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Almost forty years after Turings seminal paper on patterning, progress on modeling instabilities
leading to pattern formation has been achieved. The initial concept of dissipative structure is
now clearly understood within the Phase-Field framework. So far, such an approach obtained
promising results in various aspects of materials research from pattern formation during solidification
to defect dynamics. In this work, we will try discussing experimental results observed during aging
of solids under irradiation within this framework. The approach followed in this presentation is
comprehensive and not specialized in specific aspects of the Phase-Field modelling (mechanics,
mathematics, or numerical methods) at the expense of a holistic picture.

INTRODUCTION

Materials exposed to neutron, electron or ion fluxes
undergo a multitude of complex chemical and structural
changes [1] at length scale spanning the atomistic to the
macroscopic regimes over time scales raging from few
pico-seconds to years. Predicting mechanical and ther-
mal properties of these materials is difficult as irradia-
tion drives the system away from equilibrium. Thus, the
structural evolution of these materials under irradiation
has been an ongoing field of research for several decades.
Since it can induce variation of the local composition
at the atomic scale, irradiation offers the unique oppor-
tunity to overcome the thermodynamic phase diagram
manufacturing alloys with unexpected compositions fluc-
tuation at the mesoscopic scale. On an academic point
of view, materials under irradiation may be toy models
to study the formation and the stability of systems main-
tained far from equilibrium. Varying the control param-
eter (temperature, particles flux), experimentalists can
test different approaches for modeling systems far from
equilibrium.

Over the past three decades, classical molecular dy-
namics (MD) methods were extensively applied to esti-
mate primary damage production in materials (alloys and
ceramics) submitted to radiation damage. This atomistic
simulation methods allows to describe the first stage of
radiation damage in materials. However, the time scale
of the simulation (few pico-seconds) makes it unavailable
to discuss long term aging of materials under irradiation
over the diffusive time scale (few micro-second) that con-
trols the micro-structure formation.

Different simulation techniques were developed over
the past decades to predict the longtime micro-structural
evolution of solids under irradiation. Usual approaches
to model precipitates generated under irradiation (de-
fects cavities, secondary phases and gas bubbles) during

the aging of materials at the mesoscale, i.e. over few hun-
dreds of nanometers, is based on mean field rate theory
(RT). In the RT formalism, classical nucleation theory is
applied to determine the nucleation rate while reaction
rate theory is used to define the spatially averaged va-
cancy, interstitial and solute populations [2, 3]. In these
models, the dynamics of different populations is treated
as spatially averaged equations, i.e. with averaged sink
strength terms (the underlying micro-structural features
are assumed frozen) and neglecting spatial correlations of
point defects. To overcome this last limitation, Kinetic
Monte-Carlo (KMC) methods were developed enabling
the spatial resolution of individual class of defects (point
defect, dislocations, cavities..). In radiation damage pro-
cesses, elementary processes (thermal diffusion, ballistic
exchanges) occur over time scales smaller (at least over
three orders of magnitude) than the longtime evolution
of point defects (Frenkel pairs), atomic species (order-
ing/disordering) and the micro-structure [4] (dislocation
loops). Decoupling between these time scales insures that
a new micro-structure can be treated as resulting from
a Markov process. A microscopic master equation [5]
can then be built to mimic the time evolution of the
system under irradiation. Kinetic Monte Carlo simula-
tion, integrating formally the master equation, appears
to be a powerful tool to handle radiation induced micro-
structure. This simulation tool, very efficient at low tem-
perature when the point defect concentration is low, can
be extended to include many dynamics acting in parallel.
The primary limitation of the KMC technique is the sim-
ulation cell size which dictates the observable cluster den-
sity. However, the main limitation of such an approach
is that different dynamics must be added by hand and
that atoms are constrained in a rigid lattice neglecting
vibration enthalpy and entropy that plays an important
role in the stability of materials. Within such an ap-
proximation, the evolution of a micro-structure based on
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pre-defined defects (jump frequencies and reaction acti-
vation energies are input parameters). An other severe
limitation of this technique comes from the act that lat-
tice relaxations, i.e. relaxations induced by electric fields
(for insulators) and/or elastic fields (for metals and al-
loys) can not be handled due to the limitation of the
simulation boxes sizes.

Continuum methods such as the Phase Field (PF)
methods are based on a mean field theory describing
the evolution of the micro-structure by continuous fields
evolving in space and time and then satisfying defined
partial differential equations. The main advantage of this
approach results from the fact that all spatial informa-
tion on the micro-structure is contained in these fields.
Concentration[6] (or more largely Order Parameter [7])
fields resulting from a coarse grained average of the
atomic occupation over a discrete underlying rigid lattice
simulate only the long range order of the systems like in
the RT. However, correlations between these means val-
ues are introduced ”by hand” via differential operators in
a free energy functional (the so called Ginzburg term [7]).
The main interest of this approach is its ability to take
into account in-homogeneous local long range fields like
strain fields occurring during the micro-structure evolu-
tion. The main limitation of such an approach is due to
the absence of clear coarse grained procedures [8].

Although continuous approximations suffer from some
limitations, they offer the unique opportunity to discuss
self organization in condensed matter at equilibrium and
far from equilibrium [9–11]. This works discusses radia-
tion induced patterning in alloys modeled within the PF
approximation pointing out the its ability to predict the
morphology of the microstructure as well as the solubility
limits without evoking the concept of effective tempera-
ture [12].

PHASE FIELD APPROACH

The Phase Field method is a extension of the Landau
Theory of Phase Transition [13]. In its seminal work,
Landau pointed out that phase transitions are associated
with symmetry breaking and he defines the notion of Or-
der Parameter (OP, null in the high symmetric phase) [7].
For instance in para-magnetic to ferromagnetic transi-
tion, the rotational symmetry of the magnetization vec-
tor (the OP) is broken in the ferromagnetic phase lead-
ing to domains of well defined orientation. To go a step
beyond this approach, he intuited that the free energy
of the system (more generally the thermodynamic po-
tentials) are only function of the OP related with Long
Range order in materials. The main drawback of the
Landau’s theory is to neglect the fluctuation (the evolu-
tion of the Short Range Order). In this sense, the Phase
Field (PF) approach is a mean field approximation. To
introduce spatial variation of the OP, named η(x) below,

local extra terms of the type ∇p(η(x)) were introduced
in the Free energy expression (Ginzburg term). The PF
is a generalization of the Landau Theory dealing with
the kinetic evolution of the OP η(x, t). Contrary to the
rate theory extensively used to discuss formation of ex-
tended defects (voids, dislocations...) under irradiation,
all information on the micro-structure is dictated by the
variation of the Free energy (more precisely its first vari-
ation δF

δη(x,t) ) term without any need to external inputs

like the emission or the absorption terms associated with
the migration of point defects in the Rate Theory.

Gradient and non gradient dynamics

Assuming that the evolution of a system can be mod-
elled within the PF framework, the variation of the Long

Range Order (LRO) dη(x)
dt is assumed to be linked to the

variation of the Free energy functional δF (η(x)
δη(x) :

dη(x, t)

dt
= F (η(x, t), µ)

= FR(η(x, t), µ) + FNR(η(x, t), µ) (1)

F was separated in two distinct terms. The first
one FR(η(x, t), µ) is associated with the relaxation part
−Γ δL

δη(x,t) of the dynamics (L is a real function and Γ

is a positive operator). FNR(η(x, t), µ) describes all non
relaxing processes associated with the dynamics and is
orthogonal to FR(η(x, t), µ) for a given inner product [9].

Different cases exist:

• If FNR = 0 and Γ is constant. The evolution of
the system follows the line of steepest descent of L.
The system is named as a relaxation gradient flow

• If FNR = 0 and Γ are not constant (system with
conservation laws), transient patterns do not cor-
respond to the lines of steepest descent of L can
appear. The system is a relaxation non-gradient
flow.

• if N is non null, the status of the dynamics is still
under investigation. The system is a non relaxation
potential flow.

• F reduces to a constant and nothing can be said
about the long term evolution of the system. This
system is a non potential flow.

For systems described by relaxation gradient dynam-
ics out of equilibrium,i.e. modelled as a diffusion process,
their behavior should be similar to those at equilibrium
since the Lyapounov functional plays the same role than
the free energy and can be understood as an ”effective
free energy”. This analysis is the key point of the contin-
uum modelling of materials under irradiation. In this ap-
proach, the complex external dynamics induced by slow-
ing down of impinging particles in the solid reduces to
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a diffusion-like process defined by a a-thermal diffusion
coefficient. The total dynamics is then described as a re-
laxation gradient flow and this dynamics is governed by
the evolution of a Lyapounov functional L which plays
the role of an effective ”thermodynamic potential” far
from equlibrium. If L can be computed, the long term
behavior of the microstructure caz be determined.

In particular, spatio-temporal patterns should appear
and generate Turing-like patterns leading to the forma-
tion of topological defects beyond Turing-like instabili-
ties. The next section is devoted to study the non equi-
librium behavior of radiation induced decomposition in
non miscible alloys within the PF framework.

Spinodal decomposition of alloys under irradiation

The spontaneous formation of patterns under irradia-
tion was observed in many non-miscible alloys for seventy
years. The observed experimental patterns result from
the existence of steady states. The main ingredient of
this approach is the competition between a thermally ac-
tivated dynamics driving the system at temperature T to
the equilibrium and an externally imposed particles ex-
change Γext(φ) regardless of the chemical identity of par-
ticles, by essence a-thermal (T = ∞) and driven by the
nature, the energy and the flux φ of impinging particles.
Martin [12] points out that the ordering induced under ir-
radiation is indistinguishable from that of an equilibrium
Ising model assuming that this exchange has an infinite
range as expected [14]. The connection between these
dynamical systems and equilibrium system is performed
via the construction of a Lyapounov functional acting as
an effective free energy. Thus, the dynamics of order-
disorder transformation under irradiation for binary al-
loys with positive heat of mixing is indistinguishable to
an equilibrium Cahn-Hilliard (CH) equation, the contin-
uum counterpart of the Ising model, with infinite-range
interactions. By analogy with the CH equation includ-
ing elastic energy assumed to be of infinite-range [6, 15],
a ”law of corresponding states” can be introduced for a
system at temperature T via Teff = T (1 + ∆). Teff
can be understood as the effective temperature of the

system and ∆ = Γext(φ)
Γ(T,φ) (Γ(T, φ) is the thermally ac-

tivated frequency of atoms promoting equilibrium) is a
kinetic enhancement factor induced by the infinite range
exchanges. From this analysis, Teff becomes important
at very low irradiation temperatures and do not affect
the stability of precipitates at high temperature and low
doses in agreement with experimental results [16]. Since
a-thermal exchanges are assumed to take place over an
infinite range, such an approach is also unable to de-
scribe patterns associated with spatial modulation of the
chemical composition of the alloy at the mesoscopic scale,
i.e. few tens of nanometers, experimentally observed un-

der irradiation [17]. To overcome this difficulty, the ex-
change of atoms occurring during the irradiation process
is assumed to occur over a finite-range with an average
relocation distance R by analogy with phase separation
induced by long range Coulomb interactions describing
similar patterns [18].

At equilibrium, the local composition (atomic fraction)
given by the order parameter η(x, t) = c(x, t) − c0, null
in the disordered high temperature phase of uniform con-
centration c0 in the AcB1−c alloy of average composi-
tion c is dictated by the CH equation routinely employed
to study the phase separation dynamics within the PF
framework:

∂η(x, t)

∂t
= M∇2

[
δ[
∫
f(η(x, t))dx]

δη(x, t)

]
(2)

where f(η(x, t)) the free energy density results from a
fourth power Landau polynomial expansion f(η(x, t)) =
a2
2 η(x, t)

2
+ a3

3 η(x, t)
3

+ a4
4 η(x, t)

4
, the parameters of

which are fitted to satisfactorily reproduce the equilib-
rium phases [19].

To introduce the spatial variation of η, a Ginzburg

term
∫ |a2|ξ

2 |∇η(x, t)|2dx is added to the free energy. The
term ξ is related to interfaces thickness [7]. In this equa-
tion, M is the averaged mobility of species assumed to
be concentration independent [20]. The contribution of
irradiation to the kinetic evolution of the alloy composi-
tion entering Eq. (2) can be expressed by the following
equation [21, 22]:(

∂η(x, t)

∂t

)ext
= Γext(φ)

[∫
pR(x− yη(y, t)dy − η

]
= Γext(φ)[< η >R −η] (3)

where pR(x ∝ exp(−|x|/R)) is the density probability
function describing the relocation of atoms set in motion
by elastic collisions. By analogy with the studies of long
range interactions at equilibrium [18, 23], the radiation
induced dynamics can be written as:

∂η(x, t)

∂t

ext

=
Γext(φ)

2

δ[
∫
dxdyη(x, t)G(x,y)η(y, t)]

δη

=
Γext(φ)

2

δ[
∫
dkĜ(k)|η(k, t)|2]

δη(−k, t)
(4)

where G(x,y) = G(|x − y|) expresses the spatial de-
pendence of the radiation induced relocation and can
be understood as an effective long range interaction.
The total dynamics resulting from the evolution in par-
allel of the thermal and the irradiation dynamics is a
relaxation gradient flow associated with a Lyapounov
L[η] = F (η((x, t) + ∆

2 (
∫
η(x, t)G(x,y)η(y, t)dxdy).

Fig 1 displays the 2D long term evolution of the OP
η((x), t) resulting from a PF simulation. The Power spec-
trum of the micro-structure, i.e. the structure factor of
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FIG. 1. (a) 2D numerical simulation of the long time micro-
structure (1000 in reduced units) of AgCu alloy irradiated by
1 Mev Kr ions. Black (white) domains corresponds to Cu rich
(poor) regions (c ≥ 0.5 and c ≤ 0.5 respectively. Boundaries
conditions implies that the calculated micro-structure exhibit
a point symmetry and two mirror symmetries. (b) Power
spectrum of the micro-structure. This Power spectrum, i.e.
the structure factor of the OP exhibits a Mexican hat shape.
The maximum of its intensity exists for a well defined modulus
k0 =

√
k2x + k2y of waves vectors as displayed in figure c.

η((x), t), exhibits a ring shape for long times revealing
the existence of wave vector modulations of modulus k0.

A careful inspection of L clearly shown that order dis-
order transitions (k0 = 0) or a decomposition process
occurs (non null k0 values) for different (∆, R) couples
as displays in Fig 2. This analysis is in perfect agree-
ment with results of numerical calculation [24] showing
the evolution of the structure factor in the pattering re-
gion (Figure 2). From the analysis of different factors
structures, it becomes possible to compute the evolution
of k0 versus R for given ∆ values as displayed in Figure 2.
This evolution extracted from full PF simulation shows a
clear linear evolution of k0 with R−1 in agreement with
theoretical investigations [25].

FIG. 2. (a) Evolution of k0 versus R for different ∆ values
(black squares: ∆ = 0.04, open circles: ∆ = 0.7), (b) Values
of k0 are extracted from universal structures factor extracted
from PF simulations. (c) the evolution of k0 versus the control

parameter µ =
√

∆R4−1 displays a super-critical bifurcation.

Patterns produced under irradiation result from slow

composition modulations in space and time of simple
basic patterns defined by the wave vector of modulus
q0 minimizing L. Although each individual stationary
pattern breaks transitional and rotational symmetries
(Fig 3), different patterns grow in different parts of the
system implying the formation of various defects connect-
ing these different steady states [9] as displayed in Fig 3.
From the stationarity of L, it is possible to compute all
possible micro-structures produced in a pattern domain
as a function of the overall concentration of the alloys (ψ̄
in reduced unit) as well as a function of ∆ and R noted
ε as displayed in Fig.3.

FIG. 3. 2D phase diagram for steady states obtained from
LSH(t) in the one mode approximation. Depending on the
averaged composition (ψ in reduced units), stripes, bubbles
in hexagonal networks and constant phase can be created.
Hatched areas correspond to co-existence domains. This
phase diagram is validated by numerical simulations (mi-
cro structures drawings). All simulations were performed for
∆ = 0.2, R = 3, t = 3000 and the domain size equal to 200
in reduced units.

From the knowledge of this ”pseudo phase diagram”, it
becomes possible to determine the solubility limits of pre-
cipitates produced under irradiation (black dots in Fig 3).
The minimization of the Lyapunov functional for given
micro-structures leads to an analytical formulation ofthe
solubility limits of radiation induced precipitates. These
formulae clearly highlight that solubility limits also de-
pend not only on irradiation parameters φ and T but also
on the average composition. Fig 4 displays the compari-
son between the solubility limits calculated from the pre-
ceding equations and resulting from direct computations
of the totoal dynamics ( Eq. 2 and Eq. 3). Three distinct
domains are clearly visible in Fig 4. In the first domain
(I) where the spinodal decomposition occurs, the solubil-
ity limits result from the minimization of the full Lya-
pounov functional and evolve like

√
1−∆R2 (black lines

in Fig 4). In the third domain (III) where the patterning
occurs, solubility limits extracted from direct simulations
are similar to analytically ones resulting from the mini-
mization of the Lyapounov within the one mode approx-
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imation. A discrepancy between solubility limits calcu-
lated from the minimization of the Lyapunov functional
and extracted from numerical simulations clearly appear
in the second domain (II). This discrepancy results from
the fact that the one mode approximation does not hold
in this domain. It can be pointed out from these results
that none of these solubility limits can be calculated ap-
plying the effective temperature concept.

FIG. 4. Solubility limits As (lines) extracted from minimiza-
tion of The lyapounov functional and from direct numerical
simulations (black squares) in the patterning domain. This
graph highlights three distinct domains. In the first domain
(I), the solubility limits results from the minimization of a
labyrinthine micro-structure (stripes) as expected for a spin-
odal decomposition (black line). In the third domain (III),
the solubility limits derived from the one mode approxima-
tion (full red line) is in fair agreement with the numerical
results (red line). In the second domain (II), the one mode
approximation fails to reproduced numerical results because
the one mode approximation used to minimize the Lyapunov
functional does not hold.

Radiation induced amorphization

An amorphous phase can be assumed to result from a
phase transition from a parent crystal phase. Such an
assumption can explain the observed experimental irra-
diation or pressure induced amorphizations. For glasses
resulting from a liquid phase, the crystal parent phase is
bypassed on over-cooling since the local glass structure
generally reflects the chemical bonding of the bypassed
crystal [26]. Following the theory of incommensurate
structures, the critical wave vector describing the crystal-
amorphous transition varies continuously from one point
to another in the amorphous state kc(x) =

∑3
k=1 ρk(x)t∗k

where t∗k are reciprocal lattice vectors of the parent crys-
tal phase [27, 28]

Breaking the translation symmetry in the amorphous

phase leads to the existence of an internal stress field
associated with topological defects and function of the
order parameter within the Phase Field framework. Such
an approach may be useful to explain radiation induced
amorphization observed in many alloys and ceramics [25,
29].

CONCLUSION

More than fifty years were devoted to show that irradi-
ation of materials with energetic particles induces dras-
tic changes in their micro-structure and may then induce
important variation of their physico-chemical properties.
This radiation response of materials is important in vari-
ous technological fields ranging from nuclear industry to
micro-electronics and surface engineering. The existence
of an extensive experimental database in this area allows
us to present a large perspective on the physical nature
of self organization in irradiated materials. The large
amount of defects produced under irradiation drives the
system far from equilibrium.

The challenge in the prediction of radiation induced
microstructure results from the integration of different
mechanisms acting on different space and time scales in a
unified framework. The long term evolution of these sys-
tems maintained far from equilibrium by slowing down of
impinging particles can be understood as an example of
reaction diffusion kinetics extensively used to described
patterns formation in chemistry and biology. Adopting
a continuum approach, we point in this work that the
Phase field approach can capture main flavors of the long
term evolution of the radiation induced micr-structure.
The main interest of this approach is that it is self con-
sistent, in the sense that all properties of the system
under consideration are defined by a ”free energy” like
term only function of the Order Parameter at least for
relaxation processes. On the other hand, this method
offers the unique opportunity to handle long range inter-
actions like elastic fields that play an important role in
the patterns formation. Limitation associated with the
use of phenomenological coefficients for this free energy
like term can easily be overcome performing a multi-scale
approach [19]. However, the main limitation of this ap-
proach is due to the lack of fluctuations associated with
the kinetics, forbidding any discussion on the relative sta-
bility of steady states.
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