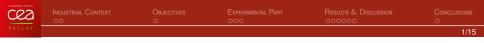


## Behaviour of two products containing film forming amines (FFA) in the secondary circuit physico-chemical conditions of the pressurized water reactor (PWR)

M. Roy, D. You, V. Mertens, R. Lecocq, L. Verelst, S. Delaunay, J. Tireau,

J.L. Bretelle


### ▶ To cite this version:

M. Roy, D. You, V. Mertens, R. Lecocq, L. Verelst, et al.. Behaviour of two products containing film forming amines (FFA) in the secondary circuit physico-chemical conditions of the pressurized water reactor (PWR). International Conference on Film Forming Substances, Mar 2018, Prague, Czech Republic. cea-02339319

## HAL Id: cea-02339319 https://cea.hal.science/cea-02339319v1

Submitted on 7 Jan 2020  $\,$ 

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



#### Behaviour of Two Products Containing Film Forming Amines (FFA) in the Secondary Circuit Physico-Chemical Conditions of the Pressurized Water Reactor (PWR)



Marion Roy, D. You, V. Mertens Department of Physico-Chemistry



R. Lecocq, L. Verelst, ENGIE Laborelec, Belgium



S. Delaunay, J. Tireau, EDF Lab, Les Renardières J.L. Bretelle, Power Generation Division

Prague, 20-22 March 2018

International Conference on Film Forming Substances

| cea    | Industrial Context | Objectives | Experimental Part<br>000 | Results & Discussion | Conclusions<br>O |
|--------|--------------------|------------|--------------------------|----------------------|------------------|
| SACLAY |                    |            |                          |                      | 2/15             |

#### INDUSTRIAL CONTEXT

 Lay-up of the secondary circuit of nuclear power plants (PWR)

#### • Secondary circuit chemistry: CHALLENGES

- Health-environment: decrease the use of hydrazine
- Safety: blockage and fouling limited
- Cost: lay up implementation and follow up simplified
- ...

Propertie of CEA, EDF & ENGIE, do not disclose without the prior written consent of the parties



#### EXPECTED EFFECTS OF FFA

Protection against corrosion of all the secondary circuit (steam and liquid parts) during lay-up



Ramminger et al. 2012 Wagner et al. 2014 Anghel et al. 2014

 $\Rightarrow$  Formation of a **protective and hydrophobic** film  $\Rightarrow$  Heat transfer performance seems to be improved

#### **FFA** INJECTION

- short duration / intermediate duration / continuous
- during normal operations, before lay up
- in the feedwater before the steam generator

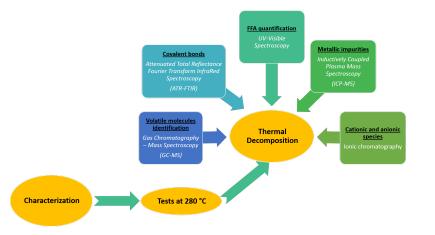
| cea    | Industrial Context | Objectives | Experimental Part<br>000 | Results & Discussion<br>000000 | Conclusions<br>O |
|--------|--------------------|------------|--------------------------|--------------------------------|------------------|
| SACLAY |                    |            |                          |                                | 4/15             |

#### **OBJECTIVES OF THIS STUDY**

Study of the behaviour of 2 products containing FFA

1- Odacon<sup>®</sup> (Reicon) Main FFA: C<sub>18</sub>H<sub>37</sub>NH<sub>2</sub> (ODA)

2- Cetamine<sup>®</sup> (Kurita)


Main FFA: C<sub>18</sub>H<sub>35</sub>NHC<sub>3</sub>H<sub>6</sub>NH<sub>2</sub> (OLDA)

 $\Rightarrow$  Evaluate the stability of the FFAs  $\Rightarrow$  Identify the decomposition products

Propertie of CEA, EDF & ENGIE, do not disclose without the prior written consent of the parties

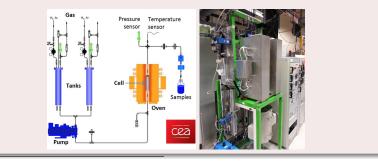


#### SAME METHODOLOGY FOR ODACON<sup>®</sup> AND CETAMINE<sup>®</sup>



| cea    | Industrial Context | Objectives<br>O | Experimental Part | Results & Discussion | Conclusions<br>O |
|--------|--------------------|-----------------|-------------------|----------------------|------------------|
| SACLAY | Methodology Device | Conditions      |                   |                      | 6/15             |

#### EXPERIMENTAL TEST DEVICE


Specific device (GROZIE):

- One-pass circulation system <=> the solution is constantly renewed

 $(t_{residence} = \rho(T)V_{cell}/Q_L)$ 

- Or no circulation

 Designed to work in a one phase flow 25 < T(°C) < 360 and 0.1 < P(MPa) < 20</li>

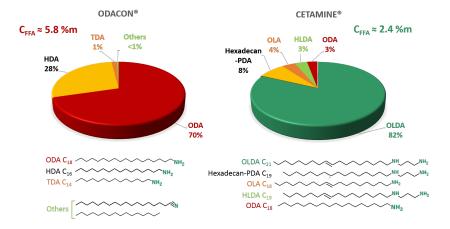


| cea    | Industrial Context | Objectives<br>O | Experimental Part | Results & Discussion<br>000000 |      |
|--------|--------------------|-----------------|-------------------|--------------------------------|------|
| SACLAY | Methodology Device | Conditions      |                   |                                | 7/15 |

# Experimental Conditions $\sim$ physico-chemical conditions of the secondary circuit

| Product   | Duration |                     | Т       | Р                  | pН               | C <sub>ETA</sub>    |
|-----------|----------|---------------------|---------|--------------------|------------------|---------------------|
| -         | -        | mg.kg <sup>-1</sup> | °C      | 10 <sup>6</sup> Pa | at 25 °C         | mg.kg <sup>-1</sup> |
| Odacon®   | 20 min   | 32                  | 280 ± 1 | $10\pm0.2$         | $9.8\pm0.1$      | 3.5                 |
| Ouacon    | 1 week   | 38                  |         |                    |                  | 3.5                 |
| Cetamine® | 20 min   | 109                 | 280 ± 1 | 10 ± 0.2           | 9.8 ± 0.1        | -                   |
| Getainine | 1 week   | 104                 | 200 ± 1 | 10 ± 0.2           | 9.0 <u>F</u> 0.1 | -                   |

PH is adjusted at 25 °C with diluted ammonia


#### MEASURED PARAMETERS

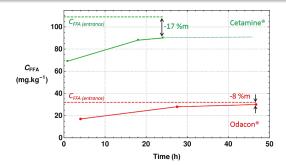
• T, P

• C<sub>FFA</sub> by UV-visible spectroscopy



#### **Characterization of the 2 FFA mixtures**




 $\rightarrow$  No detection of metallic and ionic impurities in the 2 products except traces of Na in the Odacon  $^{\textcircled{B}}$ 

Propertie of CEA, EDF & ENGIE, do not disclose without the prior written consent of the parties



#### Thermal stability of the studied FFAs (1/2)

• After 20 min of residence time at 280 °C




 $\Delta C_{FFA} = -8 \% m \Leftrightarrow 2 \text{ mg.kg}^{-1}$  adsorbed on the cell surface  $\Rightarrow$  no thermal decomposition of FFA in Odacon<sup>®</sup>  $\Delta C_{FFA} = -17 \% m + 3 \text{mg.kg}^{-1}$  adsorbed on the cell surface

 $\Rightarrow$  14 %*m* of FFA seems to be decomposed



- For the Cetamine<sup>®</sup>

With the UV-visible spectroscopy analysis method: Measured absorbance  $\approx$  OLDA absorbance



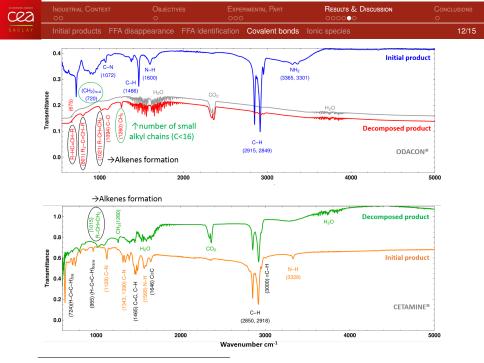
 $\Rightarrow$  7 %*m* of FFA were thermally degraded (not detected by the analyses) OR

 $\Rightarrow \Delta C_{FFA} \approx 0 \text{ (14 \% m of FFA not detected by the analyses)}$ but OLDA was decomposed in other FFAs

#### Thermal stability of the studied FFAs (2/2)

• After **1 week** of residence time at 280 °C  $\Rightarrow \Delta C_{FFA} = -76 \% m$  for the test with Odacon<sup>®</sup>  $\Rightarrow \Delta C_{OLDA} = -84 \% m$  for the test with Cetamine<sup>®</sup>

| cea    | Industrial Contex | ат Овјестіл<br>О  | VES EXPERIMENTAL PART<br>000      | RESULTS & DISCUSSION |       |
|--------|-------------------|-------------------|-----------------------------------|----------------------|-------|
| SACLAY | Initial products  | FFA disappearance | FFA identification Covalent bonds | Ionic species        | 11/15 |


#### FFA IDENTIFICATION IN THE THERMALLY DEGRADED SOLUTION

Analytical method: Gas Chromatography Mass Spectroscopy (GC-MS)

- Odacon<sup>®</sup>
  - → Detection of ODA and HDA (∈ initial product)
  - → Disappearance of TDA
- Cetamine<sup>®</sup>
  - $\rightarrow$  Disappearance of the main FFA: OLDA
  - $\rightarrow$   $\uparrow$  of OLA and ODA proportions
  - $\rightarrow$  Formation of HDA

 $\Rightarrow$  Consistent with the decomposition of OLDA in FFAs with shorter alkyl chains.

Propertie of CEA, EDF & ENGIE, do not disclose without the prior written consent of the parties



| cea    | Industrial Conte | xt Objectiv<br>O  | ies Expe<br>000    | RIMENTAL PART  | RESULTS & DISCUSSION |       |
|--------|------------------|-------------------|--------------------|----------------|----------------------|-------|
| SACLAY | Initial products | FFA disappearance | FFA identification | Covalent bonds | Ionic species        | 13/15 |

#### **IONIC SPECIES**

Analytical method: lonic chromatography

After 1 week of residence time at 280 °C

 Formation of ammonia NH<sup>+</sup><sub>4</sub> for both products
⇒ Consistent with the detection of alkenes R-CH=CH<sub>2</sub> with ATR-FTIR spectroscopy analysis

NH<sub>2</sub> NH<sub>2</sub> NH<sub>2</sub>

 Formation of carboxylates, mainly acetate CH<sub>3</sub>COO<sup>-</sup> only for Cetamine<sup>®</sup>

Propertie of CEA, EDF & ENGIE, do not disclose without the prior written consent of the parties

| cea    | Industrial Context | Objectives<br>O | Experimental Part | Results & Discussion | Conclusions |
|--------|--------------------|-----------------|-------------------|----------------------|-------------|
| SACLAY |                    |                 |                   |                      | 14/15       |
|        |                    |                 |                   |                      |             |

For <u>20 min residence time</u> in the physico-chemical conditions of the secondary circuit

 $\Rightarrow$  **No decomposition** of the Odacon<sup>®</sup>

- $\Rightarrow$  Very little decomposition of the Cetamine<sup>®</sup>
- Significative decomposition for <u>1 week residence time</u>

⇒ the products mainly formed are FFAs which does not respond with the quantification protocol of FFAs ⇒ formation of  $NH_4^+$  and alkenes R-CH=CH<sub>2</sub>

#### PERSPECTIVES

 Determination of the *distribution coefficient* of the 2 products at steam generator temperature *i.e.* 275 °C

| CES<br>SACLAY | Objectives<br>O |  | Conclusions<br>O |
|---------------|-----------------|--|------------------|
|               |                 |  | 15/15            |
|               |                 |  |                  |



#### Thank you for your attention

