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Abstract

Markov media are often used as a prototype model in the analysis of linear particle transport in disordered materials. For this class
of stochastic geometries, it is assumed that the chord lengths must follow an exponential distribution, with a direction-dependent
average if anisotropy effects are to be taken into account. The practical realizability of Markov media in arbitrary dimension has
been a long-standing open question. In this work we show that Poisson hyperplane tessellations provide an explicit construction
for random media satisfying the Markov property and easily including anisotropy. The average chord length can be computed
explicitly and is be shown to be intimately related to the statistical properties of the tessellation cells and in particular to their
surface-to-volume ratio. A computer code that is able to generate anisotropic Poisson tessellations in arbitrary dimension restricted
to a given finite domain is developed, and the convergence to exact asymptotic formulas for the chord length distribution and the
polyhedral features of the tessellation cells is established by extensive Monte Carlo simulations in the limit of domains having an
infinite size.
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1. Introduction

Linear particle transport through random media is key to sev-
eral applications in nuclear science (1), such as pebble-bed re-
actors (2), fluid-vapour mixtures in boiling water reactors (3),
radiation shielding by concrete structures (4), hydrodynamical5

instabilities in fusion pellets (5; 6; 7), the assessment of re-
criticality probability following core degradation (8; 9) and the
impact of irregular aggregates in neutron absorbers (10) and
MOX fuels (11). Moreover, random media concern also light
propagation through turbid materials (12; 14; 15) and tracer dif-10

fusion in biological tissues (16).
For the sake of clarity, and without loss of generality, in the

following we will focus on binary stochastic mixing, where
only two immiscible materials (say α and β) are randomly dis-
tributed according to some statistical law (1; 17). For this class
of problems, one is typically interested in obtaining the angu-
lar flux 〈ϕα(r,Ω)〉 ensemble-averaged over those realizations
that have material α at position r (17). It has been shown that
〈ϕα(r,Ω)〉 is intimately related to the conditional probability
Rα(r′, r) that particle displacements from r′ to r fall within ma-
terial α, given that r is in material α (1; 17). Assuming that the
medium is homogeneous, all the spatial points have the same
statistical properties, so that Rα(r′, r) = Rα(`,Ω), where ` is
the distance between r and r′ along the direction Ω. Reason-
ably, general results of broad applicability can only be obtained
for statistical disorder models with spatial homogeneity. Under
such hypothesis of invariance by translations, Rα(`,Ω) repre-
sents thus the probability that the material interface along the

∗Corresponding author
Email address: andrea.zoia@cea.fr (Andrea Zoia)

direction Ω from a given point within material α is larger than
`, and can be expressed as

Rα(`,Ω) =
1

Λα(Ω)

∫ ∞

`

d`′
∫ ∞

`′
fα(`′′|Ω)d`′′, (1)

where fα(`|Ω) is the probability density that the chord deter-
mined by intersecting an arbitrary line of orientation Ω with
the boundaries of the material chunk with label α has a length
` (18), and

Λα(Ω) =

∫ ∞

0
` fα(`|Ω)d` (2)

is the average material chord length (i.e., the average linear ma-
terial size) along direction Ω.

The chord length distribution fα(`|Ω), and the average mate-
rial chord length Λα(Ω) in particular, plays a prominent role in
determining the behaviour of particle trajectories traversing the
random medium (1; 19; 20). Assigning the chord length distri-
bution fα(`|Ω) is tantamount to saying that the randomness of
the medium is entirely described in terms of homogeneous re-
newal statistics, where the probability density that the distance
to the interface from an arbitrary point within material α is `,
namely,

−
∂

∂`
Rα(`,Ω) =

1
Λα(Ω)

∫ ∞

`

fα(`′|Ω)d`′, (3)

only depends on the distance ` to the interface of material α
along the direction Ω (1; 17; 21; 19; 22).15

The chord length distribution fα(`|Ω) has been thoroughly
investigated for the case of random inclusions of hard spheres
in a background matrix (23; 24; 25; 26; 27; 28; 29). For a
comprehensive review, see, e.g., (30). In particular, it has been
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shown that for homogeneous and isotropic inclusions of poly-
dispersed hard spheres in dimension d the average chord length
within the background matrix is related to the random medium
properties by

Λα =
1 − ϑ
ϑ

κd

κd−1

〈rd〉

〈rd−1〉
, (4)

where ϑ denotes the packing fraction (i.e., the volume fraction
of the space filled by the spheres), κd = πd/2/Γ (1 + d/2) is the
volume of the unit sphere in dimension d, and 〈rn〉 =

∫
rng(r)dr

is the n-th moment of the sphere radius, g(r) being the radius
distribution (24; 25). Moreover, accurate Monte Carlo simula-20

tions have shown that the associated chord length distribution
fα(`) is nearly exponential, with average provided by Eq. (4),
and that the accuracy of this approximation improves for in-
creasingly diluted spheres, i.e., small ϑ (26; 28), as expected on
theoretical grounds (30).25

The class of homogeneous Markov media, which is particu-
larly relevant for applications (1; 4; 5; 6; 14; 15), assumes that
the chord length distribution is exactly exponential, namely,

fα(`|Ω) =
1

Λα(Ω)
exp

(
−

`

Λα(Ω)

)
. (5)

In this case, the probability per unit length to cross the interface
of material α in direction Ω has a Poisson distribution with pa-
rameter 1/Λα(Ω) (1). As such, Markov mixing represents an
idealized mathematical description for disordered media, de-
manding minimal information content (1; 30). Models satisfy-30

ing homogeneous Markov mixing were introduced by Pomran-
ing and co-workers for one-dimensional geometries of the rod
or slab type, based on a Poisson point process on the line (1; 4).
Extensions to two-dimensional flat or extruded isotropic con-
figurations have been later proposed (7; 31). The practical re-35

alizability of such Markov models having an exponential dis-
tribution fα(`|Ω) simultaneously in all directions for arbitrary
d-dimensional geometry has been an open question for many
years (4). In a recent work, we have shown that a stochastic
geometry model based on d-dimensional isotropic Poisson tes-40

sellations (i.e., random partitions by (d − 1)-dimensional hy-
perplanes, for which explicit construction methods exist) in-
duce homogeneous Markov mixing satisfying the exponential
chord length distribution with a direction-independent average
Λα (32). It has been suggested that such geometries might45

be the only hyperplane tessellations to satisfy these proper-
ties (33; 34).

In this paper we further extend our findings to the broader
class of anisotropic Poisson tessellations, which can be of in-
terest to describe the effects of material stratification and pref-50

erential orientations (35; 36). For this purpose, we will first
provide the construction algorithm for stochastic geometries in-
ducing an exponential chord length distribution with direction-
dependent average Λα(Ω) and then illustrate how the average
chord length Λα(Ω) is related to the statistical features of the55

random medium and to the underlying anisotropy law. This pa-
per is organized as follows: in Sec. 2 we will briefly introduce
the class of d-dimensional anisotropic Poisson stochastic tes-
sellations and detail their main statistical properties. In Sec. 3

we will focus on the chord length distribution. Then, in Sec. 460

we will numerically verify the behaviour of three-dimensional
anisotropic Poisson tessellations by Monte Carlo methods for
different anisotropy laws. Conclusions will be finally drawn in
Sec. 5. Technical details will be provided in Appendix A, Ap-
pendix B and Appendix C.65

2. Anisotropic Poisson tessellations

Consider a disjoint aggregate {Xi}, i = 1, 2, · · · of bounded
domains in the euclidean space Rd, with Xi ∩ X j = ∅ for i , j.
The aggregate is space-filling in Rd if the union of the domains
Xi yields the entire space Rd. When the bounded domains are70

convex and space-filling, the interfaces between domain pairs
are hyperplanes, and the domains Xi are convex polyhedra. In
this case, the aggregate {Xi} is a tessellation of Rd, and the do-
mains Xi are the cells of the tessellation. Stochastic tessellations
are a class of probabilistic models where a given d-dimensional75

domain D is decomposed into random convex polyhedral cells
by generating a collection of (d−1)-dimensional random hyper-
planes in Rd (37; 18; 30; 38). Poisson geometries are a promi-
nent example of stochastic tessellations where the partition is
induced by hyperplanes drawn from an underlying Poisson pro-80

cess (37; 18; 38).

2.1. Construction of Poisson tessellations

We will detail the algorithm for the construction of Poisson
tessellations restricted to an arbitrary d-dimensional domain
D, based on Monte Carlo methods. Anisotropy can be rather
straightforwardly taken into account by generalizing the meth-
ods proposed for isotropic Poisson tessellations (39; 40; 32).
We start by sampling a random number N of hyperplanes from
a Poisson distribution of intensity αdρR, where R is the radius
of the d-sphere circumscribed to D and ρ is the so-called den-
sity of the tessellation, carrying the units of an inverse length.
The dimension-dependent constant αd reads

αd =
dκd

κd−1
= 2
√
π

Γ
(

d+1
2

)
Γ
(

d
2

) . (6)

This normalization of the tessellation density is such that the av-
erage chord length induced by the tessellation (in a sense to be
elucidated later) is 1/ρ. Then, we generate the hyperplanes K85

that will cut the domainD. We choose a parameter r uniformly
in the interval [−R,R] and additionally sample a unit vector n
from a density H(n) with support in the half-surface Ω+

d of the
unit d-sphere. Denoting by M the point such that OM = rn,
the random plane K will pass trough M and have normal vector90

n (for an illustration in d = 3, see the scheme in Fig. 1). By
construction, this hyperplane does intersect the circumscribed
d-sphere of radius R but not necessarilyD. The procedure is it-
erated until N random hyperplanes have been generated, which
yields homogeneous but (generally) non-isotropic Poisson tes-95

sellations (38). Anisotropy affects the tessellations through the
distribution H(n): isotropic Poisson tessellations are obtained
as a special case when setting H(n) = U(n), i.e., the uniform
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Figure 1: Cutting a cube inR3 with a random plane. A cube of side L is centered
in O. The circumscribed sphere centered in O has a radius R =

√
3L/2. The

point M is defined by M = rn, where r is uniformly sampled in the interval
[−R,R] and n is a random unit vector sampled from H(n). The random plane
K of equation n1 x + n2y + n3z = r is orthogonal to the vector n and intersects
the point M. The components of n can be expressed in spherical coordinates
as: n1 = sin(θ) cos(φ), n2 = sin(θ) sin(φ), and n3 = cos(θ), where θ is the polar
angle (projection onto the z axis), and φ is the azimuthal angle (projection onto
the x − y plane).

angular distribution over Ω+
d (for further details on the isotropic

case, see (32)). Due to geometrical reasons, it is only possible to100

include anisotropy effects for d ≥ 2. A few examples of realiza-
tions corresponding to various angular laws H(n) are illustrated
in Fig. 2. The density H(n) might admit a finite mass concen-
trated on a given direction n0, or more generally on a collection
of discrete directions ni, with Dirac delta distributions (41; 33).105

2.2. Statistical properties of polyhedral cells

Knowledge of the statistical properties of the polyhedral cells
of the stochastic tessellations can be helpful in understanding
the behaviour of particle streaming through the geometry. In
this framework, the quantities of interest are: the volume Vd of110

a cell in dimension d, which characterizes the spatial scale of
the random medium; the surface S d and the number of faces Cd

of a cell, which are related to the connectivity of the medium.
The inradius rin,d, i.e., the radius of the largest sphere contained
in a (convex) polyhedron, and the outradius rout,d, i.e., the radius115

of the smallest sphere enclosing a (convex) polyhedron, can be
also useful so as to characterize the shape of the cells.

Such quantities are random variables, whose exact distribu-
tions are in most cases unfortunately not known (38). Never-
theless, analytical expressions have been established for a few120

low-order moments of the observables, in the limit case of do-
mains having an infinite extension (18; 38; 37). The case of
isotropic Poisson tessellations was first addressed by the pio-
neering work of Goudsmit for d = 2 (42) and later thoroughly
explored by Miles first for d = 2 and then for higher dimen-125

sions in a series of groundbreaking works (41; 37; 33). Not
surprisingly, the derivation of exact results for anisotropic tes-
sellations is even more demanding: the case d = 2 was inves-
tigated by Miles (41), whereas formulas for higher dimensions

(a) (b)

(c) (d)

Figure 2: Realizations of three-dimensional anisotropic Poisson tessellations
restricted to a box of side L, with various angular laws H(n) = H(θ, φ). For
all realizations, we have chosen L = 100 and ρ = 1. Case a) isotropic angular
distribution ; b) quadratic angular distribution ; c) histogram distribution ; d)
box distribution. The corresponding laws are detailed in Sec 4.1.

were found more recently and are still a subject of active re-130

search (38; 43; 44).
As expected, for non-isotropic Poisson tessellations the ob-

tained formulas generally depend on the angular distribution
H(n). The following results have been established for infinite
domains (38). The first moment of the volume Vd obeys

〈Vd〉 =
d!
ζd

1
ρd , (7)

where the constant ζq depends on the angular distribution H(n)
and is defined as

ζq =

(
αd

2

)q ∫
Ω+

d

· · ·

∫
Ω+

d

[
n1, · · · ,nq

]
dH(n1) · · · dH(nq), (8)

q ≥ 1, the integrals being extended over Ω+
d . Here the quan-

tity [n1, · · · ,nq] denotes the q-space determinant 1 of the unit
vectors n1, · · · ,nq (38). As a particular case, for isotropic tes-
sellations Eq. (8) gives

ζ iso
d =

d!κd

2d , (9)

and we have

〈Vd〉
iso =

1
κd

(
2
ρ

)d

. (10)

It can be shown that for any sufficiently well-behaved H(n) the
quantity ζd satisfies ζd ≤ ζ iso

d (38), which allows establishing

1For q = 2, e.g., the q-space determinant yields the area of the parallelogram
spanned by n1 and n2; for q = 3, it yields the volume of the parallelepiped
spanned by n1, n2 and n3.
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some general inequalities for the moments of the polyhedral
quantities (see Appendix A). The second moment of the vol-
ume Vd reads

〈V2
d 〉 = ζdηdκd〈Vd〉

2, (11)

where the constant ηq also depends on the angular distribution
H(n) and is defined as (38)

ηq =

∫
Ω+

d

ξ−q(Ω)dU(Ω), (12)

q ≥ 0, with

ξ(Ω) =
αd

2

∫
Ω+

d

|n ·Ω|dH(n). (13)

Remark that η0 = 1. For isotropic tessellations,

ξiso =
αd

2

∫
Ω+

d

|n ·Ω|dU(n) = 1, (14)

and Eq. (12) yields ηiso
d = 1. We have thus

〈V2
d 〉

iso = d!
(

2
ρ2

)d

. (15)

The second moment allows computing the coefficient of varia-
tion, namely,

cv2 =
〈V2

d 〉 − 〈Vd〉
2

〈Vd〉
2 , (16)

which conveys information on the spatial shape of a typical
cell (33). From Eqs. (11) and (7), we obtain

cv2 = ζdηdκd − 1. (17)

Furthermore, an elegant recursive formula is known relating
the correlations between the surface S d and the volume Vd to
the higher moments of the volume, namely,

m〈Vm−1
d S d〉 = αdρ〈Vm

d 〉, (18)

for m ≥ 1 (33). Eq. (18) has been shown to hold for any
H(n) (38). In particular, for m = 1 this yields the first moment
of S d, i.e,

〈S d〉 = αdρ〈Vd〉, (19)

and for m = 2 the correlations

〈VdS d〉 =
αdρ

2
〈V2

d 〉. (20)

Thus, the effect of H(n) is only indirectly conveyed on 〈S d〉 and
〈VdS d〉 through the behaviour of 〈Vd〉 and 〈V2

d 〉, respectively. It
is interesting to observe that, although the average volume and
surface depend on the angular law H(n) through the function
ζd, the surface-to-volume ratio of the cells does not, and we get

〈S d〉

〈Vd〉
= αdρ, (21)

depending only on the density ρ and on the constant αd.
For the number of faces Cd we have the average

〈Cd〉 = 2d, (22)

which is a purely combinatorial result, independent of ρ and
H(n).

Finally, the inradius rin,d has an exponential distribution of
parameter αdρ, independent of H(n), and we have in particular

〈rin,d〉 =
1
αdρ

. (23)

For the outradius rout,d, the distribution is not known, and to135

the best of our knowledge the moments are not known, either,
which prevents from using the theoretical ratio 〈rin,d〉/〈rout,d〉 to
extract information on the shape of the cells.

A special case of anisotropic Poisson tessellations corre-
sponds to taking fixed orientations parallel to the orthogonal
Cartesian axes in Rd. In the simplest form, each direction
is taken with equal probability, which yields a quasi-isotropic
stochastic geometry: for these so-called Poisson-Box tessella-
tions (41; 33), the functions ζd and ηd can be computed exactly
from Eqs. (8) and (12), respectively, and yield

ζbox
d = d!

(
κd

2κd−1

)d

(24)

and

ηbox
d =

1
d!κd

(
4κd−1

κd

)d

. (25)

For isotropic Poisson tessellations, many other results are
known for the low-order moments and the correlations of Vd,140

S d and Cd (41; 33; 44), which will not be reported here. For an
exhaustive review, the reader is referred to e.g., (38).

3. Chord length distribution

For anisotropic Poisson tessellations having density ρ and in-
finite size, an arbitrary line with orientation Ω will encounter a
number of random hyperplanes per unit length distributed ac-
cording to a Poisson distribution of density ρ(Ω) = ρξ(Ω), de-
pending on the anisotropy law H(n) and on the directionΩ (34).
Conversely, the line will be cut by the hyperplanes into chords
whose lengths ` obey the exponential distribution

f (`|Ω) = ρ(Ω)e−`ρ(Ω), (26)

depending on the fixed orientation Ω. Correspondingly, we
have a direction-dependent average chord length

Λ(Ω) =

∫
` f (`|Ω)d` =

1
ρ(Ω)

. (27)

The quantity Λ(Ω) physically represents the typical correlation
length of the tessellation, i.e., the spatial scale of the local het-
erogeneity, in direction Ω (1). For isotropic tessellations, from
Eq. (14) we obtain in particular

f iso(`|Ω) = f iso(`) = ρe−`ρ (28)

for any orientation Ω. The average chord length reads then
Λiso(Ω) = Λiso = 1/ρ.145
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3.1. Colored Poisson tessellations

In many applications, the cells of random tessellation are
actually characterized by different physical properties, which
can be formally described by assigning a distinct ‘label’ i (also
called ‘color’) to each cell, with a given probability pi. Adja-150

cent cells sharing the same label are merged, which gives rise
to (generally) non-convex clusters, each composed of a random
number of convex polyhedra.

The probability density fi(`|Ω) of having a chord length `
though a cluster with label i for lines with orientation Ω can
be obtained as follows. If pi is the probability for a cell to be
assigned the label i, the probability that exactly k adjacent cells
share the same label 2 is P(k) = pk−1

i (1− pi). We can write then

fi(`|Ω) =
∑

k

fi(`|Ω; k)P(k), (29)

where fi(`|Ω; k) is the probability density of having a length `
if the cluster contains exactly k cells in the direction Ω. Now,
the length ` conditioned to k cells is the sum of k contributions
x j(Ω), j = 0, · · · , k, each obeying f (x j|Ω). Thus, fi(`|Ω; k) is a
Gamma distribution of parameters ρ(Ω) and k, namely,

fi(`|Ω; k) =
ρk(Ω)
Γ(k)

`k−1e−ρ(Ω)`. (30)

We have then

fi(`|Ω) =
∑

k

fi(`|Ω; k)P(k) = ρi(Ω)e−ρi(Ω)`, (31)

where ρi(Ω) = ρ(Ω)(1 − pi). This means that anisotropic Pois-
son tessellations satisfy thus a strict Markov property: the chord
length distribution for a cluster with label i is exactly exponen-
tial, with rescaled parameter ρi(Ω). Finally, the average chord
length through colored clusters reads

Λi(Ω) =
1

ρi(Ω)
=

Λ(Ω)
1 − pi

, (32)

which relates the average material chord length Λi(Ω) to the
correlation length Λ(Ω). Thus, the probability pα of finding
material α at any given spatial location is related to the average
chord lengths by

pα =
Λα(Ω)

Λα(Ω) + Λβ(Ω)
, (33)

where the dependence on Ω in Λi(Ω) cancels out to yield a
direction-independent material probability pα (1).155

3.2. Random line sections

We will now examine the case where the chords are randomly
distributed. Consider a disjoint aggregate of convex domains
{Xi} ⊂ X, i = 1, 2, · · · ,Q, in Rd and a set T of uniformly and

2We are actually considering the probability conditioned to the first cell also
sharing the same label.

isotropically distributed lines (for a precise definition, see Ap-
pendix B). From Eqs. (B.2) and (B.3), the average line section
induced by T through the aggregate reads

E[
q∑

j=1

` j] = αd

Q∑
i=1

Vd(Xi)
S d(X)

(34)

where ` j, j = 1, · · · , q, are the line sections of the non void
intersections T ∩ X j between the lines and the domains com-
posing the aggregate (46). Here S d(A) and Vd(A) denote the
surface and the volume of a domain A in Rd, respectively. The
number q of such intersections is itself random, with expected
value

E[q] =

Q∑
i=1

S d(Xi)
S d(X)

. (35)

By formally taking the ratio between Eqs. (34) and (35), the
average line section for the domains composing the aggregate
{Xi} can be estimated by

λc ≡
E[

∑q
j=1 ` j]

E[q]
= αd

∑Q
i=1 Vd(Xi)∑Q
i=1 S d(Xi)

. (36)

Suppose now that the aggregate {Xi} ⊂ X is a Poisson
stochastic tessellation in Rd. By taking ergodic averages over
the constituents of the geometries (46; 34), in the limit of infi-
nite size we obtain the average volume of a cell, namely,

lim
Q→∞

1
Q

Q∑
i=1

Vd(Xi)→ 〈Vd〉, (37)

and the average surface of a cell

lim
Q→∞

1
Q

Q∑
i=1

S d(Xi)→ 〈S d〉 = αdρ〈Vd〉. (38)

Finally, combining Eqs. (36), (37) and (38), the average chord
length Λc through the cells of the tessellation induced by the
random lines T can be estimated from (46)

Λc ≡ lim
Q→∞

λc → αd
〈Vd〉

〈S d〉
=

1
ρ
. (39)

This remarkable result relates the chord length properties to
the features of the tessellation cells, and shows that the aver-
age chord length Λc induced by T through anisotropic Poisson
tessellations of infinite size is simply equal to the inverse of
the tessellation density ρ, In particular, Λc is insensitive to the
anisotropy law H(n), although Vd(Xi) and S d(Xi) separately de-
pend on H(n). Observe that

Λc ≤

∫
Ω+

d

Λ(Ω)dU(Ω) =
η1

ρ
, (40)

i.e., the average chord length Λc cannot be obtained by aver-
aging the direction-dependent correlation length Λ(Ω) over the
uniform angular distribution. Rather, the definition in Eq. (39)
formally corresponds to taking

1
Λc

=

∫
Ω+

d

ρ(Ω)dU(Ω) = ρ, (41)

5



i.e., averaging the Poisson density ρ(Ω) = ρξ(Ω) and then in-
verting the result. For isotropic tessellations, we simply have
Λiso

c = Λiso = 1/ρ.
The result given in Eq. (4) for poly-dispersed spheres is actu-

ally closely related to the derivation of the average chord length
as in Eq. (39). It suffices to observe (26; 30) that in this case the
total volume of the background matrix is

〈Vmatrix〉 = (1 − ϑ)κd〈rd〉 (42)

and that the surface of the interface between the spheres and the
background matrix is

〈S interface〉 = ϑΩd〈rd−1〉, (43)

where Ωd = 2πd/2/Γ (d/2) is the surface of the unit sphere in160

dimension d. Then, using Λc = αd〈Vmatrix〉/〈S interface〉 from
Eq. (39) and Ωd = dκd, we are led to Eq. (4).

Additional information on the line sections in Markov media
can be extracted for a special case of the higher-order moments.
From Eqs. (B.2) and (B.4), the (d + 1)-th moment of the line
section induced by T through an aggregate reads

E[
q∑

j=1

`d+1
j ] = γd

Q∑
i=1

V2
d (Xi)

S d(X)
(44)

where V2
d (A) denote the square of the volume of a domain A in

Rd and the dimension-dependent constant γd reads

γd =
d(d + 1)
κd−1

=
2dΓ

(
d+3

2

)
π(d−1)/2 . (45)

By formally taking the ratio between Eqs. (44) and (35), the
(d+1)-th moment of the line section for the domains composing
the aggregate {Xi} can be estimated by

λd+1
c ≡

E[
∑q

j=1 `
d+1
j ]

E[q]
= γd

∑Q
i=1 V2

d (Xi)∑Q
i=1 S d(Xi)

. (46)

For Poisson stochastic tessellations, in the limit of infinite size
we obtain

lim
Q→∞

1
Q

Q∑
i=1

V2
d (Xi)→ 〈V2

d 〉. (47)

Thus, combining Eqs. (46), (47) and (38), the (d+1)-th moment
of the chord lengths through the cells of the tessellation induced
by the random lines T can be estimated from (34)

Λd+1
c ≡ lim

Q→∞
λd+1

c → γd
〈V2

d 〉

〈S d〉
= ηd

Γ(d + 2)
ρd+1 . (48)

Similarly to Eq. (39), Eq. (48) relates the properties of the chord
length to the features of the tessellation cells. To the best of our
knowledge, no other expressions are known explicitly relating
the moments of the chord lengths induced by the random lines
T to the moments of the polyhedral features of the tessellation.
It is interesting to remark that for lines thrown through the cells

with arbitrary orientation Ω we would have the (d + 1)-th mo-
ment

Λd+1(Ω) ≡
∫

`d+1 f (`|Ω)d` =
Γ(d + 2)
ρd+1(Ω)

. (49)

In particular, for isotropic Poisson tessellations Λd+1,iso(Ω) =

Γ(d + 2)/ρd+1, independent of the orientation Ω. In this case,
Λ

d+1,iso
c = Λd+1,iso. The factor ηd in Eq. (48) thus expresses the

deviation with respect to the behaviour of isotropic tessellations
having an exponential chord length distribution independent of
Ω. Moreover, observe that we can explicitly compute the aver-
age of Λd+1(Ω) over the uniform distribution, which yields

Λd+1
c ≤

∫
Ω+

d

Λd+1(Ω)dU(Ω) = ηd+1
Γ(d + 2)
ρd+1 , (50)

similarly as what observed for the average chord length. Equal-
ity is attained for isotropic tessellations.

By comparing Eq. (39) to (48), we are led to the follow-165

ing picture: the average chord length Λc is insensitive to the
anisotropy law H(n) of the tessellation, whereas the (d + 1)-th
moment Λd+1

c generally does depend on H(n). Since the prop-
erties of particle displacements through random media have
been shown to be intimately related to the chord length dis-170

tribution, and especially its lower-order moments, we therefore
expect linear transport to be subtly affected by the effects of the
anisotropy, which is coherent with the numerical findings that
we have recently reported (36).

4. Monte Carlo analysis of anisotropic Poisson tessellations175

Anisotropic Poisson tessellations can be effectively used in
order to derive reference solutions for particle transport in ran-
dom media (36). For this purpose, we have implemented the
construction algorithm provided above into a computer code
that can generate an ensemble of realizations. Due to the com-180

plexity of the involved construction algorithms, for the case of
isotropic tessellations careful verifications have been previously
carried out by Monte Carlo simulation in order to verify that the
generated tessellations obeyed the expected statistical proper-
ties (32). In this work we will extend our analysis to the case of185

anisotropic Poisson tessellations. The observables of interest,
including the volume and surface of the cells, the number of
faces per cell, and the chord lengths, are recorded for each real-
ization: once a sufficiently large set has been generated, ensem-
ble averages (and possibly also full distributions) are estimated.190

In the following, we illustrate some significant examples as a
function of the angular law H(n) in dimension d = 3, which is
relevant for physical applications.

4.1. Choice of the angular distributions
In (36) we have introduced a few laws H(n), with dH(n) =195

dH(θ, φ) where the choice of the anisotropy law may mimic
the impact of material stratification along the z axis. For the
sake of simplicity, we have assumed that the distributions H(n)
can be factorized with respect to the two variables, and that
the distribution of φ is uniform (this ensures the invariance by200

rotation around the z axis). In the following we briefly recall the
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Law H(n) ζ3 η3

Isotropic π ' 3.1416 1
Quadratic 2.4232 ± 2 × 10−4 1.2796 ± 6 × 10−6

Box 16/9 ' 1.7777 27/(8π) ' 1.0743
Histogram 1.504 ± 2 × 10−4 2.0746 ± 3 × 10−6

Table 1: Numerical values for the constants ζ3 (see Eq. (8)) and η3 (see
Eq. (12)), for d = 3 and various laws H(n). Integrals have been computed
by Monte Carlo sampling for quadratic and histogram laws (whence the error
bars) and analytically for isotropic and box laws.

Law H(n) 〈V3〉 Monte Carlo
Isotropic 6/π ' 1.90986 1.907 ± 4 × 10−3

Quadratic ' 2.4744 2.459 ± 5 × 10−3

Box 27/8 = 3.375 3.366 ± 7 × 10−3

Histogram ' 3.987 3.957 ± 9 × 10−3

Table 2: Average volume 〈V3〉 of Poisson tessellations restricted to a box of side
L = 200, with various anisotropy laws H(n), for d = 3. The tessellation density
is ρ = 1 for all the angular laws H(n). The limit value for infinite Poisson
tessellations is given in Eq. (7).

definitions of the distributions that will be used for our Monte
Carlo simulations.

We have considered a quadratic anisotropy

Hquadratic(µ, φ) =
3

2π
µ2 for − 1 ≤ µ < 1, (51)

where µ = cos(θ), with dH(n) = dH(µ, φ). This distribution has
its minimum in µ = 0 and the maxima in µ = ±1. Moreover,
we have considered a piece-wise constant distribution

Hhistogram(µ, φ) =
1
A
×


80 for − 1 ≤ µ < −0.95
4 for − 0.95 ≤ µ < −0.5
2 for − 0.5 ≤ µ < −0.25
1 for − 0.25 ≤ µ < 0,

(52)

and symmetric in the range 0 < µ < 1, which has maxima
around µ = ±1. The normalization constant reads A = 13.1.205

The Poisson-Box tessellation with orientations parallel to the
Cartesian axes reads

Hbox(θ, φ) =
1
3
δ (φ) δ

(
θ −

π

2

)
+

1
3
δ
(
φ −

π

2

)
δ
(
θ −

π

2

)
+

1
3
δ (θ)

1
π
. (53)

Finally, the isotropic distribution in Ω+
3 yields

Hiso(θ, φ) =
1

2π
sin(θ), (54)

with 0 ≤ θ < π and 0 ≤ φ < π. For the purpose of illustra-
tion, realizations of tessellations resulting from these distribu-
tions have been provided in Fig. 2. For the functional forms210

of the angular distributions H(n) introduced here, the integrals
needed for the constants ζ3 (see Eq. (8)) and η3 (see Eq. (12))
can be easily computed by Monte Carlo sampling, since they
are both expressed as expected values over the angular distri-
butions. The functionals to be evaluated are the volume of the215

Law H(n) 〈V2
3 〉 Monte Carlo

Isotropic 48 47.8 ± 0.2
Quadratic ' 79.6227 79.2 ± 0.3

Box 729/8 = 91.125 90.5 ± 0.4
Histogram ' 207.9931 206 ± 1

Table 3: Second moment of the volume 〈V2
3 〉 of Poisson tessellations restricted

to a box of side L = 200, with various anisotropy laws H(n), for d = 3. The
tessellation density is ρ = 1 for all the angular laws H(n). The limit value for
infinite Poisson tessellations is given in Eq. (11).

Law H(n) 〈S 3〉 Monte Carlo
Isotropic 24/π ' 7.63944 7.63 ± 0.01
Quadratic ' 9.986 9.85 ± 0.01

Box 27/2 = 13.5 13.48 ± 0.02
Histogram ' 15.947 15.84 ± 0.03

Table 4: Average surface 〈S 3〉 of Poisson tessellations restricted to a box of side
L = 200, with various anisotropy laws H(n), for d = 3. The tessellation density
is ρ = 1 for all the angular laws H(n). The limit value for infinite Poisson
tessellations is given in Eq. (19).

parallelepiped spanned by three unit vectors in the case of ζ3,
and the scalar product of two unit vectors in the case of η3, re-
spectively. In special cases, such as for the isotropic and box
distributions, the integrals can be computed analytically. The
resulting constants ζ3 and η3 are provided in Tab. 1. Finally,220

observe that we have α3 = 4 from Eq. (6) and γ3 = 12/π from
Eq. (45).

4.2. Polyhedral features

In order to verify the statistical features of the cells of the tes-
sellations, we have generated anisotropic Poisson tessellations225

restricted to three-dimensional box of side L. For each angu-
lar law H(n) described above, based on our computer code we
have obtained a large number of realizations for increasing L
and fixed tessellation density ρ = 1. The side of the box varies
between L = 1 and L = 200: we expect the moments of the230

observables to converge towards their asymptotic limits (corre-
sponding to infinite tessellations) when Lρ � 1 so that finite-
size effects fade away. The number of realizations is 5×103 for
each size L.

The simulation results for the average volume 〈V3〉, the sec-235

ond moment 〈V2
3 〉, the average surface 〈S 3〉 and the correla-

tions 〈V3S 3〉 between the volume and the surface are given in
Tabs. 2-5, respectively, for L = 200. Numerical findings are
in good agreement with the theoretical formulas, and the mini-
mum of all these quantities is attained for the case of isotropic240

tessellations, as predicted by the theory. The evolution of these
moments as a function of the side L of the box is shown in
Figs. 3 and 4: for small L, finite-size effects are clearly visible;
for larger L, the estimated moments converge to their asymp-
totic limits for infinite tessellations. The rate of convergence to245

the asymptotic values depends on the anisotropy law H(n): the
stronger the anisotropy, the slower the convergence. Isotropic
and box tessellations, although converging to different limits,
appear to have the nearly same rate of convergence, which pos-
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Figure 3: Average volume 〈V3〉 (top) and second moment of the volume 〈V2
3 〉 (bottom) of Poisson tessellations restricted to a box of side L, with various anisotropy

laws H(n), for d = 3. The tessellation density is ρ = 1 for all the angular laws H(n). Symbols denote Monte Carlo simulation results: blue circles correspond to
isotropic distribution, red diamonds to quadratic distribution, green squares to box distribution and purple triangles to histogram distribution. Solid lines correspond
to the respective limits for infinite Poisson tessellations, as given in Eqs. (7) and (11), respectively.

Law H(n) 〈V3S 3〉 Monte Carlo
Isotropic 96 95.7 ± 0.3
Quadratic ' 159.2455 158.6 ± 0.6

Box 729/4 = 182.25 181.2 ± 0.7
Histogram ' 415.9862 411 ± 2

Table 5: Volume-surface correlations 〈V3S 3〉 of Poisson tessellations restricted
to a box of side L = 200, with various anisotropy laws H(n), for d = 3. The
tessellation density is ρ = 1 for all the angular laws H(n). The limit value for
infinite Poisson tessellations is given in Eq. (20).

Law H(n) 〈C3〉 Monte Carlo
Isotropic 6 6 ± 7 × 10−8

Quadratic 6 6 ± 9 × 10−8

Box 6 6 ± 0
Histogram 6 6 ± 10−7

Table 6: Average number of faces 〈C3〉 in Poisson tessellations restricted to
a box of side L = 200, with various anisotropy laws H(n), for d = 3. The
tessellation density is ρ = 1 for all the angular laws H(n). The limit value for
infinite Poisson tessellations is 〈C3〉 = 6 for any H(n).

sibly stems from box tessellations being quasi-isotropic. In-250

spection of Fig. 3 shows that 〈V3〉 and 〈V2
3 〉 appear to have sim-

ilar rates of convergence, for a given H(n).
The Monte Carlo simulation results for the average number

of faces 〈C3〉 of each cell are given in Tab. 6 for L = 200: it
is immediately apparent that 〈C3〉 does not depend on the an-255

gular law H(n), as expected. The distribution of the number
of faces C3 has been also estimated by Monte Carlo simulation
and is displayed in Fig. 5 for L = 200 and ρ = 1. Intrigu-
ingly, the curves corresponding to different laws H(n) almost
collapse onto the same functional form, apart from the case of260

Box tessellations, for which a distinct behaviour is observed: by
construction, the number of faces in Box tessellations is exactly
equal to 6 for each cell.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25

P
(C

3|
L)

C3

Figure 5: Distribution of the number of faces C3 in Poisson tessellations cells
restricted to a box of side L = 200, with various anisotropy laws H(n), for
d = 3. The tessellation density is ρ = 1 for all the angular laws H(n). Sym-
bols denote Monte Carlo simulation results: blue circles correspond to isotropic
distribution, red diamonds to quadratic distribution and purple triangles to his-
togram distribution. For Box tessellations, C3 is trivially equal to 6 for each
cell.

Simulation details concerning the inradius and the outradius
are given in Appendix C, for the sake of completeness.265

4.3. Chord lengths

As a first verification test, we have estimated the chord length
distribution f (`|Ω, L) corresponding to lines having a fixed ori-
entation Ω within a box of side L, for several anisotropy laws
H(n). Monte Carlo simulation results are shown in Fig. 6 for270

L = 150 and ρ = 1. An ensemble of 5×103 realizations and 103

sample lines for each geometry have been taken. Furthermore,
Monte Carlo simulation results for the chord length distribution
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Figure 4: Average surface 〈S 3〉 (top) and volume-surface correlations 〈V3S 3〉 (bottom) of Poisson tessellations restricted to a box of side L, with various anisotropy
laws H(n), for d = 3. The tessellation density is ρ = 1 for all the angular laws H(n). Symbols denote Monte Carlo simulation results: blue circles correspond to
isotropic distribution, red diamonds to quadratic distribution, green squares to box distribution and purple triangles to histogram distribution. Solid lines correspond
to the respective limits for infinite Poisson tessellations, as given in Eqs. (19) and (20), respectively.

H(n) Λc Monte Carlo
Isotropic 1 0.9940 ± 8 × 10−4

Quadratic 1 0.9937 ± 8 × 10−4

Box 1 0.9927 ± 8 × 10−4

Histogram 1 0.9937 ± 8 × 10−4

Table 7: Average correlation length Λc for Poisson tessellations restricted to
a box of side L = 150, with various anisotropy laws H(n), with d = 3. The
tessellation density is ρ = 1 for all the angular laws H(n). The line orientation
is uniform and isotropic. The line orientation is uniform and isotropic. The
limit value for infinite Poisson tessellations is Λc = 1/ρ, as in Eq. (39).

H(n) Λ4
c Monte Carlo

Isotropic 24 23.40 ± 0.08
Quadratic 30.71 30.0 ± 0.1

Box 25.78 25.0 ± 0.1
Histogram 49.79 48.1 ± 0.2

Table 8: The fourth moment Λ4
c of the chord length for Poisson tessellations

restricted to a box of side L = 150, with various anisotropy laws H(n), with
d = 3. The tessellation density is ρ = 1 for all the angular laws H(n). The
line orientation is uniform and isotropic. The limit value for infinite Poisson
tessellations is Λ4

c = η3Γ(5)/ρ4, as in Eq. (48).

fα(`|Ω, L) through material α corresponding to lines having a
fixed orientation Ω are displayed in Fig. 7 for various values of275

the color probability pα. An ensemble of 5×103 realizations and
102 sample lines for each geometry have been taken. Numerical
findings for both f (`|Ω, L) and fα(`|Ω, L) are in good agreement
with the exponential densities given in Eqs. (26) and (31), re-
spectively, which are exact for infinite tessellations. Finite-size280

effects are negligible, since Lρ � 1 for these simulations.
The special case of chord lengths induced by lines that are

homogeneously and isotropically distributed has been sepa-
rately considered. Simulation results for the resulting average
correlation length Λc(L) in a box of side L = 150 are illus-285

trated in Tab. 7, where Monte Carlo estimates are compared to
the expected theoretical value Λc = 1/ρ. For such a large L,
finite-size effects are rather weak and the simulation findings
agree with the limit values. The behaviour of the average corre-
lation length Λc(L) as a function of the system size L is shown290

in Fig. 8 (left). Numerical findings confirm that Λc(L) does not
depend on the anisotropy law H(n). Moreover, the convergence
is not affected by the anisotropy law H(n), either.

For the purpose of comparison, we have also investigated the
behaviour of the chord length estimator

Λ∗c ≡ E


∑q

j=1 ` j

q

 , (55)

which is related to
∫

Ω+
d

Λ(Ω)dU(Ω) = η1/ρ. The corresponding
simulation results for Λ∗c(L) as a function of L are provided in295

Fig. 8 (right). Generally speaking, we observe that Λ∗c ≥ Λc =

1/ρ, as expected: this is particularly apparent for the quadratic
distribution and for the histogram distribution. These numerical
findings are consistent with the theoretical analysis provided by
Miles (34). Moreover, the Box distribution yields results that300

are almost superposed to those of the isotropic distribution.
Finally, we have considered the fourth moment Λ4

c of the
chord lengths for Poisson tessellations restricted to a box of
side L = 150. In Tab. 8 the simulation results corresponding to
various anisotropy laws H(n) are compared to the limit value
Λ4

c = η3Γ(5)/ρ4, as given in Eq. (48). The agreement is satis-
factory, although finite-size effects are apparent because of the
large powers of the lengths. The Box distribution yields again
results that are close to those of the isotropic distribution. The
behaviour of the average correlation length Λc(L) as a function
of the system size L is shown in Fig. 9, where we compare the
estimator for Λd+1

c to

Λd+1,∗
c ≡ E


∑q

j=1 `
d+1
j

q

 , (56)
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Figure 7: Chord length distribution fα(`|L,Ω) through clusters of material α in Poisson tessellations restricted to a box of side L = 150, with various anisotropy
laws H(n), for d = 3, with pα = 0.1 (left) and pα = 0.9 (right). The tessellation density is ρ = 1 for all the angular laws H(n). The line orientation is chosen
as θ = 0. Symbols denote Monte Carlo simulation results: blue circles correspond to isotropic distribution, red diamonds to quadratic distribution, green squares
to box distribution and purple triangles to histogram distribution. The solid lines correspond to the limit exponential density given in Eq. (31), with average
Λα(Ω) = Λ(Ω)/(1 − pα).

which is related to
∫

Ω+
d

Λd+1(Ω)dU(Ω) = ηd+1Γ(d + 2)/ρd+1.

Numerical investigations show that Λ4
c ≤ Λ

4,∗
c , as expected.

5. Conclusions

Markov media provide a prototype model for linear particle305

transport in random materials, although their practical realiz-
ability in arbitrary dimension has been a long-standing open
question. In this work we have shown that Poisson hyperplane
tessellations allow for an explicit construction of random media
satisfying the Markov property and easily including anisotropy.310

The chord length distribution of Poisson hyperplane tessella-
tions is exactly exponential (in the limit case of tessellations
having an infinite extension), with a direction-dependent aver-
age that is a function of the anisotropy law H(n).

We have shown that for uniform and isotropic lines the aver-315

age chord length and the (d + 1)-moment are intimately related
to the statistical features of the tessellation cells, such as the
surface-to-volume ratio, and can be expressed by elegant for-
mulas. In particular, the average chord length is insensitive to
the anisotropy law H(n), whereas the (d + 1)-moment does de-320

pend on H(n).
In order to investigate the properties of anisotropic Markov

media we have developed a computer code to generate
anisotropic Poisson tessellations in arbitrary dimension re-
stricted to a finite box of side L. The required algorithms have325

been obtained by generalizing our previous work concerning
isotropic tessellations. We have carefully analyzed the conver-
gence to exact asymptotic formulas for the chord length dis-
tribution and the polyhedral features of the tessellation cell
by extensively using Monte Carlo simulation. The impact of330

anisotropy has been illustrated by resorting to a few relevant
examples of angular distributions in dimension d = 3. In the
limit of very large L we have shown that finite-size effects fade

away and the properties of the tessellations converge to the the-
oretical results.335

The results presented in this paper may encourage further
theoretical work concerning the properties of Poisson hyper-
plane tessellations and might stimulate similar analyses for
other classes of random media.
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Appendix A. Inequalities for anisotropic tessellations345

The volume Vd and the surface S d depend on the anisotropy
law H(n). For any sufficiently well-behaved H(n), we have

ζd ≤ ζ
iso
d , (A.1)

which from Eq. (7) implies that the average volume attains a
minimum for the case of isotropic Poisson tessellations (45;
38), namely,

〈Vd〉 ≥ 〈Vd〉
iso. (A.2)

More generally, it can be proven that 〈Vm
d 〉 ≥ 〈V

m
d 〉

iso for the
moments of any order m ≥ 1 (45), whence in particular

〈V2
d 〉 ≥ 〈V

2
d 〉

iso. (A.3)

Moreover, it has been shown that cvbox ≤ cv ≤ cviso (38).
For S d, Eq. (19) implies that the average surface attains

also a minimum for the case of isotropic Poisson tessellations,
namely,

〈S d〉 ≥ 〈S d〉
iso. (A.4)
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From Eqs. (A.3) and (20), we have an analogous inequality for
the correlations, namely,

〈VdS d〉 ≥ 〈VdS d〉
iso. (A.5)

Appendix B. Cauchy formulas

In dimension d = 2, a line section T of a bounded domain
X ⊂ R2 ensuring homogeneity and isotropy can be obtained as
follows. Consider the disk S containing X and with the smallest350

possible radius. Take then an isotropic direction Ω emanating
from the center of S . Take a random point whose position z
is uniformly distributed on the diameter of S in direction Ω.
Construct now the line passing through z and orthogonal to Ω.
If the line intersects the domain X, this is an acceptable line355

section satisfying the properties above; if not, repeat the whole
procedure until a new line hits X.

In dimension d = 3, a line section T of a bounded domain
X ⊂ R3 satisfying the homogeneity and isotropy property can
be obtained by first constructing a plane section. Consider the360

sphere S containing X and with the smallest possible radius.
Take then an isotropic direction Ω emanating from the center
of S . Take a random point whose position z is uniformly dis-
tributed on the diameter of S in direction Ω. Construct now
the plane passing through z and orthogonal to Ω. If the plane365

intersects the domain X, this is a plane section of X satisfying
homogeneity and isotropy; if not, repeat the whole procedure
until a new plane hits X. Once the plane section is obtained,
the procedure for line sections in d = 2 can be applied: it can
be shown that an homogeneous and isotropic line section of an370

homogeneous and isotropic plane section of X is actually an
homogeneous and isotropic line section of X in d = 3.

Other procedures exist for homogeneous and isotropic line
sections in dimension d that do not require rejection meth-
ods (48). This can be achieved, e.g., by first choosing a point

P uniformly on the surface of X ⊂ Rd and then sampling lines
passing through P and with direction Ω satisfying an isotropic
incident flux with respect to the normal n entering the surface
of X at point P. This condition imposes the measure (18; 48)

Ω · n
dΩ
κd−1

dS d(X)
S d(X)

. (B.1)

The term cos θ = Ω · n implies that in polar coordinates tra-
jectories starting on the surface must enter the domain X with
θ = arcsin(2s−1) in two dimensions and θ = 1/2 arccos(1−2s)375

in three dimensions, s being uniformly distributed in (0, 1] (49).
Consider then a bounded domain X in Rd and an ensemble

of homogeneous and isotropic random lines T . The probability
that a line drawn from this ensemble hits a sub-domain Y ⊂ X
is given by

P(T ∩ Y , 0) =
S d(Y)
S d(X)

, (B.2)

where S d(A) denotes the surface of a domain A in Rd (46).
Furthermore, conditionally to hitting Y , such lines are homoge-
neous and isotropic through Y . This result is independent of the
position and orientation of the sub-domain Y within X. Let us
denote by ` the random line sections induced on Y . The Cauchy
formula (also called Crofton second theorem) states that the en-
semble average E[`] of the random line sections through Y sat-
isfies

E[`] = αd
Vd(Y)
S d(Y)

, (B.3)

where Vd(A) denotes the volume of a domain A in Rd, provided
that lines are homogeneous and isotropic (46; 34). In other
words, the average line section E[`] through Y depends only
on the ratio between the volume and the surface of Y , regard-380

less of the specific details of the shape of the domain, up to the
dimension-dependent constant αd. This is a special case of a
broader set of stereological formulas derived by Miles for the
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Figure 9: The 4-th moment Λ4
c (left) and the estimator Λ

4,∗
c (right) in Poisson tessellation cells for a box of side L, as a function of L, with various anisotropy

laws H(n), for d = 3. The tessellation density is ρ = 1 for all the angular laws H(n). The line orientation is uniform and isotropic. Symbols denote Monte Carlo
simulation results: blue circles correspond to isotropic distribution, red diamonds to quadratic distribution, green squares to box distribution and purple triangles to
histogram distribution. The limit values for infinite Poisson tessellations (dashed lines) are Λ4

c = η3Γ(5)/ρ4, as in Eq. (48), and Λ
4,∗
c = η4Γ(5)/ρ4

projection of a body (or a collection of bodies) onto random
s-dimensional flats in Rd (46; 47; 34).385

Another remarkable consequence of the Crofton theorem is
that the (d + 1)-th moment E[`d+1] of the random line sections
through Y satisfies (34)

E[`d+1] = γd
V2

d (Y)
S d(Y)

, (B.4)

where the constant γd is given in Eq. (45).

Appendix C. Analysis of the inradius and the outradius

The distribution of the inradius rin,3 has been also estimated
by Monte Carlo simulation and is provided in Fig. C.10 for
large L = 200 and ρ = 1. It is immediately apparent that
the curves corresponding to different laws H(n) collapse onto
the same functional form, which for infinite tessellations is the
exponential distribution

f (rin,3) = 4ρe−4ρrin,3 , (C.1)

where we have used α3 = 4. In particular, the average inradius
yields 〈rin,3〉 = 1/(4ρ) for infinite tessellations. Finite-size ef-
fects are negligible, since ρL � 1. As mentioned above, to the390

best of our knowledge the theoretical behaviour of the outradius
for infinite tessellations is not known (not even for the simplest
case of isotropic tessellations). Monte Carlo simulations show
however that 〈rout,3〉 non-trivially depends on the law H(n), con-
trary to the inradius.395
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