Behaviour of Two Products Containing Film Forming Amines (FFA) in the Secondary Circuit Physico-Chemical Conditions of the Pressurized Water Reactor (PWR)

Marion Roy, D. You, V. Mertens Department of Physico-Chemistry

R. Lecocg, L. Verelst, ENGIE Laborelec, Belgium

S. Delaunay, J. Tireau, EDF Lab, Les Renardières J.L. Bretelle, Power Generation Division

Prague, 20-22 March 2018

International Conference on Film Forming Substances

INDUSTRIAL CONTEXT

- Lay-up of the secondary circuit of nuclear power plants (PWR)
- Secondary circuit chemistry: CHALLENGES
 - Health-environment: decrease the use of hydrazine
 - Safety: blockage and fouling limited
 - Cost: lay up implementation and follow up simplified
 - o ..

EXPECTED EFFECTS OF FFA

Protection against corrosion of all the secondary circuit (steam and liquid parts) during lay-up

Ramminger et al. 2012

Wagner et al. 2014

Anghel et al. 2014

- ⇒ Formation of a **protective and hydrophobic** film
- ⇒ Heat transfer performance seems to be improved

FFA INJECTION

- short duration / intermediate duration / continuous
- during normal operations, before lay up
- in the feedwater before the steam generator

OBJECTIVES OF THIS STUDY

Study of the behaviour of 2 products containing FFA

```
1- Odacon® (Reicon)
```

Main FFA: $C_{18}H_{37}NH_2$ (ODA)

2- Cetamine® (Kurita)

Main FFA: C₁₈H₃₅NHC₃H₆NH₂ (OLDA)

- ⇒ Evaluate the stability of the FFAs
- ⇒ Identify the decomposition products

EXPERIMENTAL PART

RESULTS & DISCUSSION

Methodology Device Conditions

5/15

Same Methodology for Odacon® and Cetamine®

EXPERIMENTAL TEST DEVICE

- Specific device (GROZIE):
 - One-pass circulation system <=> the solution is constantly renewed $(t_{residence} = \rho(T)V_{cell}/Q_L)$
 - Or no circulation
- Designed to work in a one phase flow 25 < T(°C) < 360 and 0.1 < P(MPa) < 20

Experimental Conditions \sim physico-chemical conditions

OF THE SECONDARY CIRCUIT

Product	Duration	C _{FFA}	Т	Р	pΗ	C _{ETA}
-	-	mg.kg ⁻¹	°C	10 ⁶ Pa	at 25 °C	mg.kg ⁻¹
Odacon®	20 min	32	280 ± 1	10 ± 0.2	9.8 ± 0.1	3.5
	1 week	38				3.5
Cetamine®	20 min	109	280 ± 1	10 ± 0.2	9.8 ± 0.1	-
	1 week	104				-

pH is adjusted at 25 °C with diluted ammonia

Measured Parameters

- T, P
- C_{FFA} by UV-visible spectroscopy

Characterization of the 2 FFA mixtures

 \rightarrow No detection of metallic and ionic impurities in the 2 products except traces of Na in the Odacon $^{\circledR}$

Initial products FFA disappearance FFA identification Covalent bonds Ionic species

Thermal stability of the studied FFAs (1/2)

After 20 min of residence time at 280 °C

 $\Delta C_{FFA} = -8 \% m \Leftrightarrow 2 \text{ mg.kg}^{-1}$ adsorbed on the cell surface ⇒ no thermal decomposition of FFA in Odacon[®]

 $\Delta C_{FFA} = -17 \text{ }\%\text{m} + 3\text{mg.kg}^{-1}$ adsorbed on the cell surface

 \Rightarrow 14 %m of FFA seems to be decomposed

Initial products FFA disappearance FFA identification Covalent bonds Ionic species

For the Cetamine[®]

With the UV-visible spectroscopy analysis method: Measured absorbance ≈ OLDA absorbance

- \Rightarrow 7 %m of FFA were thermally degraded (not detected by the analyses) OR
- $\Rightarrow \Delta C_{FFA} \approx 0$ (14 %m of FFA not detected by the analyses) but OLDA was decomposed in other FFAs

Thermal stability of the studied FFAs (2/2)

- After 1 week of residence time at 280 °C
 - $\Rightarrow \Delta C_{FFA} = -76 \% m$ for the test with Odacon^(B)
 - $\Rightarrow \Delta C_{OLDA} = -84 \% m$ for the test with Cetamine[®]

FFA Identification in the thermally degraded solution

Analytical method: Gas Chromatography Mass Spectroscopy (GC-MS)

- Odacon[®]
 - → Detection of ODA and HDA (∈ initial product)
 - → Disappearance of TDA
- Cetamine[®]
 - \rightarrow Disappearance of the main FFA: OLDA
 - $\rightarrow \uparrow$ of OLA and ODA proportions
 - → Formation of HDA
- ⇒ Consistent with the decomposition of OLDA in FFAs with shorter alkyl chains.

Initial products FFA disappearance FFA identification Covalent bonds Ionic species

13/15

Initial products FFA disappearance FFA identification Covalent bonds lonic species

IONIC SPECIES

Analytical method: Ionic chromatography

After 1 week of residence time at 280 °C

- Formation of ammonia NH₄ for both products
 - ⇒ Consistent with the detection of alkenes R-CH=CH₂ with ATR-FTIR spectroscopy analysis

 Formation of carboxylates, mainly acetate CH₃COO⁻ only for Cetamine[®]

Conclusions

- For <u>20 min residence time</u> in the physico-chemical conditions of the secondary circuit
 - ⇒ No decomposition of the Odacon®
 - ⇒ Very little decomposition of the Cetamine®
- Significative decomposition for 1 week residence time
 - \Rightarrow the products mainly formed are FFAs which does not respond with the quantification protocol of FFAs
 - \Rightarrow formation of NH₄⁺ and alkenes R-CH=CH₂

Perspectives

 Determination of the distribution coefficient of the 2 products at steam generator temperature i.e. 275°C

Thank you for your attention

Return
Re