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Abstract. Two blind analyses for 241Pu(nth,f) isobaric fission yields have been conducted, one analysis
using a mix of a Monte-Carlo and an analytical method, the other one relying only on analytical calcu-
lations. The calculations have been derived from the same analysis path and experimental data, obtained
on the LOHENGRIN mass spectrometer at the Institut Laue-Langevin. The comparison between the two
analyses put into lights several biases and limits of each analysis and gives a comprehensive vision on the
construction of the correlation matrix. It gives confidence in the analysis scheme used for the determination
of the fission yields and their correlation matrix.

PACS. 25.85.Ec Neutron-induced fission – 29.85.Fj Data analysis – 07.75.+h Mass spectrometers

1 Introduction

Nuclear fission yields are key parameters for understand-
ing the fission process [1] and to evaluate reactor physics
quantities, such as decay heat [2]. Despite a sustained ef-
fort allocated to fission yields measurements and code de-
velopment, the recent evaluated libraries (JEFF-3.3 [3],
ENDF/B-VII.1 [4] ...) still present shortcomings, espe-
cially in the reduction of the uncertainties and the pres-
ence of reliable variance-covariance matrices. Yet these
matrices are compulsory to use nuclear data, in particular
when it comes to propagate uncertainties. A collabora-
tion among the French Alternative Energies and Atomic
Energy Commission (CEA), the Laboratory of Subatomic
Physics and Cosmology (LPSC) and the Institut Laue-
Langevin (ILL), started in 2009, aims at tackling these
issues by providing precise measurements of fission yields
with the related experimental covariance matrices for ma-
jor actinides [5]. In particular for the 241Pu nuclide which
is a major isotope in the context of multi-recycling and
which is investigated in the present work.

Two measurements for thermal neutron induced fis-
sion of 241Pu have been carried out at the ILL in Greno-
ble (France), using the LOHENGRIN mass spectrome-
ter [6,7] in May 2013 [8], labelled as Exp.1, and November
2015 [9], labelled as Exp.2. This instrument allows a se-
lection of fission products regarding the A/q and Ek/q
ratios, supplying an ion beam of of mass A, kinetic energy
Ek and of ionic charge q with an excellent mass resolution
(∆A/A ' 1/400). A double ionization chamber with a

a Present address: sylvain.julien-laferriere@cea.fr
b Present address: abdelhazize.chebboubi@cea.fr

Frisch grid, similar to the one used in [10], is used to mea-
sure the count rate N(A, t, Ek, q). The entire heavy peak
region has been measured as well as a significant number
of light masses.

The analysis scheme for the high yields region1 (85
to 111 for the light masses and 130 to 151 for the heavy
masses) has been subjected to two independent blind anal-
yses [11], from the same raw data and analysis scheme.

The first one relies on a Monte-Carlo (MC) approach
coupled with analytical calculations while the second one
is based on a full analytical procedure. The main difference
stands in the uncertainties propagation. In the analytical
approach, for each step of the analysis, each parameter is
supposed to have a Gaussian distribution. A classic ap-
proach is adopted, where functions are linearised by ap-
proximation to the first-order Taylor series expansion. On
the contrary, in MC, no approximation is made when prop-
agating uncertainties. The initial count rates are randomly
generated from a Gaussian distribution with a large num-
ber of MC events. The mean value, standard deviation
and covariances for each step are computed directly from
the probability density functions.

The goal of this work is to unveil the biases and lim-
its of each method and see if they lead to similar results
despite the hypothesis made. If not, these biases shall be
understood and controlled. This gives confidence in the
analysis path adopted while understanding the important
steps of the analysis in particular in the construction of
the covariance matrix.

1 For the low yields regions (symmetric and very asymmetric
masses), the analysis procedure is different due to a contami-
nation phenomenon that will not be presented here.
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At first, the analysis procedure from the rawN(A, t, Ek, q)
data to the determination of the isobaric yields Y (A) will
be presented in Sec. 2. Then the two methods will be com-
pared in particular the experimental correlation matrices,
and the important steps of this analysis will be underlined,
in Sec. 3.

2 Analysis path

The analysis path followed by both MC and analytical
approaches is described in this section.

The raw data obtained from the experiments, at time
t, are the count rates N(A, t, Ek, q) for a mass A, at a
kinetic energy Ek and at the ionic charge state q. These
count rates are considered as independent from each other
since only the statistical uncertainty is accounted for. The
definition of the total count rate for the mass A is:

N(A) =

∫
Ek

∑
q

N(A, t, Ek, q)

BU(t)
dEk (1)

Where the Burn-Up, BU , is the relative estimation over
time, t, of the amount of fissile material in the 241Pu tar-
get used for the experiments (see for example Fig. 1). The
time evolution of the BU is carefully estimated by regu-
larly measuring the overall ionic charge and kinetic energy
distribution of mass 136, since it corresponds experimen-
tally to an optimal count rate and mass separation. It
is a mandatory normalization step since the amount of
fissile material is constantly decreasing over time due to
the nuclear reactions consuming the 241Pu and the loss of
material because of the harsh environmental conditions of
the target [12]. The BU also takes into account the ion
beam fluctuations over time as well as the incident neu-
tron flux variations. Additional details on the procedure
used for the BU measurement can be found in [13]. The
BU points are fitted in order to be extrapolated to the
measurement times. No theoretical consideration is taken
for the choice of the fit function due to the complexity of
physical phenomena governing the target behaviour. For
the Exp.2 for example, the BU behaviour is well repro-
duced by the sum of a polynomial of 1st order and an
exponential function, as seen in Fig. 1:

BU(t) = a · t+ b+ exp(c · t+ d) (2)

Since the beam time is limited, the complete (Ek, q)
distribution for each mass cannot be measured. The ex-
perimental method, refined over time [14,8,15], is to trans-
form the sum over the ionic charge states into a division by
the probability density function of the ionic charge states
P (q), and the integral over the kinetic energies into a sum-
mation over bins of a constant step. Eq. 1 becomes:

Nqi(A) =
∑
Ek

N(A, t, Ek, qi)

P (qi) ·BU(t)
(3)

One scan of the ionic charge states distribution at a con-
stant kinetic energy is made for each mass and at least

Fig. 1. The time evolution of the amount of fissile material in
the target, so-called Burn-Up (BU) for Exp.2. The experimen-
tal points, in black, fitted by Eq. 2, in red.

three scans of the kinetic energy distribution at different
ionic charge states. Thanks to this, the ionic charge distri-
bution P (q) can be estimated and at least three different
values of the same N(A) are obtained: Nq1(A), Nq2(A)
and Nq3(A), one for each measured kinetic energy dis-
tribution. To properly expressed Nqi(A), one should take
into account the existing correlation between the kinetic
energy and ionic charge distributions [8,15]. To simplify
the comparison proposed in this work, this step has been
by-passed.

If the three estimations of the same N(A) are compat-
ible, the mean value N(A) taking into account the exper-
imental covariance matrix, C ∈ Mn(R), is extracted by
minimizing the generalized χ2 [16]:

N(A) =

n,n∑
i,j

(C−1)i,j

−1n,n∑
i,j

(C−1)i,j ·Nqj (A)

 (4)

With a reduced variance:

Var
(
N(A)

)
=

n,n∑
i,j

(C−1)i,j

−1 (5)

Where n is the number of energy scans for the mass A.
How C is obtained will be detailed in the Subsec. 3.1.
The compatibility is checked through a generalized χ2 test
taking into account the experimental covariances between
the N(A)’s, such as the p-value is above 90 % of confidence
level:

χ2
(
N(A)

)
=

n∑
i

n∑
j

(
Nqi(A)−N(A)

)
C−1i,j

(
Nqj (A)−N(A)

)
(6)

When this criterion is not met, an additional indepen-
dent uncertainty, δ, is incrementally added to the diagonal
of the covariance matrix C of the N(A)’s, see Eq. 7, un-
til a satisfying χ2 is reached. This additional independent



S. Julien-Laferrière, A. Chebboubi et. al: A study of the construction of the correlation matrix of 241Pu(nth,f) 3

Fig. 2. Each Nqi(A) and their mean value N(A) for the masses
139 and 142. The compatibility criteria is met for A = 142
while additional uncertainties (add. unc.) are needed for A =
139.

Table 1. Set of masses measured in the two experiments and
masses common to the two experiments.

Exp.1 Exp.2 Common masses

130 to 151 85, 90, 92, 93, 94, 96, 98, 130, 133 to 142
100 to 109, 111, 130, 133 146, 147, 149

to 142, 146, 147, 149

uncertainty is accounting for the N(A)’s dispersion due to
the flawed control of the instrument.

Cii(k) = Cii(0) + k · δ (7)

Where k is the number of increments. This process is il-
lustrated in Fig. 2.

As already specified in the introduction, two sets of
experiments have been used in this analysis, the first one
measured in May 2013, Exp.1, and the second one in
November 2015, Exp.2. Since the experimental environ-
ment is different from one experience to the other (neutron
flux, target etc ...) the two sets are considered as indepen-
dent even though both are obtained on the LOHENGRIN
mass spectrometer. The next step is thus to combine these
two experiments to obtain the merged vector N(A)mgd

(mgd stands for merged), by doing a relative normaliza-
tion of one set to the other, relying on the value of the
N(A) obtained for the 14 common masses, see Tab. 1.

If X and Y are respectively the N(A) vectors for the
common masses of Exp.1 and Exp.2, then, to normalize
Exp.1 with respect to Exp.2, one has to minimize the

residual vector ε:

ε = Y − κ ·X (8)

The best estimator of κ is the normalization factor k of
Exp.1 with respect to Exp.2, obtained through the gener-
alized least square method, in its matrix form [17]:

k =
(
XTΩ−1X

)−1
XTΩ−1Y (9)

Where Ω is the combined covariance matrix for Exp.1
and Exp.2, taken to be Ω = ΩX + ΩY . Eventually, the
mean values of the normalized set of the two experiments
are extracted for the common masses in a similar way to
Eq. 4.

The last step is the absolute normalization to obtain
the yields, Y (A). Ideally, this normalization is done by
taking

∑
i∈H N(Ai)mgd = 1, H being the masses of the

heavy peak. This is true for pre-neutron yields when the
contribution of ternary fission is not taken into account. In
our experiments, post-neutron yields from the masses 121
to 159 are obtained. The sum of the mass yields for A >
159 represents 0.26 % in JEFF-3.3 of the heavy peak and
0.03 % for ENDF/B-VII.1. For the normalization step, a
conservative uncertainty of 0.5% is taken, accounting for
the absence of the very heavy masses, A > 159 and the
approximation that the sum over the heavy masses is equal
to 1 for post-neutron yields.

However, since this document is only focused on high
yields, the completeness of the Y (A) distribution for the
heavy masses is not satisfyingly achieved. Nonetheless, in
the scope of this document, the normalization will be done
as previously explained, in order to discuss the impact of
the absolute normalization.

Summary

The analysis path can be summarized in the following
steps:

(1). Sum over the kinetic energy distribution:
N(A, t, qi) =

∑
Ek
N(A, t, Ek, qi)

(2). Determine the P (q) distribution and divide step (1) by

P (qi): Nqi(A, t) =
∑
Ek

N(A,t,Ek,qi)
P (qi)

(3). Evaluate the BU at t and divide step (2) by BU(t):

Nqi(A) =
∑
Ek

N(A,t,Ek,qi)
P (qi)·BU(t)

(4). Compute the mean value for each mass with eventual
additional uncertainties: N(A)

(5). Normalize (relative normalization) and merge the two
sets of experiments: N(A)mgd

(6). Process the absolute normalization: Y (A)

3 Covariance matrices comparison

3.1 Differences between Monte-Carlo and analytical
methods

In the MC method, all count rates are sampled from a
Poisson law. In order to assess BU(t), the fitted BU pa-
rameters are first decorrelated and then sampled from a
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Gaussian law with a unit standard deviation. The decor-
relation is obtained through the Eq. 10 [18]:

S = Ω
−1/2
R R (10)

With R the fitted parameters, S the free parameters and
ΩR the covariance matrix of the fitted parameters. How-
ever, when the BU is computed from the sampling of
the uncorrelated fit parameters, the probability density
function obtained is no more a Gaussian distribution, see
Fig. 3. In the analytic method, when propagating uncer-
tainties each parameter is supposed to have a Gaussian
distribution, if it is not the case the biases of this hypoth-
esis should be controlled. This issue is under investigation.
In order to still be able to compare the two analyses for
the next steps, in the present work, the propagation of the
BU uncertainties by the MC method is achieved analyti-
cally.

The covariance between N(A)’s, used in Eq. 4, can be
decomposed between the covariances induced by the BU
and the statistical covariances:

C = Cov
(
Nqk(Ai), Nql(Aj)

)
= Covstat + CovBU (11)

Only covariance at the step (2) is computed through
MC as expressed by Eq. 12, with m the MC event and
Nqk(Ai, t) the arithmetic mean value of the Nm

qk
(Ai, t)’s.

Covstat, the statistical part of the covariance matrix is
then defined as follows:

Covstat

(
Nqk(Ai, t), Nql(Aj , t

′)
)

=∑
m

(
Nm
qk

(Ai, t)−Nqk(Ai, t)
) (
Nm
ql

(Aj , t
′)−Nql(Aj , t′)

)
(12)

Where t and t′ are respectively the times at which the
mass Ai at the ionic charge state qk and the mass Aj
at the ionic charge state ql have been measured. In the
analytic case, Eq. 12 is written as Eq. 13:

Covstat

(
Nqk(Ai, t), Nql(Aj , t

′)
)

=

Nqk(Ai, t)Nql(Aj , t
′)

Pqk (Ai)Pql (Aj)
×Cov

(
Pqk (Ai) , Pql (Aj)

)
(13)

Where Cov
(
Pqk

(
Ai
)
, Pql (Aj)

)
is the covariance coming

from the ionic charge distribution. Therefore if Ai 6= Aj ,
this term is null. Otherwise by propagating in a classical
way the covariance, it is written:

Cov
(
Pqk (Ai) , Pql (Ai)

)
=
P 2
kP

2
l

I2kI
2
l

(
(Itot − Ik) (Itot − Il)Cov (Ik, Il)

− (Itot − Ik) Il
∑
m 6=l

Cov (Ik, Im)

− (Itot − Il) Ik
∑
n 6=k

Cov (In, Il)

+ IkIl
∑
m6=l

∑
n 6=k

Cov (Im, In)

)
(14)

Fig. 3. The probability density function of the MC sampling
for the value of the BU at t = 10 days for Exp.2, in blue,
compared to the expected Gaussian, in red.

With Ik the count rates of the charge k, Itot =
∑
k Ik

the total count rate of the ionic charge distribution, and
Pk = Ik

Itot
the normalized count rate. One has to note, since

each measurement is independent, that only the diagonal
of the covariance matrix of the count rate is not null.

The BU correlation is taken into account analytically
in both analyses through:

CovBU

(
Nqk(Ai), Nql(Aj)

)
=

Nqk(Ai)Nql(Aj)

BUikBUjl
Cov (BUik, BUjl) (15)

with,

Cov (BUik, BUjl) =
∑
m

∑
n

∂BUik
∂rm

∂BUjl
∂rn

Cov(rm, rn)

(16)
Where {rk} are the BU parameters. As a consequence,
for the analysis using MC, the following steps, (4) to (6),
have to be computed analytically.

A final difference can be underlined. For independent
parameters, the MC induces small correlations, even for
pseudo-random numbers generated by different seeds. Since
these correlations are low compared to the real experi-
mental correlations, it is not an issue. It is worth noting
that this MC numerical correlation artefact is dependent
on the number of MC events. In this work, for 105 events,
the order of magnitude of this correlation artefact is 10−5.

3.2 Step (3): Impact of the BU on correlations

The BU is at this stage the only source of inter-masses
correlations. To illustrate this, a mean experimental time
t(A) has been constructed for each mass. t(A) is the mean
time at which the mass A is measured.

In Fig. 4, one can see that masses having close experi-
mental time have high correlation and vice versa. For ex-
ample, the masses 100 to 109 (black circle) have been mea-
sured very closely in time, the same goes for the masses
138 to 141 (green circle). The correlations in these groups
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Fig. 4. The correlations obtained in the analysis procedure
for the N(A) for Exp.2, on the top, and the mean experimen-
tal time for each mass, on the bottom. Masses done at close
experimental times (for example the masses in black or green
circles) have high correlations and vice versa.

are very high, whereas inter groups correlations are close
to 0.

The correlations obtained at this stage for the mix MC
and analytic and the analytic methods are very similar,
the highest absolute difference observed in the correlation
matrix is ∆Corr = 0.0032 which represents a relative
difference of ∆Corr

Corr = 1.3 %, see Fig. 5.

3.3 Step (4): Impact of the additional dispersion
uncertainties

As it has just been explained, the correlation matrix is at
this stage governed by the BU . The additional dispersion
uncertainties introduced after Eq. 6, as independent un-
certainties, wash away the initial structures. The weight of
the common uncertainties coming from the BU is reduced.

The impact of these additional uncertainties are shown
in Fig. 6 and Fig. 7.

Fig. 5. The absolute difference in the correlation matrix be-
tween the two analyses at step (3).

Fig. 6. The N(A) distribution with (in blue) and without
(in red) the additional dispersion uncertainties (add. unc.) for
Exp.2.

Fig. 7. The correlation matrix, for Exp.2, of the N(A) without
the additional dispersion uncertainties, on the left, and with,
on the right. X and Y labels are identical to Fig. 4 (top).

3.4 Step (5): Impact of the relative normalization

The definition of the relative normalization factor k, in
Eq. 9, is dependent on which experiment is the reference.
Both the out-coming N(A)mgd and the associated corre-
lation matrix will be affected, as it can be observed from
Fig. 8 and 9. Indeed, if Exp.1 is normalized with respect
to Exp.2, the variance of Z = kX, the normalized vector
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Fig. 8. The relative difference on N(A)mgd in black on the
left axis, and on the uncertainty σmgd in blue on the right
axis, when the reference is Exp.1 or Exp.2. For the sake of the
comparison, both sets of N(A)mgd have been normalized to 1.

Fig. 9. The correlation matrix after the relative normalization
when Exp.1 is the reference, on the left, and when Exp.2 is the
reference, on the right. X and Y labels are identical to Fig. 12
(top).

of X, will be increased by the normalization, while the
variance of Y remains constant.

Ultimately, when the mean value for the common masses
of Y and Z is computed similarly to Eq. 4, taking into
account the covariance matrices, N(A)mgd depends on the
experiment considered as the reference. As it can be seen
in Fig. 8, Exp.2 has initially smaller uncertainties. When it
is the reference, the uncertainties after normalization are
considerably smaller since they are monitored by Exp.2
uncertainties. On the contrary, mean values are barely
sensitive to which reference is chosen.

In order to choose the reference, the cumulative eigen-
values of the correlation matrix is plotted in Fig. 10. A
first approach is to consider that a smooth increase of the
cumulative eigenvalue is preferable. It means each mass
brings a significant amount of information. The informa-
tion is well spread between the different measurements
and the correlation matrix is less structured. Considering
this approach, the Exp.2 is taken as reference for the rest
of this work. Work is in progress in order to construct an
observable quantifying the quality of the information de-
pending on the reference, similarly to the work presented
in [19].

A new analysis of the 2013 data is in progress and is
expected to give results with lower uncertainties. In that
case, it is expected that the choice of the reference has a
reduced impact.

Fig. 10. The cumulative eigenvalues of the correlation matrix
of the N(A) for the Exp.1 in blue and the Exp.2 in red.

3.5 Step (6): Impact of the absolute normalization

The impact on the Y (A) correlation matrix of the absolute
normalization is illustrated in Fig 11. In Fig. 11, a diag-
onal correlation matrix is displayed (top left), while the
analytic 241Pu(nth,f) experimental N(A)mgd correlation
matrix is shown (bottom left). On the right, the correla-
tion matrices after the absolute normalization depending
on which is the input correlation matrix. Thus, the effect
of the absolute normalization step alone is shown on the
top right of Fig. 11. The Y (A) correlation matrix (bot-
tom right), is the combination of the effect of the absolute
normalization alone and the experimental N(A)mgd cor-
relation matrix (bottom left).

The Y (A) correlation matrix structure is marked by
the normalization procedure that creates a correlation back-
ground.

4 Conclusion and Perspectives

The experimental Y (A) obtained in this work are pre-
sented in Fig. 12 and compared to JEFF-3.3. The pre-
cision achieved in this experimental work is much better
than the JEFF-3.3 evaluation and significant discrepan-
cies are observed, in particular in the light masses.

An effect not taken into account in this work is the cor-
relation between the kinetic energy and ionic charge distri-
butions. Since the ionic charge scan is made at a specific
kinetic energy, Ek, this correlation has to be taken into
account in order to properly estimate P (qi) in Eq. 3 [20].
This is expected to significantly reduce the need of the
additional dispersion uncertainties from Subsec. 3.3.

This work showed that both analyses give identical re-
sults for the estimation of the correlations matrix when
the MC bias highlighted during the BU sampling step is
by-passed. The BU sampling bias is under investigation in
order to compare the MC and analytic methods on the full
analysis scheme and not only on steps (1) to (3). For every
steps of the analysis scheme, the correlation matrices ob-
tained by the two different analyses have been compared
and no larger differences than the one observed at step (3)
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Fig. 11. On top, the correlation matrix of the N(A)mgd if
inter-masses correlations are set to 0 (left) and its propagation
through the absolute normalization (right). On the bottom, the
N(A)mgd analytic correlation matrix (left) and its propagation
through the absolute normalization (right). The analytic Y (A)
correlation matrix (bottom right) is a combination of the effect
of the normalization alone (top right) and the initial N(A)mgd

analytic correlation matrix (bottom left). X and Y labels are
identical to Fig. 12 (top).

are seen, giving a strong confidence in our method. Mean
values and uncertainties are also identical, validating both
analyses. The structure of the correlation matrix is well
understood, the importance of several steps in the con-
struction of the correlation matrix have been emphasized:
the BU creates strong positive correlations while the ad-
ditional uncertainties due to the limits of the experimental
method flatten the correlation matrix. Finally the abso-
lute normalization creates a correlation background.

The analyses have been compared without the corre-
lation between the kinetic energy and ionic charge distri-
butions. In order to finalize this work, a supplementary
step where it is taken into account will be included to the
analysis scheme. In addition, a re-analysis of the Exp.1
with updated tool and the construction of a reliable ob-
servable to rank the relative normalization possibilities are
on going.
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The authors are grateful for the support of the ILL and all the
staff involved from CEA Cadarache and LPSC.
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