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ABSTRACT 9 

Seismic fragility curves give the probability of exceedance of the threshold of a damage state 10 

of a structure, or a non-structural component, conditioned on the intensity measure of the 11 

seismic motion. Typically, fragility curves are constructed parametrically assuming a 12 

lognormal shape. In some cases, which cannot be identified a priori, differences may be 13 

observed between non-parametric fragility curves, evaluated empirically based on a large 14 

number of seismic response analyses, and their estimations via the lognormal assumption. 15 

Here, we present an optimized Monte Carlo procedure for derivation of non-parametric fragility 16 

curves. This procedure uses clustering of the intensity measure data to construct the non-17 

parametric curve and parametric models averaging for optimized assessment. In simplified 18 

case studies presented here as illustrative applications, the developed procedure leads to a 19 

fragility curve with reduced bias compared to the lognormal curve and to reduced confidence 20 

intervals compared to an un-optimized Monte Carlo-based approach. In the studied cases, 21 

this procedure proved to be efficient providing reasonable estimations even with as few as 22 

100 seismic response analyses. 23 
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1 INTRODUCTION 27 

A multitude of procedures is now available for probabilistic seismic assessment of structures 28 

[1]. Most notable is the framework by Yang et al. [2], which was the basis for the FEMA P-58 29 

guidelines [3]. Here, we focus on fragility curves giving the probability to exceed a damage 30 

state threshold conditioned on a measure of the intensity of the seismic motion, such as the 31 

fragility curves defined in [4]. Such fragility curves are used for probabilistic assessment of 32 

seismic risk [5] for structures and non-structural components in nuclear installations [6] and 33 

critical civil infrastructure, such as hospitals and ports of major urban areas in earthquake 34 

prone regions [7]. They can also be used to evaluate the impact of construction details on the 35 

structural performance of installations under seismic excitations [8–11] and in rapid response 36 

applications for risk management during a seismic crisis [12]. The use of fragility curves is not 37 

limited to earthquake-related problems, they are also used in the case of other types of loading 38 

such as wind [13]. 39 

The classical formulation of a fragility curve makes the hypothesis that the curve 40 

follows a lognormal shape. D’Ayala et al. [14] and FEMA [3] describe a series of procedures 41 

for analytical fragility curve estimation, which are commonly applied. Analytical fragility curve 42 

estimation is based on Engineering Demand Parameter (EDP) observations as a function of 43 

the Intensity Measure (IM). In order to obtain such observations, either cloud analysis, 44 

Incremental Dynamic Analysis (IDA) [15] or Multiple Stripes Analysis (MSA) [16] may be 45 

performed. Linear regression [17] is a common method for lognormal fragility curve estimation. 46 

The most well established methods for adjusting a lognormal fragility curve to observations 47 

from IDA or MSA were developed by Baker [4] and are based on the method of moments and 48 

Maximum Likelihood Estimation (MLE), respectively.  49 
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However, Mai et al. [18] observed differences between non-parametric fragility curves 50 

based on kernel density estimation and lognormal fragility curves according to different 51 

procedures and highlighted the effect of the derivation procedure on lognormal fragility curves. 52 

Noh et al. [19] also used kernel smoothing in order to construct non-parametric fragility curves 53 

showing that this can be an efficient solution when using sparse data. Lallement et al. [20] 54 

consider non-parametric fragility curves more truthful representations of observations and 55 

construct curves based on generalized additive models and Gaussian kernel smoothing. 56 

Furthermore, in [21], lognormal fragility curves for structural components did not represent 57 

effectively observations from simulations of the seismic response of a bridge. 58 

The simplest construction of a non-parametric curve puts the EDP observations in bins 59 

according to the corresponding IM and estimates empirically the probability of exceeding the 60 

damage state threshold for every bin [22]. In practice, due to the prohibitive computational 61 

cost of most nonlinear mechanical models, the development of numerically efficient methods 62 

is required to evaluate such curves using a minimal number of computations. 63 

Here, we propose a procedure based on Monte-Carlo (MC) simulations, which uses 64 

Parametric Models Averaging (PMA) in order to optimize the computation of non-parametric 65 

fragility curves, which are constructed based on k-means clustering [23] of the intensity 66 

measure data. Optimization is employed in order to obtain reduced confidence fragility curve 67 

intervals compared to the empirical estimations with an un-optimized MC approach. The key 68 

elements of the optimization are: (i) the EDP observations are computed with seismic 69 

response analyses using synthetic accelerograms, which are realizations of stochastic 70 

processes, (ii) the non-parametric fragility curve is expressed through the law of total 71 

probability as the weighted average of parametric fragility curves, each one of which is 72 

estimated based on the synthetic ground motions generated by a stochastic process. In the 73 

optimized approach, two alternative parametric models per process are proposed for the 74 

probability of exceedance of the damage state threshold. Finally, the range of applicability of 75 

each parametric model per process is analyzed. 76 
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To illustrate the proposed methodology, “simple” stochastic processes are defined 77 

generating synthetic accelerograms based on original seed acceleration records (Section 2). 78 

The generation results in a set of synthetic accelerograms reproducing the ground motion 79 

variability observed in the original set of ground motion records. The procedure for selection 80 

of the original seed records defining the processes is out of the scope of this work. Here, for 81 

simplicity, the initial set of ground motions are selected using magnitude and distance as 82 

criteria. 83 

Here, the non-parametric fragility curves are estimated using as IM the Peak Ground 84 

Acceleration (PGA) or the spectral acceleration at the frequency of an oscillator. However, the 85 

developed procedure is independent of the selected IM. In the studied cases, the 95 % 86 

confidence interval (CI) of the estimated fragility curves is significantly reduced due to the 87 

optimization. Moreover, the bias of the fragility curves according to the optimization is tolerable 88 

or negligible with respect to the reference curve obtained with a very large number of 89 

observations, as long as the applicability recommendations are respected. 90 

2 SYNTHETIC GROUND MOTION GENERATION 91 

2.1 Motivation 92 

Here, synthetic ground motions are employed in order to cover the range of IMs of 93 

interest and eventually obtain fragility curves based on IM clustering that are well discretized. 94 

Moreover, synthetic ground motions are used in order to exploit the statistical characteristics 95 

of the ground motions given by a process, such as the distribution of the IMs of the generated 96 

motions, in the context of the optimization of the computation of non-parametric fragility 97 

curves. A "simple" synthetic ground motion generator is developed, which reproduces the 98 

spectral variability of recorded accelerograms, because no hypothesis is introduced 99 

concerning their frequency content. Moreover, the original recorded accelerograms are 100 

selected from the European Strong Motion Database [24,25] using simple criteria, i.e. 5.5 < M 101 

< 6.5 and R < 20 km. Selection of the original ground motions is out of the scope of this study. 102 



5 
 

It is worth noting that the main idea in the PMA methodology is that the synthetic ground 103 

motion database consists of realizations of several stochastic processes. Therefore the 104 

methodology herein could be used theoretically in conjunction with other procedures for 105 

synthetic ground motion generation defining stochastic processes, such as the model in 106 

Rezaeian and Der Kiureghian [26]. A study of the effect of the ground motion generator is out 107 

of the scope of this article. As far as the most appropriate generator is concerned, that depends 108 

on the problem at hand and the available data (e.g. response spectra, acceleration records, 109 

see [1]). 110 

2.2 Synthetic Ground Motion Generation Process 111 

The generation process in this framework begins with retaining the FFT amplitude of 112 

every real record in the original data set, replacing the phases with a vector of uniformly 113 

distributed random values, computing the new ground motion via inverse FFT and imposing a 114 

modulation function. The result is a series of unadjusted synthetic ground motions, which are 115 

subsequently adjusted so that they are on average “spectrally equivalent” with the ground 116 

motion records in the sense of acceleration response spectra. The i-th accelerogram (i = {1, 117 

..., Nr}) in a data set of Nr ground motion records may be expressed with Equation 1. The 118 

amplitudes (Ar,im) of the i-th real record (𝛼𝑟,𝑖(𝑡)) are computed with the FFT algorithm and are 119 

used in combination with random phase (φs,ijm) in order to compute the j-th realization of a 120 

stationary Gaussian process (Equation 2). 121 

 122 

𝛼𝑟,𝑖(𝑡) = ∑ (𝐴𝑟,𝑖𝑚𝑠𝑖𝑛(𝜔𝑚 + 𝜑𝑟,𝑖𝑚)) 

𝑛

𝑚=1

 123 

𝑖 = {1,… ,𝑁𝑟} (1) 124 

 125 

𝛼𝑠,𝑖𝑗(𝑡) = ∑ (𝐴𝑟,𝑖𝑚𝑠𝑖𝑛(𝜔𝑚 + 𝜑𝑠,𝑖𝑗𝑚))

𝑛

𝑚=1

 126 

𝑖 = {1,… ,𝑁𝑟},    𝑗 = {1,… ,𝑁𝑠} (2) 127 
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 128 

where φs,ijm is the phase which is assumed to be a random variable with a uniform distribution 129 

U(-π,π) according to Boore [27], and ωm is the m-th discrete angular frequency. The Nr 130 

stationary Gaussian processes are converted to non-stationary processes using Nr modulation 131 

functions. Here the function by Housner and Jennings [28] (Equation 3) is used, however other 132 

modulation functions, e.g. [29], may be considered. 133 

 134 

𝑞𝑖(𝑡) =

{
 
 

 
 (

𝑡

𝑇1,𝑖
)

3

0 ≤ 𝑡 ≤ 𝑇1,𝑖

1.0 𝑇1,𝑖 < 𝑡 ≤ 𝑇2,𝑖

𝑒−(𝑡−𝑇2,𝑖) 𝑇2,𝑖 < 𝑡 ≤  𝑡𝑑,𝑖

 135 

𝑖 = {1,… ,𝑁𝑟} (3) 136 

 137 

where T1,i and T2,i are the times defining the plateau of this modulation function and td,i is the 138 

total duration of the i-th acceleration record. Here, T1,i and T2,i are set equal to the times of 139 

observation of the 5 % and 95 % of the Arias intensity in the original acceleration record. The 140 

Arias intensity (Ir,i) of the i-th acceleration record is given by Equation 4. 141 

 142 

𝐼𝑟,𝑖 =
𝜋

2𝑔
∫ 𝛼𝑟,𝑖

2(𝑡)𝑑𝑡, 𝑖 = {1,… ,𝑁𝑟}
𝑡𝑑,𝑖
0

 (4) 143 

 144 

T1,i and T2,i are computed with Equations 5 and 6. As an example, Figure 1a shows the 145 

modulation function used for the synthetic ground motions based on real record No. 11. 146 

 147 

𝜋

2𝑔
∫ 𝛼𝑟,𝑖

2(𝑡)𝑑𝑡 = 0.05 ∙
𝑇1,𝑖
0

𝐼𝑟,𝑖         𝑖 = {1,… ,𝑁𝑟} (5) 148 

 149 

𝜋

2𝑔
∫ 𝛼𝑟,𝑖

2(𝑡)𝑑𝑡 = 0.95 ∙
𝑇2,𝑖
0

𝐼𝑟,𝑖         𝑖 = {1,… ,𝑁𝑟} (6) 150 

 151 
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a) b)  152 

Figure 1 a) Modulation function b) synthetic accelerogram and its original acceleration 153 
record 154 
 155 

The j-th realization of an unadjusted synthetic accelerogram (𝛼𝑠0,𝑖𝑗(𝑡)) based on the i-156 

th acceleration record is given by Equation 7. 157 

 158 

𝛼𝑠0,𝑖𝑗(𝑡) = 𝑞𝑖(𝑡) ∙ ∑ (𝐴𝑟,𝑖𝑚 ∙ 𝑠𝑖𝑛(𝜔𝑚 + 𝜑𝑠,𝑖𝑗𝑚))

𝑛

𝑚=1

 159 

𝑖 = {1,… ,𝑁𝑟}, 𝑗 = {1,… ,𝑁𝑠} 160 

 (7) 161 

 162 

Subsequently, the synthetic ground motions generated based on an acceleration 163 

record are all scaled with the same scaling factor (ci), which minimizes the sum of the squares 164 

of the differences between the acceleration response spectrum of the acceleration record for 165 

5 % damping (Sa,r,i(f)) and the median spectrum for 5 % damping of the scaled synthetic ground 166 

motions (𝑐 ∙ 𝑆𝑎,𝑠0,𝑖(𝑓)) over the frequencies between 0.2 and 25 Hz (Equation 8). The adjusted 167 

synthetic ground motions (𝛼𝑠,𝑖𝑗(𝑡)) are given by Equation 9. As an example, Figure 1b shows 168 

record No. 11 and one of its spectrally equivalent synthetic accelerograms. Figure 2 shows 169 

the acceleration response spectrum of ground motion record No. 11, the spectra of all 170 

synthetic ground motions generated based on this record and the median spectrum of the 171 

synthetics (𝑐11 ∙ 𝑆𝑎,𝑠0,11(𝑓)). 172 

 173 
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𝑐𝑖 = 𝑎𝑟𝑔 𝑚𝑖𝑛
(𝑐)

( ∑  ( 𝑆𝑎,𝑟,𝑖(𝑓) − 𝑐 ∙ 𝑆𝑎,𝑠0,𝑖(𝑓))
2 

𝑓=25 𝐻𝑧

𝑓=0.2 𝐻𝑧

) 174 

𝑖 = {1,… ,𝑁𝑟} (8) 175 

 176 

𝛼𝑠,𝑖𝑗(𝑡) = 𝑐𝑖 ∙ 𝑞𝑖(𝑡) ∙ ∑ (𝐴𝑟,𝑖𝑚 ∙ 𝑠𝑖𝑛(𝜔𝑚 + 𝜑𝑠,𝑖𝑗𝑚))

𝑛

𝑚=1

 177 

𝑖 = {1,… ,𝑁𝑟},    𝑗 = {1,… ,𝑁𝑠} (9) 178 

 179 

 180 

Figure 2 Acceleration response spectra for 5 % damping of the adjusted synthetic 181 
ground motions and their original ground motion 182 
 183 

 184 

Based on Nr = 96 original acceleration records, a total of Nr×Ns = 48000 “spectrally 185 

equivalent” synthetic accelerograms are generated (Ns = 500 based on every acceleration 186 

record) in order to be used in the analytical seismic fragility curve estimation. Figure 3a shows 187 

the 15th, 50th and 85th percentiles of the acceleration response spectra for 5 % damping of the 188 

ground motion records in the data set, and the corresponding percentiles of the spectra based 189 

on the synthetic ground motions. The percentiles of the spectral values of the synthetic ground 190 

motions match well that of the acceleration records and we consider that the ground motion 191 

variability of the synthetics reproduces the variability in the original ground motion data set. 192 

We observe in Figure 3b that the percentiles of the acceleration response spectra of the 193 

synthetic ground motions for 2 % damping also match well the percentiles of the response 194 
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spectra of the acceleration records. Therefore, we consider that the adjustment technique is 195 

quasi-independent of the damping value in the computation of the response spectra. 196 

 197 

a) b)  198 

Figure 3 Percentiles of the acceleration response spectra for a) 5 % and b) 2 % damping 199 
of the synthetic accelerograms and the ground motions in the original data set 200 
 201 

3 FRAGILITY CURVE CONSTRUCTION 202 

3.1 Structural Model 203 

For the illustrative application of this framework and for verification of the PMA-based 204 

methodology an inelastic single degree of freedom structure is employed. Its frequency is 5 205 

Hz, it has a damping ratio of 5 % and yield displacement (uy) of 3.3·10-3 m. Its post-yield 206 

stiffness, defining kinematic hardening, is equal to the 20 % of its elastic stiffness (Figure 4a). 207 

The response of the structure is computed by solving Equation 10 with the central difference 208 

method. 209 

 210 

𝑚�̈�𝑖𝑗(𝑡) + 𝑐�̇�𝑖𝑗(𝑡) + 𝑓𝑖𝑗(𝑡) = −𝑚𝛼𝑠,𝑖𝑗(𝑡) (10) 211 

 212 

where m is the mass of the oscillator, �̈�𝑖𝑗(𝑡) and �̇�𝑖𝑗(𝑡) are the relative acceleration and velocity 213 

of the mass, respectively, and 𝑓𝑖𝑗(𝑡) is the nonlinear resisting force. 214 

 215 
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a) b)  216 

 217 

Figure 4 a) Backbone curve of the inelastic oscillator b) maximum oscillator 218 
displacement (max(|uij(t)|)) observations as a function of the PGA 219 
 220 

Figure 4b shows the maximum response of the inelastic oscillator under excitation with 221 

the acceleration records and the generated synthetic ground motions. We observe that, in this 222 

case, the responses under the synthetic ground motions are spread over an area between 223 

and around the responses computed with the ground motion records. These data are used in 224 

the different approaches here for deriving fragility curves. 225 

3.2 Empirical Non-Parametric Fragility Curves Based On MC Simulations and IM 226 

Clustering 227 

The class of non-parametric fragility curves constructed here is based on MC 228 

simulations and clustering of the Intensity Measure observations. In the illustrative example, 229 

the maximum oscillator displacement is used as the EDP and the PGA is selected as IM for 230 

simplicity while acknowledging that other IMs may be more efficient [30]. The total Intensity 231 

Measure (IM) observations of all recorded and synthetic ground motions are classified to a 232 

number of clusters with k-means clustering [23]. K-means clustering is an iterative optimization 233 

procedure, which groups the IM observations in a selected number Nc of clusters. This 234 

procedure also returns an IM value as the centroid of each cluster. The centroid of each cluster 235 

is equal to the mean of the IM observations grouped in that cluster and the optimization 236 

procedure consists in minimizing the sum of squares of its differences from the observations 237 
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in its cluster, i.e. the variance. Here, the IM observations are grouped into Nc = 20 clusters 238 

using the function “kmeans” in MATLAB [31], while the effect of IM discretization is out of the 239 

scope of this work. Subsequently, the point probabilities are classically computed at the IM 240 

cluster centroids (Cl, l = {1,...,Nc}) as the ratio of the number of exceedances of the damage 241 

state threshold, which are observed in the analyses corresponding to the IMs in a cluster, to 242 

the number of total observations in the cluster. In this case, the damage state threshold is 243 

equal to the yield displacement (3.3·10-3 m) without loss of generality. Figure 5 shows the non-244 

parametric fragility curve computed in this case with 48096 seismic response analyses using 245 

all available recorded and synthetic accelerograms. Whenever the entirety of original and 246 

synthetic ground motions is used, the empirical Monte-Carlo-based non-parametric fragility 247 

curve will be called “reference”. The derivation of the other curves in Figure 5 follows. 248 

 249 

 250 

Figure 5 Lognormal, reference and fragility curve according to Equation 11 251 
 252 

3.3 New Formulation Of The Non-Parametric Fragility Curves 253 

The proposed PMA methodology in this paper for optimized estimation of non-254 

parametric fragility curves is based on Equation 11. This equation expresses the discrete 255 
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fragility curve P(f│Cl), which is defined at Nc cluster centroids (Cl), by means of the law of total 256 

probability. 257 

 258 

𝑃(𝑓|𝐶𝑙) =
∑ (𝑃(𝑓|𝐶𝑙 ∩ 𝑆𝑖)∙𝑃(𝐶𝑙|𝑆𝑖)∙𝑃(𝑆𝑖))
𝑁𝑟
𝑖=1

∑ (𝑃(𝐶𝑙|𝑆𝑖)∙𝑃(𝑆𝑖))
𝑁𝑟
𝑖=1

 (11) 259 

 260 

The conditional probability P(f|Cl∩Si) corresponds to the probability of exceeding the 261 

damage state threshold at cluster centroid Cl under excitation with ground motions originating 262 

from random process Si. This is practically the fragility curve estimated with the ground 263 

motions originating from process Si. The conditional probability P(Cl|Si) is the probability of 264 

sorting the IM observations, which correspond to the ground motions belonging to process Si, 265 

in the l-th cluster. As an example, Figures 6a and 6b show P(f|Cl∩S23) and P(Cl|S23), 266 

respectively, which result from an empirical computation. Finally, the probability P(Si) equals 267 

the fraction of the number of ground motions used, which belong to random process Si, to the 268 

total number of ground motions used to estimate the fragility curve. If we generate an equal 269 

number of synthetic ground motions for every one of Nr acceleration records, and all available 270 

ground motions are used in the computation, then P(Si) = 1/Nr. This is the case in the validation 271 

of the Equation 11 which is presented in Figure 5. We use 96x500 synthetic ground motions 272 

generated by the random processes Si in addition to the 96 ground motions in the original data 273 

set. Figure 5 shows that, as expected, the fragility curve defined by Equation 11 coincides with 274 

the empirical fragility curve used as reference. 275 

 276 

 277 
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a) b)  278 

Figure 6 a) Empirical probability of exceeding the damage state threshold (max(|uij(t)|) 279 
= 3.3∙10-3 m) based on the synthetics generated based on the acceleration record S23 at 280 
the cluster centroids (Cl) b) probability of observing a PGA value in the synthetics 281 
based on acceleration record S23 282 
 283 

3.4 Lognormal Curve Adjusted To The Non-Parametric Curve 284 

In order to observe potential differences between lognormal fragility curves and the non-285 

parametric curves estimated with the different approaches herein, a Maximum Likelihood 286 

Estimation of the lognormal cumulative distribution function is employed. The MLE of the 287 

lognormal curve uses the point probabilities constituting the empirical fragility curve based on 288 

the selected IM and corresponding EDP observations. The MLE is performed with Equations 289 

12-15 and the estimated lognormal curve is given by Equation 16. 290 

 291 

𝑃(𝑛𝑙 , 𝑟𝑙 , 𝐶𝑙) =
𝑛𝑙!

𝑟𝑙!(𝑛𝑙−𝑟𝑙)!
∙ 𝑃(𝑓|𝐶𝑙)

𝑟𝑙 ∙ (1 − 𝑃(𝑓|𝐶𝑙))
𝑛𝑙−𝑟𝑙 (12) 292 

 293 

𝐿 = ∏ 𝑃(𝑛𝑙 , 𝑟𝑙 , 𝐶𝑙)
𝑁𝑐
𝑙=1  (13) 294 

 295 

ln (𝐿) = ∑ [𝑙𝑛 (
𝑛𝑙!

𝑟𝑙!(𝑛𝑙−𝑟𝑙)!
) + 𝑟𝑙 ∙ 𝑙𝑛𝛷 (

𝑙𝑛(𝐶𝑙)−𝑙𝑛(A)

𝛽
) + (𝑛𝑙 − 𝑟𝑙) ∙ 𝑙𝑛 (1 − 𝛷 (

𝑙𝑛(𝐶𝑙)−𝑙𝑛(A)

𝛽
))]

𝑁𝑐
𝑙=1  (14) 296 

 297 

{�̅�, �̅�} = 𝑎𝑟𝑔 𝑚𝑎𝑥
(𝐴,𝛽)

 (𝑙𝑛 (𝐿)) (15) 298 

 299 
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𝑃(𝑓|𝐼𝑀) = 𝛷 (
𝑙𝑛𝐼𝑀−𝑙𝑛�̅�

�̅�
) (16) 300 

 301 

Where nl is the number of EDP observations corresponding to the IM observations in the l-th 302 

cluster, rl is the number of EDP observations, which correspond to the IM observations in the 303 

l-th cluster, that exceed the damage state threshold, Cl the IM centroid of the l-th cluster, P(f|Cl) 304 

the empirical fraction of EDP observations exceeding the damage state threshold in the l-th 305 

cluster, P(nl,rl,Cl) the binomial distribution, L the likelihood function, Φ the standard normal 306 

cumulative distribution function, A and β the median and the dispersion of the lognormal 307 

distribution, respectively, �̅� and �̅� their estimations, P(f|IM) the probability of exceeding the 308 

damage state threshold given the IM. The difference with the curve fitting by Baker [4] is that 309 

the fractions of damage state threshold exceedances at the cluster IM centroids are used 310 

instead of the fractions at the IMs of EDP stripes. Figure 5 includes a lognormal curve 311 

computed with this approach using the point probabilities, which constitute the reference 312 

fragility curve. 313 

4 OPTIMIZATION WITH PARAMETRIC MODELS AVERAGING 314 

In order to illustrate the optimization of the non-parametric clustering fragility curve 315 

estimation, we are employing five approaches: (i) MC un-optimized, (ii) lognormal un-316 

optimized, (iii) lognormal optimized, (iv) PMA – Model 1 and PMA – Model 2, and (v) reference. 317 

The reference curve has already been described and used in the validation of Equation 11. 318 

PMA – Model 1 and PMA – Model 2 are the two forms of the optimized approach which are 319 

described in Sections 4.1-4.2. 320 

In the MC un-optimized approach, the number of seismic response analyses is firstly 321 

selected. Subsequently, an equal number of IM observations are selected from every cluster, 322 

equal to the number of total analyses divided by the number of clusters (rounded down to the 323 

closest integer). If there are less IM observations in some clusters than required, we select 324 

those available and we select the rest by selecting an even number of observations from the 325 
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rest clusters and so on. After determining the number of IM observations per cluster that will 326 

be selected, the actual selection of the IM observations is made. This selection is based on 327 

the results of k-means clustering of the IM observations based on all synthetic and recorded 328 

accelerograms. K-means returns for every IM observation the index of the cluster to which the 329 

observation is sorted. Based on the returned indices, lists of the IM observations per cluster 330 

are made and the required observations per cluster are randomly selected from the 331 

corresponding lists. Subsequently, the seismic ground motions, which correspond to the 332 

selected IM observations, are used as excitations in dynamic time-history analyses of the 333 

oscillator in order to compute EDP observations. In the MC un-optimized approach, as in the 334 

reference, the probability of exceeding the damage state threshold is estimated empirically at 335 

the l-th cluster centroid as the observed fraction of EDP observations exceeding the damage 336 

state threshold to the total number of EDP observations corresponding to the IM observations 337 

in the cluster. The lognormal curve derived using the data used in the MC un-optimized 338 

approach will be called lognormal un-optimized. 339 

The optimized PMA approach is based on Equation 11 and follows the procedure of the 340 

MC un-optimized approach with three modifications. First, the conditional probability P(Cl|Si) 341 

is not estimated with the selected IM observations, but with a very large number of IM 342 

observations in order to obtain a very precise estimation. Here, each P(Cl|Si) distribution is 343 

empirically estimated with all available 501 IM observations; 500 observations corresponding 344 

to the synthetics and 1 to the original acceleration record. Practically, this means that the 345 

estimation of P(Cl|Si) in the optimized approach and in the computation for the reference 346 

fragility curve are identical. It is worth noting that the estimation of P(Cl|Si) does not require 347 

any seismic response analyses, but it requires only IM observations based on synthetic ground 348 

motions, which has a small computational cost. Second, IM observations (and the 349 

corresponding seismic ground motions used to compute EDP observations through seismic 350 

response analyses) are selected only if they are sorted in a cluster ki where P(Cl|Si) reaches 351 

its maximum. This is one of the key elements of the optimization process. In order to do so, 352 

the IM observations sorted in clusters other than the cluster, where P(Cl|Si) of their process of 353 
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origin is maximized, are expunged from the lists of IM observations per cluster, from which IM 354 

observations are randomly drawn. The third and most important modification concerns the 355 

conditional probability of  exceeding the damage state threshold in the case of each process 356 

(P(f|Cl∩Si)). Instead of the empirical estimation of P(f|Cl∩Si), the optimized approach employs 357 

two alternative parametric models. The first model (parametric model 1) assumes that 358 

P(f|Cl∩Si) remains constant as a function of the IM, and that it is equal to P(f|Cki∩Si). The 359 

second model (parametric model 2) uses a lognormal curve for P(f|Cl∩Si). In the following, the 360 

parametric models 1 and 2 are analyzed. 361 

4.1 Parametric Model 1 362 

The first model for P(f|Cl∩Si) is defined by a single parameter for every process. When 363 

using this model, the optimized approach will be called PMA – Model 1. This one parameter 364 

is taken equal to the empirical estimation of the probability of exceeding the damage state 365 

threshold at the ki-th IM cluster centroid, where 𝑃(𝐶𝑙|𝑆𝑖) obtains its maximum value (Equation 366 

17). The one-parameter models are defined by Equation 18 and model the probability of 367 

exceeding the damage state threshold (𝑃𝑓𝑖) per process as constant throughout all cluster IM 368 

centroids. 369 

 370 

𝑘𝑖 = 𝑎𝑟𝑔 𝑚𝑎𝑥 
(𝑙)

𝑃(𝐶𝑙|𝑆𝑖) 371 

𝑖 = {1,… ,𝑁𝑟 = 96},    𝑙 = {1,… , 𝑁𝑐 = 20} (17) 372 

 373 

𝑃𝑓𝑖 = 𝑃(𝑓|𝐶𝑙 ∩ 𝑆𝑖) = 𝑃(𝑓|𝐶𝑘𝑖 ∩ 𝑆𝑖) 374 

𝑖 = {1,… ,𝑁𝑟 = 96},    𝑙 = {1,… , 𝑁𝑐 = 20} (18) 375 

 376 

As an example, Figure 7 (top left) shows the empirical conditional probability 377 

𝑃(𝑓|𝐶𝑘23 ∩ 𝑆23) estimated with the observations corresponding to the ground motions based 378 

on the 23rd accelerogram record. Moreover, Figure 7 (top middle) shows the corresponding 379 
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model used in the optimized approach, which assumes a constant probability (red curve), 380 

which is estimated at the cluster IM centroid for which 𝑃(𝐶𝑙|𝑆23) is maximized (Figure 7 381 

bottom). When employing parametric model 1, an error is introduced with respect to P(f|Cl∩Si). 382 

In specific, P(f|Cl∩Si) is under- and overestimated at IM cluster centroids where Cl > Ck and Cl 383 

< Ck, respectively. The extent to which P(f|Cl∩Si) is under- or overestimated varies, and 384 

generally increases with the distance between Cl and Ck. However, the introduced error is 385 

mitigated by the fact that Equation 11 computes the product P(f|Cl∩Si)·P(Cl|Si). The farther Cl 386 

is found from Ck, the smallest the introduced error, because P(Cl|Si) diminishes with the 387 

distance from Ck (e.g. Figure 7 bottom). Moreover, the fact that P(f|Cl∩Si) is simultaneously 388 

under- and overestimated (e.g. Figure 7 middle) at Cl > Ck and Cl < Ck, respectively, also 389 

mitigates the global error in the estimation of the fragility curve, as the underestimation on one 390 

side balances to some extent the overestimation on the other. 391 

 392 

   393 

Figure 7 Top left: Empirical fragility curve based on the ground motions originating 394 
from acceleration record 23. Top middle: parametric model 1 (constant probability of 395 
damage state threshold exceedance). Top right: parametric model 2 (lognormal model) 396 
Bottom: conditional probability P(Cl|S23). 397 
 398 
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4.2 Parametric Model 2 399 

The lognormal curve is used as the second alternative parametric model for P(f|Cl∩Si) 400 

for every process. This form of the optimized approach will be called PMA – Model 2. In order 401 

to define this model for every process, two parameters are required: the dispersion and the 402 

median of the lognormal curve. These two parameters could be computed, if two or more point 403 

probabilities were available, to which the lognormal curve might be fitted. Since the optimized 404 

approach selects only IMs (and corresponding accelerograms) in cluster ki, where P(Cl|Si) is 405 

maximized, and computes the corresponding EDPs and 𝑃(𝑓|𝐶𝑘𝑖 ∩ 𝑆𝑖), the only available point 406 

probability is (𝐶𝑘𝑖 , 𝑃(𝑓|𝐶𝑘𝑖 ∩ 𝑆𝑖)). Therefore, we assume that the dispersion of the lognormal 407 

curve for every process (βi) is equal to the dispersion of the lognormal fragility curve (�̅�, which 408 

will be referred to as β for simplicity), which is derived with Equations 12-16 using the data 409 

selected according to the optimized approach. This curve will be called lognormal optimized 410 

(there is no actual optimization here, this is simply part of the naming scheme). This allows us 411 

to compute the median of the curve for every process (Ai) with Equation 19. Based on Ai and 412 

βi, the parametric model for every process is subsequently defined with Equation 20. 413 

 414 

𝐴𝑖 = 𝑒𝑥𝑝 (ln(𝐶𝑘𝑖) − 𝛽𝑖 ∙ 𝛷
−1 (𝑃(𝑓|𝐶𝑘𝑖 ∩ 𝑆𝑖))) 415 

𝛽𝑖 = 𝛽 (19) 416 

 417 

𝑃(𝑓|𝐶𝑙 ∩ 𝑆𝑖) = 𝛷 (
ln(𝐶𝑙)−ln(𝐴𝑖)

𝛽𝑖
) (20) 418 

 419 

As an example, Figure 7 (top right) shows P(f|Cl∩S23) as estimated with the lognormal 420 

parametric model (cyan curve). In this case, the model approximates well the empirical 421 

estimation of the probability of exceeding the damage state threshold. This figure illustrates 422 

that the largest differences between the probabilities given by the model and the empirical 423 

estimation are observed where P(Cl|Si) is close to zero. However, the empirical probabilities 424 
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P(Cl|Si) are equal to zero at the IM centroids of clusters without any IM observations. 425 

Therefore, at such cluster IM centroids, the product P(f|Cl∩Si)·P(Cl|Si) in Equation 11 is always 426 

zero, which means that no error is introduced at these clusters due to the use of a parametric 427 

model for P(f|Cl∩Si). As shown in the following, parametric model 2 is particularly necessary 428 

when the dispersion of the lognormal optimized fragility curve is small (approximately for β < 429 

0.3). In such cases, we consider justified to impose a common dispersion on all the parametric 430 

models corresponding to the processes Si. 431 

5 APPLICATION OF THE METHODOLOGY 432 

In order to offer insight to the wider field of application of the developed methodology, 433 

which is essentially a MC procedure, we use it to compute the fragility curves in three cases:    434 

(i) inelastic oscillator without structural uncertainties and ground motions selected at random 435 

form the data set of all recorded and synthetic ground motions, (ii) inelastic oscillator without 436 

structural uncertainties and ground motions resulting from scaling of a single recorded 437 

accelerogram, (iii) inelastic oscillator with structural uncertainties. Based on the results of 438 

these three cases, we make our recommendations for practice. In the third case, the fragility 439 

curves are derived using as IM the PGA and the spectral acceleration at the frequency of the 440 

oscillator (Sa(5 Hz)). To evaluate the effectiveness of the optimized procedures, we are 441 

comparing the estimated fragility curves with the reference curve and the 95 % CI according 442 

to the different approaches. The CI are computed based on bootstrap resampling [32] with a 443 

different set of 500 curves for each case. 444 

5.1 Structural Model Without Uncertainties And Data Set Of Acceleration Records 445 

The developed PMA-based optimization is firstly applied it in the case of the inelastic 446 

oscillator employed previously in the description of the methodology (Figure 4a). The ground 447 

motion data set used consists of the 96 recorded accelerograms and the 48,000 448 

corresponding synthetic ground motions generated with the described procedure in section 2. 449 
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The fragility curves are computed as a function of the PGA, for a damage state threshold 450 

defined by a maximum oscillator displacement of 3.3·10-3 m, and according to the different 451 

approaches are shown in Figure 8 in the case of 100, 200, 500, and 10,000 analyses, 452 

respectively. The curves MC un-optimized and lognormal un-optimized are computed based 453 

on the same set of seismic response analyses, which is different from the set of analyses used 454 

for the optimized non-parametric curves. Every set of seismic response analyses is performed 455 

using a different and randomly selected set of ground motions according to the optimized or 456 

un-optimized approaches. Additionally, the reference non-parametric fragility curve, which is 457 

estimated based on 48096 analyses with all recorded and synthetic accelerograms, is included 458 

in the figures in order to observe any potential statistical error or bias in the evaluated curves. 459 

 460 

a) b)  461 

c) d)  462 

Figure 8 Fragility curves for maximum oscillator displacement (max(|uij(t)|)) threshold 463 
of 3.3·10-3 m evaluated without structural uncertainties and with the enriched ground 464 
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motion data set based all considered records and based on a) 100 b) 200 c) 500 and d) 465 
10,000 analyses, and the reference non-parametric fragility curve 466 
 467 

In the case of 100, 200 and 500 seismic response analyses (Figure 8a-c), the 468 

differences between the reference and the rest fragility curves is primarily due to error of 469 

estimation. However, in the case of 10,000 analyses, the difference is rather due to a bias in 470 

the computation, given that the fragility curves are evaluated with a very large number of 471 

analyses. As far as the MC un-optimized and PMA curves are concerned, they practically 472 

converge with the reference curve as the number of analyses increases, which means that no 473 

bias is introduced due to the assumptions in this case. In Figure 8d, we observe differences 474 

between the reference and the lognormal un-optimized curve based on 10,000 analyses. 475 

Given the number of analyses, we consider that the lognormal curve is biased. More important 476 

differences between lognormal and non-parametric curves may be observed, when –among 477 

other reasons– the studied structures are more complex than a single-degree-of-freedom 478 

oscillator, as in [18]. As a measure of the estimation error, the 95 % CI of the fragility curve 479 

based on 100 analyses and according to the different approaches are shown in Figure 9. As 480 

expected, the MC un-optimized approach gives a poor estimation (Figure 9a) due to the small 481 

amount of data and the lognormal un-optimized is more effective. The CI of the curves 482 

according to the lognormal un-optimized and the PMA – Model 1 approaches appear to be 483 

equivalent (Figure 9b). However, the median lognormal un-optimized curve may converge 484 

towards a biased estimation (e.g. Figure 8). Therefore, its confidence interval is not 485 

necessarily representative of the goodness of the estimation. This is a weakness of the 486 

parametric models and it is beforehand unknown whether there is bias in the fragility curve in 487 

complex cases. We observe that the PMA – Model 1 approach results in CI which are 488 

significantly smaller than the CI according to the MC un-optimized approach (Figure 9c). 489 

According to the curves in Figure 9d, we conclude that the two forms of the PMA optimization 490 

are equally effective in this case. 491 

  492 
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a) b)  493 

c) d)  494 

Figure 9 95 % confidence intervals of fragility curves for maximum oscillator 495 
displacement (max(|uij(t)|)) threshold of 3.3·10-3 m evaluated without structural 496 
uncertainties and with the enriched ground motion data set based all considered 497 
records and based on 100 analyses, and the reference non-parametric fragility curve 498 
 499 

5.2 Structural Model Without Uncertainties And Data Set Of A Multiply Scaled 500 

Acceleration Record 501 

Here we study a case with limited ground motion variability in order to demonstrate that 502 

the applicability of the developed procedures for non-parametric fragility curve estimation 503 

depends on the dispersion of the lognormal optimized curve, which is fitted to the data in an 504 

intermediate step of the computation. In this case, the synthetic ground motions are generated 505 

based on artificial accelerograms, which result from scaling multiple times (100 in this case) a 506 

randomly selected acceleration record from the 96 original real records. Based on each 507 

artificial accelerogram, 500 synthetic ground motions are generated with the procedure in 508 
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Section 2.2. Again, the oscillator in Figure 4a is employed. The maximum oscillator 509 

displacements as a function of the PGA based on all synthetic and artificial records, which are 510 

used for the reference non-parametric curve for this case, are shown in Figure 10. 511 

 512 

 513 

Figure 10 Maximum oscillator displacement (max(|uij(t)|)) as a function of PGA 514 
computed without structural uncertainties and with the enriched ground motion data 515 
set based on scaling of a single randomly selected recorded accelerogram 516 
 517 

The fragility curves for a damage state threshold defined by a maximum oscillator 518 

displacement of 1.0·10-2 m according to the different considered approaches using 100, 200, 519 

500, and 10,000 seismic response analyses are shown in Figure 11. In this case, all fragility 520 

curves converge to the reference with the exception of the PMA – Model 1 curve, which is 521 

based on the optimization assuming models of constant P(f|Cl∩Si) per process. It is concluded 522 

that PMA model 1 produces a biased curve contrary to PMA model 2 (Figure 11d). 523 

Nevertheless, PMA model 2 may also result in bias in other cases (not shown here), when the 524 

dispersion of the unoptimized lognormal curve is very small (β < 0.1). Indeed, in such cases, 525 

the reference fragility curve tends towards a step function, which cannot be approximated by 526 

the PMA-based procedures presented here unless a finer IM discretization is considered. It 527 

should also be taken into account that the observed difference between the reference curve 528 

and the curves according to the different approaches in the case of 100 and 200 seismic 529 

response analyses is principally an estimation error due to the limited number of seismic 530 

response analyses used. 531 
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 532 

a) b)  533 

c) d)  534 

Figure 11 Fragility curves for maximum oscillator displacement (max(|uij(t)|)) threshold 535 
of 1.0·10-2 m evaluated without structural uncertainties and with the enriched ground 536 
motion data set based on scaling of acceleration record 27 and based on a) 100 b) 200 537 
c) 500 and d) 10,000 analyses, and the reference non-parametric fragility curve 538 
 539 

Figure 12 includes the 95 % CI of the fragility curves based on 100 seismic response 540 

analyses. Also in this case, the lognormal un-optimized is more effective than the MC un-541 

optimized. The CI of the lognormal un-optimized and PMA – Model 2 curves indicate that both 542 

approaches are effective in this case, with PMA – Model 2 being slightly better. Once more, 543 

the estimation error according to the PMA – Model 2 approach is significantly less than the 544 

error in the case of the MC un-optimized computation with 100 analyses. Contrary to the CI of 545 

PMA – Model 1 curve, the CI of the PMA – model 2 curve envelopes the reference and 546 

indicates that this is the preferable approach in this case. 547 

 548 
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a) b)  549 

c) d)  550 

Figure 12 95 % confidence intervals of fragility curves for maximum oscillator 551 
displacement (max(|uij(t)|)) threshold of 1.0·10-2 m evaluated without structural 552 
uncertainties and with the enriched ground motion data set based on scaling of 553 
acceleration record 27 and based on 100 analyses, and the reference non-parametric 554 
fragility curve 555 
 556 

5.3 Structural Model With Uncertainties And Data Set Of Acceleration Records 557 

The developed optimization procedure is also applied in the case of uncertain structural 558 

parameters. In specific, the oscillator in Figure 4a is employed and uncertainty is introduced 559 

by considering the elastic frequency and the yield displacement of the oscillator as random 560 

parameters with a coefficient of variation of 0.2. To do so, in every simulation, i.e. seismic 561 

response analysis, the elastic frequency (5.0 Hz) and the yield displacement (3.3·10-3 m) are 562 

multiplied with random independent values sampled from two identical normal distributions 563 

with mean and standard deviation equal to 1.0 and 0.2, respectively. Such pairs of random 564 

values are sampled with Latin Hypercube Sampling for all 96 records and 48000 synthetic 565 
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ground motions in the data set. Figure 13 shows the damage state threshold and the computed 566 

EDPs (max(|uij(t)|)) as a function of Sa(5 Hz) and PGA as IM, respectively. 567 

 568 

a) b)  569 

Figure 13 Maximum oscillator displacement (max(|uij(t)|)) as a function of a) the spectral 570 
acceleration at 5 Hz and b) the PGA in the case of the oscillator with frequency and 571 
yield displacement uncertainty 572 
 573 

The fragility curves for a damage state threshold of 3.3·10-3 m maximum oscillator 574 

displacement as a function of Sa(5 Hz) and PGA are shown in Figure 14 and 15. As expected, 575 

(i) the introduction of uncertainties leads to increase of the dispersion of the lognormal fragility 576 

curves and (ii) the dispersion of the lognormal fragility curves is slightly larger when PGA is 577 

considered as IM. The optimized fragility curves and un-optimized non-parametric fragility 578 

curves converge with the reference fragility curves in both cases (Figures 14d, 15d) and 579 

present small differences from the lognormal curves. It is worth noting that the lognormal 580 

optimized curve has a dispersion of 0.48 and 0.52 when using as IM the Sa(5 Hz) and the 581 

PGA, respectively. 582 

 583 
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a) b)  584 

c) d)  585 

Figure 14 Spectral acceleration (Sa(5 Hz))-based fragility curves for maximum oscillator 586 
displacement (max(|uij(t)|)) threshold of 3.3·10-3 m evaluated with structural 587 
uncertainties and with the enriched ground motion data set based all considered 588 
records and based on a) 100 b) 200 c) 500 and d) 10,000 analyses, and the reference 589 
non-parametric fragility curve 590 
  591 
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a) b)  592 

c) d)  593 

Figure 15 PGA-based fragility curves for maximum oscillator displacement (max(|uij(t)|)) 594 
threshold of 3.3·10-3 m evaluated with structural uncertainties and with the enriched 595 
ground motion data set based all considered records and based on a) 100 b) 200 c) 500 596 
and d) 10,000 analyses, and the reference non-parametric fragility curve 597 
 598 

6 CONCLUSION 599 

Here, we present a procedure for optimized derivation of non-parametric fragility curves 600 

using synthetic accelerograms. The fragility curves given by the presented procedure are 601 

intended for use for a specific structure rather than for a class of structures. A simple synthetic 602 

accelerogram generator is used, which reproduces the ground motion variability observed in 603 

a data set of ground motion records. However, the presented procedure is more general since 604 

it can use synthetic ground motions from other generators as long as they define random 605 

processes similar to those defined here. Also, note that the presented procedure is 606 
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independent of the selected IM. The optimization relies on the fact that the generated synthetic 607 

signals are realizations of a series of stochastic processes, each of which is based –in this 608 

work– on an acceleration record in the original data set. Using the EDP observations based 609 

on the synthetic ground motions, a parametric fragility curve is estimated for each process. 610 

Two alternative parametric models per process are proposed: a lognormal model and a model 611 

of constant probability of exceeding the damage state threshold. Based on the estimated 612 

models for all processes considered, a non-parametric fragility curve is estimated based on 613 

PMA, which computes the weighted average of the parametric models according to the law of 614 

total probability. 615 

For the illustrative cases herein, synthetic ground motions are generated with a “simple” 616 

generator, which uses an original set of acceleration records. The generator produces 617 

synthetic ground motions with acceleration response spectra, whose 15th, 50th and 85th 618 

percentiles match well the corresponding percentiles of the spectral values of the ground 619 

motions in the original data set. All recorded and synthetic accelerograms are used as 620 

excitations of an inelastic single degree of freedom oscillator in order to obtain EDP 621 

observations as a function of the IM and estimate a reference fragility curve. The entirety of 622 

the IM observations of the recorded and synthetic ground motions is classified to clusters with 623 

k-means clustering. The number of clusters is selected based on engineering judgment, since 624 

the effect of the number of clusters is not studied here, and may nevertheless be a factor 625 

limiting the applicability of this methodology in some cases. Subsequently, the probability of 626 

exceeding the damage state threshold is estimated empirically at the cluster IM centroids 627 

using the EDP observations corresponding to the IM observations in each cluster. The result 628 

is the MC-based empirical non-parametric fragility curve, which is used as reference, as it is 629 

considered the best estimation possible based on the IM clustering approach and the available 630 

data. In the MC un-optimized approach, the same procedure is followed, but instead of using 631 

all data, an as constant as possible number of IM observations per cluster is selected so that 632 

the total number of analyses is in accordance with the available computational time. 633 
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The PMA optimized approach builds upon the MC un-optimized estimation by introducing 634 

an additional IM observation selection criterion. The IM observations in every cluster eligible 635 

for selection are those found in clusters with maximum probability of observation given the 636 

process, which generated the corresponding synthetic ground motions. Based on the EDP 637 

observations, which correspond to the selected IM observations, the probabilities of exceeding 638 

the damage state threshold at the IM cluster centroids are empirically estimated. These 639 

probabilities are used to define the parametric fragility curve, i.e. the parametric mode, which 640 

is related to each random process. Subsequently, the parametric models are averaged with 641 

the probabilities of occurrence of each random process in the clusters which are estimated 642 

with a very large number of synthetic ground motions, with practically no computational cost, 643 

since it requires no seismic response analyses. As in [18] or [21], we observe that non-644 

parametric curves based on the proposed procedures may present differences from lognormal 645 

curves based on the same data. Here, the smallest differences between lognormal un-646 

optimized and non-parametric fragility curves are observed when the dispersion of the 647 

lognormal curves are either very small (e.g. < 0.1) or considerable (e.g. > 0.5). As far as the 648 

uncertainty of the estimated non-parametric curve is concerned, we employ non-parametric 649 

bootstrap resampling to estimate the 95 % CI of the fragility curves. Moreover, the 95 % CI of 650 

the PMA curve is reduced with respect to the CI of the MC un-optimized curve for the same 651 

number of seismic response analyses in all cases in the study. In conclusion, the developed 652 

methodology is an efficient and useful procedure for fragility curve estimation and has wider 653 

applicability than a parametric model (e.g. the lognormal), which may lead to biased 654 

estimations. 655 

Our recommendations are summarized in Table 1. The criteria that guide us are two: the 656 

dispersion of the lognormal optimized curve fitted to the selected data and the discretization 657 

of the IM observations, i.e. the number of clusters. When applying the proposed procedure, 658 

estimating a fragility curve while using a very coarse IM discretization can be considered 659 

equivalent to the estimation of a fragility curve with a very small dispersion. In the area of 100 660 

or less analyses, use of a typical un-optimized lognormal fragility curve is recommended. If 661 
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the resources for 10,000 or more analyses are available, the MC un-optimized approach can 662 

be used. In the area between 100 and 10,000 analyses, which is of practical interest, we 663 

suggest either a parametric curve, or a non-parametric optimized fragility curve computation 664 

with one of the two proposed alternatives. In this area, the dispersion of the optimized 665 

lognormal curve fitted to the selected data dictates the optimal approach. In the case of a large 666 

dispersion (0.3 ≤ β), the optimization with the constant probability of damage threshold 667 

exceedance per process is sufficient, while in the case of a limited dispersion (0.1 ≤ β < 0.3), 668 

the optimization with the lognormal model per process is recommended. When PMA – Model 669 

1 and 2 use a large number of seismic response analyses and give drastically different results 670 

(as in the case with an original data set consisting of ground motions resulting from scaling a 671 

single acceleration record), PMA – Model 2 should be preferred, unless the dispersion of the 672 

associated optimized lognormal curve is very small (β < 0.1). In such cases, the presented 673 

PMA approaches are not efficient and a lognormal model for the fragility curve is 674 

recommended. 675 

 676 

Table 1 Recommended type of fragility curve based on the number of seismic analyses 677 
(N) and the dispersion of the lognormal (un-optimized) curve fitted to the empirical non-678 
parametric curve (β) 679 
 680 

 β < 0.1 0.1 ≤ β < 0.3 0.3 ≤ β 

N < 100 
Un-optimized 
Lognormal 

Un-optimized 
Lognormal 

Un-optimized 
Lognormal 

100 ≤ N < 10,000 
Un-optimized 
Lognormal 

PMA – Model 2 PMA – Model 1 

10,000 ≤ N MC Un-optimized MC Un-optimized MC Un-optimized 

 681 

Our procedure has also been applied in the case of a realistic finite element model of a low-682 

rise reinforced concrete bare frame (modelling details may be found in [33]), not presented 683 

here for the sake of brevity. The results lead to the same conclusions. Should one attempt to 684 

apply the procedure herein in the case of complex structures, they will face a series of 685 

challenges, which are, however, not specific to our methodology. A major concern would be 686 

the selection of an efficient IM. IMs are considered efficient [34], when the seismic response 687 
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as a function of the IM has a low dispersion. However, scalar IMs are not efficient in every 688 

case. For example, the spectral acceleration at the first eigenfrequency is a common scalar 689 

IM, which is efficient in the case of structures, whose response is mostly affected by their first 690 

mode. However, it is not efficient in the case of tall buildings [35]. In the case of structures with 691 

multiple degrees of freedom the use of more adapted IMs, or even a vector of different IMs 692 

[36] may be a solution. That said, further investigations should be made to see if the 693 

procedures herein can be modified to use a vector IM. Although, the procedure herein is –in 694 

principle– independent of the selected IM and the damage state, it should be adapted to more 695 

severe damage states such as collapse. Indeed, the simulation of severe damage states may 696 

be computationally demanding and may require to take into account P-delta effects [37], to 697 

simulate brittle failure modes [38] and consider alternative IMs [39]. In addition, a validation of 698 

our methodology with a very large number of seismic response analyses in the case of 699 

complex structures has a prohibitive computational cost. To test the usefulness of our 700 

procedure in the case of complex structures, fragility curves given by our procedure based on 701 

a reasonable number of seismic response analyses (e.g. a few hundred) could be compared 702 

with curves given by other procedures, which reduce the computational cost. Such procedures 703 

may rely, amongst others, on metamodeling strategies based on neural networks [40], or 704 

support vector machines [41]. Finally, further studies of the developed procedure using 705 

realistic structural models and fragility curves conditioned on failure, instead of curves 706 

conditioned on an engineering demand parameter threshold, should provide additional 707 

insights. 708 
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