description, cristalline structure)
• ∼ 100 stoichiometric compounds
• No description of the liquid phases mixture

TBASE database
• 41 elements of the periodic table
• Compound Energy Formalism for the oxide

(i.e. sub-lattice description, cristalline structure)
• ∼ 150 stoichiometric phases
• Description of the liquid phases mixture (interesting

for high temperatures)

TAF-ID database

X TAF-ID database provides a more complex description of the irradiated fuel (more complicated models, possible

phases greater in number than in the TBASE database) and enables to describe the formation of liquid phases

⇒ An upgrade of the thermo-chemical modeling in the PLEIADES 2.0 platform is
necessary to use the TAF-ID database
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On the use of thermochemistry in /ALCYONE

a free, efficient and robust thermo-chemical solver

Developed under GNU GPL license by B. Sundman http://www.opencalphad.org/
B. Sundman, et al, (2015), The implementation of an algorithm to calculate thermodynamic equilibria for multi-component

systems with non-ideal phases in a free software, J. Nucl. Mater. 150, 10-16

X OpenCalphad 5.0 integrated in PLEIADES/ALCYONE 2.0 under CeCILL-C license
(cf. J-C. Dumas NuMat O3.02 for details about the use of OpenCalphad in PLEIADES/GERMINAL (SFR))

A first minimizer : iterative algorithm similar to the one implemented in ANGE
Based on the Hillert’s algorithm proposed in 1981
Strongly dependent on the initial set of phases and their constitutions
Does not ensure that the calculated equilibrium is a global minimum "global minimisation"

The "global minimisation" (not available in ANGE)
An initial calculation of the Gibbs energy of all phases (assumed stoichiometric) is done over a grid of compositions
to find initial values for the iterative algorithm ensures that the calculated equilibrium is a global minimum
Minimizer that automatically detects miscibility gaps

B More accurate but more expensive in terms of CPU time

X Can use the TBASE and OECD-NEA TAF-ID databases

X Many functionalities provided by the stand-alone version of OpenCalphad (e.g. iterative
calculations, phase diagrams, calculation of thermodynamic properties) with most of them
available when OC is interfaced with a fuel performance code
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Integration of OpenCalphad in PLEIADES/ALCYONE 2.0

Integration of the OpenCalphad solver in the ALCYONE coupling scheme

OpenCalphad solver called after multiphysics convergence loop

At each time-step, OpenCalphad calculations are done at each node

Temperature [K]
Pressure [Pa]

Composition [mol/mol]

OpenCalphad

solver

Gas, Condensed Species
Solid Solution [mol/mol]

O/M ratio, chemical potentials

X OpenCalphad solver isofunctional with ANGE solver (non-regression goal)

X OpenCalphad solver coupled with Lassmann’s oxygen distribution model OXIRED

+ Specific management of residual species to avoid convergence difficulties

+ Dynamic post-processing based on SQLite3 databases useful to deal with

different multi-component systems with different databases (TBASE,TAF-ID)

+ Parallelization of equilibrium calculations : first implementation based on a

multi-processing approach optimization & assessment of performances in progress

+ Implementation of numerical strategies to reduce the CPU time
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Numerical strategies implemented to reduce the CPU time

Spatial strategy
At each time-step, the mesh nodes are sorted in function of temperature (predominant
variable of interest)

The mesh nodes can be sorted in descending (default, natural order in 1D) or ascending order of temperature

Each calculated equilibrium at a node is used as the start value for the calculation done on
the thermally closest neighboring node

initial conditions (inputs)

equilibrium calculation
with/without "global minimizer"

loop on
sorted nodes

stable equilibrium (output)

T0 ≥ . . . ≥Tk{T,P,n}0
{T,P,n}1

+
eq0

{T,P,n}2
+

eq1

{T,P,n}k−1
+

eqk−2

{T,P,n}k
+

eqk−1

·

eq0

·

eq1

·

eq2

· · · · · ·

eq1 eqk−1 eqk

Contrary to the other nodes, the hottest (resp. the coldest) is always calculated with the "global minimization" and

an automatic recalculation with the other minimizer is done in case of non convergence of the calculations

A periodic use of the global minimizer remains possible depending on the complexity of the multi-component

systems considered

⇒Fast convergence and, consequently, reduction in CPU time are expected
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Numerical strategies implemented to reduce the CPU time

Time strategy
For each mesh node, the equilibrium calculated at the previous time-step is used as start
value at the current time-step

Strategy automatically activated during the conditioning and

the holding periods based on a linear power criterion

Spatial strategy is always used during the power increase period

Strategy using the backup/recovery functionalities proposed by

the OpenCalphad code (∼ file read/write function).

⇒What is the impact of "read/write file" function on CPU time?
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Management of the negligible species (not detailed)

At each time-step, a table of correspondence between a set of nodes and a given set of
elements is made by eliminating elements in negligible quantities (ε≤ 10−9 mol/mol)

initial
conditions

Management
residual species

spatial strat. time strat.
calculated
equilibrium

calculation done without numerical strategy

calculation done with spatial strategy

calculation done without any treatment of mesh nodes

C. INTROÏNI | NuMat 2018 | 14–18 October 2018, Seattle, WA, USA | PAGE 9/16



Numerical simulations

Multi-dimensional simulations performed with the TBASE & TAF-ID databases

ALCYONE/OpenCalphad vs. ALCYONE/ANGE with an equivalent TBASE database

A set of 1.5D, 2D(r,θ) and 3D calculations are done by considering different combinations of numerical strategies

⇒ to verify the implementation of the OC thermo-chemical solver against ANGE solver

⇒ to assess the performances of ALCYONE/OpenCalphad versus those of ALCYONE/ANGE

ALCYONE/OpenCalphad with TBASE vs. ALCYONE/OpenCalphad with TAF-ID

A set of 1.5D, 2D(r,θ) and 3D calculations are done with nodes treated in descending order of temperature

⇒ to assess and compare the performances of ALCYONE/OpenCalphad with TAF-ID to those obtained with TBASE

⇒ to assess the capacity of ALCYONE/OpenCalphad to simulate multi-component systems with TAF-ID

ALCYONE/OpenCalphad with TAF-ID

2D(r,θ) and 3D calculations are performed in parallel with default spatial strategy

⇒ to illustrate the gain in terms of CPU time when equilibrium calculations are parallelized

A 3.5D calculation is performed with nodes treated in descending order of temperature

⇒ to show the capacity of PLEIADES/ALCYONE 2.0 to simulate in-reactor power transients involving complex

multi-component systems with TAF-ID database
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Numerical simulations

Characteristics of the simulated long hold time power ramp (release of FPs greater than 10%)

Fuel Cladding
Cr Doped UO2 M5®

Conditioning period Holding period
P(W/cm) Time (h) P (W/cm) Time (h)

196 18.68 468 12
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R
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time [h]

Evolution in time of the Linear Heat Rate (LHR) 
 during the simulation of the power ramp 

Representative Creation FamilyElements [mol/molUO2 /at%]
Xe+Kr 3.058e-3 Inert fission gasCs(+Rb) 1.699e-3
I(+Br) 1.308e-4 Volatile FPsTe(+Se) 3.022e-4

Ba(+Sr) 1.381e-3 stable oxidesZr(+Nb) 2.622e-3
Mo 2.334e-3

Ru+Tc+Rh 2.440e-3 Metallic FPsPd(+Ag+In+Sn+. . . ) 1.020e-3
Ce 1.239e-3

Eu(+Sm) 3.808e-4 FPs in solid
La(+Y) 9.310e-4

solution in UO2Gd(+Nd+Pm) 1.918e-3
Cr 5.062e-3 dopant
O 2.007

1.5D calculations
41 nodes per slice

10 slices computed on 10 CPUs
(MPI functionalities of PLEIADES 2.0)

2D(r,θ) calculations
1 pellet fragment (MP plane)

145 nodes

3D calculations
1/32 fuel pellet 3.5D calculation

1417 nodes 26 slices over 26 CPUs
1/32 fuel pellet per slice

1417 nodes per slice

All calculations have been performed on the computing server : 44 cores, 352Go, Intel Xeon E5 2699Av42.40GHz
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ALCYONE/OpenCalphad vs. ALCYONE/ANGE (TBASE)

ALCYONE/OpenCalphad vs. ALCYONE/ANGE : non-regression of the integration (1/2)
Radial profiles of Iodine (left), Cesium (center) and Tellurium (right) at the end of the holding period (1.5D)
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OpenCalphad-TBASE vs ANGE-TBASE 
 Cesium radial profiles during the holding period

Cesium-ANGE (max. LHR)
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 Tellurium radial profiles during the holding period
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Temperature & Volatile FPs (Tellurium (top), Iodine (bottom)) at the end of the holding period [2D(r,θ) (left), 3D (right)]

High release of volatile FPs at the pellet center during the holding period (T ≥ 2000K)

Similar quantities of volatile FPs given by OpenCalphad & ANGE (1.5D,2D(r,θ),3D)

⇒Validation of ALCYONE/OpenCalphad implementation vs. ALCYONE/ANGE
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ALCYONE/OpenCalphad vs. ALCYONE/ANGE (TBASE)

ALCYONE/OpenCalphad vs. ALCYONE/ANGE : performance (2/2)

ALCYONE/OpenCalphad faster than ALCYONE/ANGE

Time strategy less efficient than spatial strategy

⇒ "backup/recovery" functionalities too expensive

Spatial strategies more efficient than time strategy

⇒ The most efficient strategy in 1.5D & 2D(r,θ) consists in treating

mesh nodes in ascending order of temperature

⇒ The most efficient strategy in 3D consists in treating mesh

nodes in descending order of temperature

⇒ The more nodes there are, the more efficient the strategy is

In these tests, ALCYONE/OC is 2-3.5 times faster than ALCYONE/ANGE

X Higher performance are obtained during simulations with moderate FPs release

X ALCYONE/OpenCalphad remains faster than ALCYONE/ANGE with the oxygen distribution model OXIRED

(not presented here)
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ALCYONE/OpenCalphad : TBASE vs. TAF-ID

ALCYONE/OpenCalphad (TBASE) vs. ALCYONE/OpenCalphad (TAF-ID) : qualitative comparisons
Radial profiles of Iodine (left), Cesium (center) and Tellurium (right) at the end of the holding period (1.5D)
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 Cesium radial profiles during the holding period
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 Tellurium radial profiles during the holding period
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Temperature, Tellurium, Cesium, Iodine at the end of the holding period

Volatile FPs release consistent with temperature profile
Lower release of FPs (I,Cs,Te) with TAF-ID (results analysis in progress)

Some performance results (2D(r,θ), 3D)

Expected increase of the CPU time
because of more complicated models

First promising performance results
Optimization work is in progress
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ALCYONE/OpenCalphad with the TAF-ID database

First promising results obtained on a 3.5D simulation of a long power ramp with TAF-ID

The results illustrate the capacity and robustness of ALCYONE/OpenCalphad to simulate

complex in-reactor power ramp using thermodynamics data coming from TAF-ID database

26 fuel pellets/26 CPUs : 1 slice per pellet, 1 slice per CPU, 1417 nodes per pellet
⇒ CPU time of the 3.5D simulation ∼ CPU time of 3D pellet fragment
⇒ total CPU time ∼20h : thermomechanics (∼ 8h) + thermochemistry (∼12h)
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Conclusions & Future work

Integration of OpenCalphad thermo-chemical solver in PLEIADES/ALCYONE 2.0

ALCYONE/OpenCalphad is much faster than ALCYONE/ANGE with TBASE database

X 2-3.5 times faster on a simulated power ramp

X Performance clearly enhanced when the mesh nodes are treated in order of descending temperature

X Higher performances are seen on simulations with moderate fission gas release

Capacity and robustness of ALCYONE/OpenCalphad to simulate multi-dimensional
power transients with TAF-ID database

X OpenCalphad/TAF-ID : an advanced thermo-chemical model in PLEIADES/ALCYONE 2.0

X Expected increase of the CPU time because of more complicated models

X Parallelization of equilibrium calculations reduces the increase of CPU time (optimization in progress)

Towards a more important use of TAF-ID with new physical couplings
First promising results with TAF-ID but the validation of this database is needed for
in-reactor power transients calculations
Future developments will be dedicated to the coupling of thermal diffusion, oxygen
redistribution and local equilibrium calculations with fuel melting based on
phase-field approach
M.J. Welland, et al., (2011), Review of high temperature thermochemical properties and application in phase-field

modelling of incipient melting in defective fuel, J. Nucl. Mater. 412, 342-349
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