

An overview of corrosion issues in supercritical fluids

D. Feron, S. Sarrade, F. Rouillard, S. Perrin, R. Robin, Ha. Turc

▶ To cite this version:

D. Feron, S. Sarrade, F. Rouillard, S. Perrin, R. Robin, et al.. An overview of corrosion issues in supercritical fluids. 12th International Symposium on Supercritical Fluids (ISSF 2018), Apr 2018, Antibes, France. cea-02339330

HAL Id: cea-02339330 https://cea.hal.science/cea-02339330

Submitted on 7 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Ceaden

AN OVERVIEW OF CORROSION ISSUES IN SUPERCRITICAL FLUIDS

Damien Féron¹ & Stéphane Sarrade^{1&3} Stéphane Perrin¹, Raphael Robin¹, Fabien Rouillard¹ Hubert-Alexandre Turc²

 CEA-Saclay, France
CEA-Marcoule, France
Innovation Fluides Supercritiques (Supercritical Fluids Innovation) IFS-Valence, France

12th International Symposium on Supercritical Fluids (ISSF 2018) Antibes – Juan-les-Pins, France 22-25 April 2018

SYNOPSIS

Introduction

Corrosion...

Supercritical water

Energy production ("pure" SCW) Wastes treatment

Supercritical CO₂ & other SC Fluids

Pure SCF Solubilities & Pollutants

Protection strategies

<u>cea den</u>

CORROSION ...

The annual cost of corrosion is 3-4% of the world's Gross Domestic Product One quarter of the steel annual production is destroyed by corrosion

Source: World Corrosion Organization (granted NGO by the United Nations)

ERIKA (1999) "result of structural weakness caused by corrosion"

Corrosion cracking of the fuselage of airplane (April 28, 1988 – 1 fatal over 95)

Mississippi Bridge, Minneapolis, August 1, 2007, 13 fatal structural weakness caused by corrosion

Sculpture by David E. Davis

Atmospheric corrosion in a chemical plant

Illustrations from the web

Pitting corrosion of an oil tank

ceaden

CORROSION IN SUPERCRITICAL FLUIDS

Corrosion of pipes in SCCO₂ storage system from G. Schmitt, White paper, WCO, 2009

Repair of stress corrosion cracking in an ultra- supercritical (USC) power plant, from Laborelec Suez, 2013, http://www.laborelec.be/ENG/publicatio ns/newsletters/newsletter-2013-junepower-generation/how-to-repairpotential-cracks-in-t24-material/

Supercritical waterwall cracking, from Steag, 2013,

http://www.eecpowerindia.com/codelibrar y/ckeditor/ckfinder/userfiles/files/Water_Q uality_for_Supercritical_Units_steag_for mat.pdf

CORROSION AND SUPERCRITICAL FLUIDS

Material solicitations in a SCF

- Mechanical (high pressures)
- Thermal (often high temperatures)
- Chemical
 - Variety of SCF
 - Density evolutions
 - Pollutants

Corrosion behavior of structural materials

- Localized / generalized corrosion
- Kinetics

Safety & economical issues

- Material Choice
- Design
- Plant lifetime

Possible SC Fluids

Compound	Boiling point (* C)	Crit. temp. (* C)	Crit. pressure (atm)	Crit. density (g/cm ³)	
Ethylene	-10.8	9.2	49.7	0.218	
Carbon dioxide	-78.5	31.0	72.8	0.468	
Ethane	-88.7	32.2	48.2	0.203	
Nitrous oxide	-88.5	36.4	71.5	0.452	
Butane	-17.8	91.8	45.6	0.232	
Propane	-42.1	96.6	41.9	0.217	
Ammonia	-33.5	132.5	111.3	0.235	
Acetone	56.0	235.0	46.3	0.277	
Methanol	64.6	239.4	79.9	0.272	
Ethanol	78.3	243.0	63.0	0.276	
THF	65.0	267.0	51.2	0.321	
Toluene	110.6	318.6	40.5	0.291	
'ster	100.0	374.1	217.6	0.322	

Schematic representation of microscopic behavior of pure fluid in the P-T phase diagram

ISSF 2018 | D. Féron & Co. | PAGE 5

ceaden

CHOICE OF MATERIAL

Main metallic materials used in SCF systems

Alloy		Fe	Cr	Ni	С	Others
Carbon steel		Bal.			<1	Some additives (Cr, Ni, Mo <1%)
Stainless steel	S					
	304L	Bal.	18	10	<0.03	
	316L	Bal.	18	10	<0.03	2% Mo
	904L	Bal.	20	25	<0.02	5% Mo
Nickel alloys						
	Alloy 625	5	22	Bal.	<0.03	10% Mo, 5% Nb
	Alloy 690	10	32	Bal.	<0.03	0.5% Si, 0.3% Al, 0.3% Ti

... and also titanium, niobium or aluminum alloys

Corrosion issues

- Oxidation & dissolution: uniform and localized corrosion
- Pitting and crevice corrosion
- Intergranular corrosion and Stress corrosion cracking
- Hydrogen embrittlement, carburization, nitridation …

SUPERCRITICAL WATER

SUB- & SUPERCRITICAL WATER

ENERGY

cea den

Corrosion issues in "pure" water

- Continuity
- Metallic materials and alloys are not thermodynamically stable under sub- and super-critical water conditions (Pourbaix diagrams)
- Large evolution of water properties around the critical point (density, solubility...)

Pressure-temperature diagram of water showing the BWR, PWR and SCWR conditions

Boiling Water Reactor (BWR) 290°C, 8 MPa, pure water with hydrogen

Pressurized Water Reactor (PWR) 330°C, 15 MPa, chemical conditioning with boron, lithium and hydrogen

Supercritical Water Reactor (SCWR) 550°C-650°C, 25 MPa

Corrosion issues in "pure" water

- Main issues in reactor conditions
 - Stress corrosion cracking (subcritical water)
 - Generalized corrosion (supercritical water)

Crack growth and oxidation rates versus temperature across the subcriticalsupercritical conditions (unsensitized 316L stainless steel) fom Peng & Al., Corrosion, 63 (11), 2007, 1033-1041

ISSF 2018 | D. Féron & Co. | PAGE 9

<u>Ceaden</u>

SUPERCRITICAL WATER

ENERGY

Corrosion current understanding is linked to the water density

- Low water densities: "chemical oxidation" like in gas (CO)
- Higher water densities : "electrochemical oxidation" like in liquid (EO)

Modelling of relative **corrosion rate** including electrochemical oxidation (EO) and chemical oxidation (CO) from Guzanos & Cook, Corrosion Science, 65, 2012, 48–66

Phase diagram for water showing the region of supercritical fluid from: Guzonas & Cook, Corrosion science, 65 (2012) 48-66

ISSF 2018 | D. Féron & Co. | PAGE 10

PASSIVE ALLOYS BEHAVIOUR IN SUPERCRITICAL WATER

316L stainless steel exposed 335h at 600°C, 25 MPa in ultra pure water with H₂

- Formation of a protective chromium oxide layer on hardened or cold rolled surfaces linked to the preferential diffusion of chromium via internal defects due to the hardening.
- Good behavior of 690 nickel base alloy (higher chromium content) ISSF 2018 | D. Féron & Co. | PAGE 11

Ceaden

ENERGY

MECHANISM OF THE FORMATION OF THE TWO LAYERS ON 316L STAINLESS STEEL IN SCW

Experimental procedure: use of tracers, ¹⁸O

First oxidation 760h, 600°C, 25 MPa, H₂¹⁶O Second oxidation 305h, H₂¹⁸O, idem SIMS analyses to locate ¹⁸O which is found at two locations Magnetite/SCW Spinel/alloy Growth of the oxide layers at the two interfaces Magnetite/SCW Spinel/alloy Modelling

ISSF 2018 | D. Féron & Co. | PAGE 12

WASTES

In SCWO, corrosion is linked to impurities

- Supercritical Water Oxidation (SCWO), or Hydrothermal Oxidation (HTO), is thermal oxidation process of hazardous and non-hazardous wastes
- Oxidation of halogenated or sulfur-bearing compounds results in the formation of hydrochloric acid and sulfuric acid
- High corrosion rates and failures are reported function of temperature, density and pollutants (uniform/pitting/SCC)

Alloy	Corrosion rate		
316L stainless steel	39 mm/y		
Alloy Ni/20Cr	29 mm/y		
625 nickel base alloy	18 mm/y		
Niobium alloy	<1 mm/y		

Coupon corrosion rates after exposure to ammoniacal sulfate solutions at 380–390 °C, 20-25 MPa fom E. Asselin et al. / Corrosion Science 52 (2010) 118–124.

ISSF 2018 | D. Féron & Co. | PAGE 13

<image><image><section-header><section-header>

Corrosion and plugging management using an internal stirred Sheath in a continuous supercritical water oxidation autoclave

SUPER-CRITICAL CO₂ AND OTHER S.-C. FLUIDS

SUPERCRITICAL CO₂

Corrosion issues in Supercritical CO₂

Extraction and CO₂ capture and storage

- Low temperature (<150°C)
- Corrosion is linked to the impurities (water condensation and other pollutants)
- **Energy conversion** (CO₂ Brayton cycles / solar, nuclear, fossil...)
 - High temperatures (450°C 650°C) / 20 MPa
 - Oxidation by CO₂
 - **Carburization** by CO₂

ISSF 2018 | D. Féron & Co. | PAGE 19

"The interest in supercritical CO₂ Brayton cycles stems from its improved economics, system simplification, and high power conversion efficiencies."

from Sandia lab.

Carburization of ferritic-martensitic steels

 In parallel to the formation of the oxidation, alloys may suffer also carburization (increase of carbon content in the alloy which may become brittle)
With 9%Cr. carburation increases with time. In supercritical CO.

■ With 9%Cr, carburation increases with time. In supercritical CO₂, carbon deposition is also observed in the inner oxide layer \Rightarrow carburization is linked to oxidation

Carbon profile in 9% Cr exposed at 550°C in 1 bar of CO_2

Better oxidation resistance of austenitic alloys

- Oxide layers after 310h in supercritical CO₂ at 550°C and 250 bars
- Breakaway after long exposure times?

F. Rouillard & al., Proceedings of SCCO₂ power cycle symposium, 2009

ISSF 2018 | D. Féron & Co. | PAGE 21

EXTRACTION AND CO₂ CAPTURE AND STORAGE

Corrosion issues in supercritical CO₂ – water environments

- Authors observed that no corrosion occurs at low temperature in pure SC CO₂

- Solubility of water in SC CO₂ decreases with temperature and condensation may occur in SC CO₂ systems
- The corrosion rates of carbon steel in SC saturated water are very high (several mm/y)
- Presence of pollutants like SO₂ or Cl⁻ increases corrosion rates of carbon steels

Solubility of water in supercritical CO₂ as function of the pressure and of the temperature

MATERIAL BEHAVIOR IN SCCO₂ WITH POLLUTANTS

CO₂ Capture and storage

 Beneficial effect of chromium in steels is observed with chloride and sulfate water pollutants

S. Assani & al., Int. J. Greenhouse Gas Control, 23, 2014, 30-43

Processes with SCCO₂ and cosolvents

— Stainless steels and nickel base alloys are compatible, while carbon steel, aluminum and copper alloys suffer corrosion in water-saturated conditions

ISSF 2018 | D. Féron & Co. | PAGE 23

Ceaden

SUMMARY OF MATERIALS BEHAVIOR IN SUPERCRITICAL CO₂

High temperatures (450°C-650°C)

- Oxidation and carburization by CO₂
- Beneficial effect of chromium : stainless steels and nickel alloys / surface finishing

Low temperatures (<150°C)

- No corrosion in pure CO₂
- Electrochemical phenomena linked to condensate water Importance of impurities (chloride, sulfate,...)

Material choice in relation with aqueous corrosion behavior

- Carbon steels: uniform corrosion rates highest than in aqueous solution, but also linked to the pollutants
- Passive alloys (stainless steels or nickel base alloys) are often suitable
 - Take care of pollutants
 - For instance, stainless steels 304L is suitable without chloride, but 316L is preferable with some chlorides (more alloyed steels are preferable if high chloride concentrations are expected, and a nickel base alloy or a titanium alloy have to be used if large amounts of chlorine are foreseen)

Same material behavior in other supercritical fluids used at low temperatures (<150°C)

General trends of the corrosion in supercritical fluids

- Corrosion of metals and alloys in supercritical fluids is primary function of the temperature and of the water content
- At high temperatures, the SCF may react itself with the metals and alloys (supercritical water and CO₂)
- Supercritical water (SCW) is a very aggressive environment, even "pure SCW" like for energy production
 - High temperature (above 374°C)
 - Corrosion rates increase with temperature, pressure (water density) and more often with pollutants
 - Uniform or localized phenomena are function of the pollutants
 - For some specific applications (SCWO, HTO), alloys are "consumable" and/or titanium or niobium are needed
- At low temperatures (below around 150°C), water condensation is the major parameter
 - Carbon steels, used for CO₂ capture and storage, suffer mainly uniform corrosion.
 - Passive alloys are mainly used for extraction purposes. The material choice has to take into account water condensation and expected pollutants.

Future trends: Material development, Surface coating, Chemical inhibitors, ...

Welcome to WCO – The World Corrosion Organization a non-governmental organization (NGO) of the United Nations (UN) April 24th is Corrosion Awareness Day

Thank You for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex Damien.feron@cea.fr T. +33 (0)1 69 08 20 65 | F. +33 (0)1 69 08 15 86

Direction de l'énergie nucléaire Département de physico-chimie Service de la corrosion et du comportement des matériaux dans leur environnement