
HAL Id: cea-02339307
https://cea.hal.science/cea-02339307v1

Submitted on 13 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advanced methodology for uncertainty propagation in
computer experiments with large number of inputs

B. Iooss, A. Marrel

To cite this version:
B. Iooss, A. Marrel. Advanced methodology for uncertainty propagation in computer experiments
with large number of inputs. ANS Best Estimate Plus Uncertainty International Conference (BEPU
2018), May 2018, Lucca, Italy. �cea-02339307�

https://cea.hal.science/cea-02339307v1
https://hal.archives-ouvertes.fr


ANS Best Estimate Plus Uncertainty International Conference (BEPU 2018)
Real Collegio, Lucca, Italy, May 13-19, 2018

BEPU2018-172

ADVANCED METHODOLOGY FOR UNCERTAINTY PROPAGATION IN
COMPUTER EXPERIMENTS WITH LARGE NUMBER OF INPUTS

B. Iooss1 and A. Marrel2
1: EDF R&D, 6 Quai Watier, 78401, Chatou, France

2: CEA, DEN, DER, F-13108, Saint-Paul-lez-Durance, France

bertrand.iooss@edf.fr, amandine.marrel@cea.fr

ABSTRACT
Complex computer codes, as the ones used in thermal-hydraulic accident scenario
simulations, are often too time expensive to be directly used to perform uncertainty
propagation. A solution to cope with this problem consists in replacing the cpu-
time expensive computer model by a cpu inexpensive mathematical function, called
metamodel. Among the metamodels classically used in computer experiments, the
Gaussian process model has shown strong capabilities to solve practical problems.
However, in case of high dimensional experiments (with typically several tens of
inputs), the Gaussian process metamodel building process remains difficult. To face
this limitation, we propose a methodology which combines several advanced sta-
tistical tools: initial space-filling design, screening to identify the non-influential
inputs, Gaussian process metamodel building with the group of influential inputs
as explanatory variables. The residual effect of the group of non-influential in-
puts is captured by another Gaussian process metamodel. From this joint meta-
model, uncertainty propagation (here 95%-quantile estimation) can be performed.
The efficiency of the methodology is illustrated on a thermal-hydraulic calculation
case simulating accidental scenario in a Pressurized water Reactor. More precisely,
a Loss Of Coolant Accident (LOCA) is considered, which takes into account a
double-ended guillotine break with a specific size piping rupture.

1. INTRODUCTION

Quantitative assessment of the uncertainties tainting the results of computer simulations is nowa-
days a major topic of interest in both industrial and scientific communities. One of the key issues
in such studies is to get information about the output when the numerical simulations are expensive
to run. For example, in nuclear engineering problems, one often faces up with cpu time consuming
numerical models and, in such cases, uncertainty propagation, sensitivity analysis, optimization
processing and system robustness analysis become difficult tasks using such models. In order to
circumvent this problem, a widely accepted method consists in replacing cpu-time expensive com-
puter models by cpu inexpensive mathematical functions, called metamodels [6]. This solution has
been applied extensively and has shown its relevance especially when simulated phenomena are
related to a small number of random input variables (see [7] for example).

However, high dimensional numerical experiments are often present in industrial practice (with
typically several tens of inputs). The current methodology consists in a first screening step in
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order to reduce the dimension of the inputs, then in a quantitative sensitivity analysis allowing
to prioritize the inputs as a function of their influence on the output uncertainty [9]. A following
Monte Carlo sampling step is applied in order to estimate the desired statistical quantity of interest,
such as a 95%-quantile with a 95% confidence level [4].

Recent works [11, 10] have proposed a more efficient robust method where a Gaussian process
(Gp) metamodel [17, 12] is built upon the same calculations sample as the screening step, and
using the results of the screening step. In this paper, we pursue these efforts by showing how to
use the metamodel to solve an uncertainty propagation problem (high-quantile estimation), and
applying the methodology to a thermal-hydraulic accident scenario.

The system under study is denoted

Y = g(X1, . . . ,Xd) (1)

where g(·) is the numerical model (also called the computer code), Y ∈ R is the output and X =
(X1, . . . ,Xd) ∈ Rd are the input variables. Our approach consists in three steps:

1. Step 1: Initial experimental design. Knowing the variation domain of the input variables, a
design of n experiments is firstly performed and yields n model output values. To constitute
this learning sample, we use a space-filling design (SFD) of experiments, providing a full
coverage of the high-dimensional input space [6, 18].

2. Step 2: Screening. From the learning sample, a screening technique is performed in or-
der to identify the primary influential inputs (PII) on the model output variability. It has
been recently shown that screening based on dependence measures [3, 5, 10] are very effi-
cient methods which can be directly applied on a SFD. One of their great interest is that,
additionally to their screening job, the sensitivity indices they provide can be quantitatively
interpreted. From these screening results, the inputs are then ordered by decreasing PII, for
the purpose of the metamodeling step.

3. Step 3: Joint metamodeling and metamodel validation. The sorted inputs are successively
included in the group of explanatory inputs while the other inputs are considered as a global
stochastic (i.e. unknown) input and a joint Gp metamodel is built [11]. At each iteration,
a first Gp model [12], only depending on the explanatory inputs, is built to approximate
the mean component of the metamodel. The residual effect of the other inputs is captured
using a second Gp model which approximates the variance component as a function of the
explanatory inputs. The accuracy and prediction capabilities of the metamodel are controlled
on a test sample or by cross-validation.

4. Step 4: Use of the metamodel. A quantitative sensitivity analysis or an uncertainty prop-
agation step can be performed using the joint metamodel instead of the computer model,
leading to a large gain of computation time [19, 11]. In this work, we are interested by a the
estimation of the 95%-quantile of the model output.

The next section of this paper presents each step of the general methodology. The third section
shows an application of this work on a thermal-hydraulic calculation case simulating accidental
scenario in a nuclear reactor. The last section gives some conclusions of this work.
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2. GENERAL METHODOLOGY

2.1 Step 1: Initial design of experiments

The objective of the initial sampling step is to investigate the whole variation domain of the un-
certain parameters in order to fit a predictive metamodel which approximates as accurately as
possible the code in the whole domain of variation of the uncertain parameter. For this, we use
a space-filling design (SFD) of a certain number n of experiments, providing a full coverage of
the high-dimensional input space [6]. This design provides a learning sample. Mathematically,
this corresponds to the sample

(
x(1), . . . ,x(n)

)
which is performed on the model g. This yields n

model output values denoted
(

y(1), . . . ,y(n)
)

with y(i) = g(x(i)). The obtained learning sample is

denoted (Xs,Ys) with Xs =
[
x(1)T

, . . . ,x(n)T
]T

and Ys =
[
y(1), . . . ,y(n)

]T
. The goal is to build an

approximating model of g using the n-sample (Xs,Ys).

The number n of simulations is a compromise between the CPU time required for each simulation
and the number of input parameters. Some thumb rules propose to choose n at least as large as
10 times the dimension d of the input vector [12]. For the SFD type, a Latin Hypercube Sample
(LHS) with optimal space-filling and good projection properties [6, 18] would be well adapted. In
particular, ensuring good low-order sub-projection properties is important. Maximum projection
designs or low-centered L2 discrepancy LHS are then particularly well-suited.

2.2 Step 2: Initial screening

From the learning sample, an initial screening procedure [9, 18] is performed in order to identify
the PII and sort them by decreasing order of influence. For this, the approach based on dependence
measures is particularly relevant.

[3] and more recently [5] have proposed to use dependence measures for screening purpose, by ap-
plying them directly on a SFD. These sensitivity indices are not the classical ones variance-based
measures as they consider higher order information about the output behavior in order to pro-
vide more detailed information. Among them, the Hilbert-Schmidt independence criterion (HSIC)
introduced by [8] builds upon kernel-based approaches for detecting dependence, and more par-
ticularly on cross-covariance operators in reproducing kernel Hilbert spaces (RKHS). [3] has in-
troduced a normalized version of the HSIC which provides a sensitivity index of Xk, that can be
estimated by using a simple Monte Carlo estimator. As in [5, 10], from the estimated R2

HSIC, we
can then use independence tests for the screening purpose. The objective is to separate the inputs
into two sub-groups, the significant ones and the non-significant ones. At the end of the screening
step, the inputs selected as significant are also ordered by decreasing R2

HSIC. This order will be
used for the sequential metamodel building in step 3.

2.3 Step 3: Joint GP metamodel with sequential building process

Among all the metamodel-based solutions (polynomials, polynomial chaos, neural networks, etc.),
we focus our attention on the Gp regression, which extends the kriging principles of geostatistics
to computer experiments by considering the correlation between two responses of a computer
code depending on the distance between input variables [17]. The Gp-based metamodel presents
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some advantages compared to other metamodels: exact interpolation property, simple analytical
formulations of the predictor, availability of the mean squared error of the predictions and the
proved efficiency of the model [7].

However, fitting a predictive Gp on high dimensional numerical codes (several tens of inputs) re-
mains an issue. Indeed, it often implies the estimation of several hyperparameters involved in
the covariance function of the Gp (e.g. usual case of anisotropic stationary covariance function).
Therefore, some difficulties arise from the parameter estimation procedure (instability, high num-
ber of hyperparameters, see [12] for example). To tackle this issue, we propose a progressive
estimation procedure which combines the result of the previous screening step and a joint Gp ap-
proach introduced in [11]. The interest of the initial screening step is twofold: to reduce the input
space on which each component of the joint GP is built and to sort the selected explanatory inputs
in order to enable a sequential building process. It is expected that these two uses of screening
results could significantly make the joint Gp building easier and more efficient.

This approach is described in details in [10]. To summarize, it consists in:

1. A successive inclusion of explanatory variables
At the end of the screening step, the inputs selected as significant are ordered by decreasing
influence. The sorted inputs thus obtained are successively included in the group of explana-
tory inputs that are taken into account in the Gp metamodel. At the jth iteration, only the j
first sorted inputs are considered as explanatory input variables in the Gp metamodel, while
all the remaining inputs are included in a single macro-parameter. This macro-parameter is
considered as an uncontrollable parameter (i.e. a stochastic parameter, notion detailed in the
next subsection). In order to improve the robustness of the optimization process, the esti-
mated hyperparameters obtained at the ( j−1)th iteration are used, as starting points for the
optimization algorithm. This procedure is repeated until the inclusion of all the significant
input variables. Note that this sequential process is directly adapted from the one proposed
by [12].

2. Building a joint Gp metamodel
[11] has proposed to both model the mean and dispersion of the output of a stochastic code by
two interlinked Gp models, called “joint Gp”. [10] has applied this approach by considering
the group of non-explanatory variables as the uncontrollable parameter denoted Xε . More
precisely, the input variables X = (X1, . . . ,Xd) are divided in two subgroups: the explanatory
ones denoted Xexp and the others denoted Xε . The output is thus defined by y = g(Xexp,Xε).
Under this hypothesis, the joint metamodeling approach yields building two metamodels,
one for the mean Ym and another for the dispersion component Yd:

Ym(Xexp) = E(Y |Xexp) , (2)

Yd(Xexp) = Var(Y |Xexp) = E
[
(Y −Ym(Xexp))

2|Xexp
]
. (3)

To fit these mean and dispersion components, we use the methodology proposed by [11, 10].
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3. Assessing the metamodel accuracy
To evaluate the accuracy of a metamodel, we use the predictivity coefficient Q2:

Q2 = 1−
∑

ntest
i=1

(
y(i)− ŷ(i)

)2

∑
ntest
i=1

(
y(i)− 1

ntest
∑

ntest
i=1 y(i)

)2 (4)

where (x(i))1≤i≤ntest is a test sample, (y(i))1≤i≤ntest are the corresponding observed outputs
and (ŷ(i))1≤i≤ntest are the metamodel predictions. Q2 corresponds to the coefficient of deter-
mination in prediction and can be computed on a test sample independent from the learning
sample or by cross-validation on the learning sample. The closer to one the Q2, the better
the accuracy of the metamodel.

To evaluate the accuracy of the dispersion part of a joint metamodel, we use the graphical
tool introduced in [11]. It consists in evaluating the proportions of observations that lie
within the α-theoretical confidence intervals which are built from the Gp model on the mean
component Ym while including a heteroscedastic nugget effect. This heteroscedastic nugget
effect is modeled and predicted by the Gp metamodel built on the dispersion component
Yd . We can visualize the proportions (i.e. the observed confidence intervals) against the
α-theoretical confidence interval. By definition, if a model is suited for both mean and
dispersion modeling, the points should be located around the y = x line. As a consequence,
this plot is useful to compare the goodness of fit for the different models.

2.4 Step 4: Quantile estimation using the Gp metamodel

As already said in the introduction, a well known approach for the uncertainty analysis of cpu-time
expensive computer models consists in replacing the complex computer code by a a metamodel
[6]. However, the estimation of a low or high quantile from a direct use of the metamodel predictor
tends to be substantially different from the full computer model quantile because the metamodel
is usually constructed by smoothing the computer model output values (see an analysis of this
phenomenon in [1]). For this reason, [15] has proposed to use the Gp metamodel for the quantile
estimation problem, as it gives a probabilistic-type metamodel. It includes the mean which gives
a predictor, the variance which gives a local indicator of prediction accuracy and the covariance
which defines the full law of the Gp. Stochastic simulations (conditionally to the learning sample)
of the Gp metamodel are then possible. [16] has proved the efficiency of this approach in order to
estimate high quantile (of the order of 95%). A great advantage of this approach is that it provides
confidence intervals for the quantile estimate, in addition to the quantile estimation.

In this paper, we will compare this quantile estimation process on two Gp metamodels:

• The simple Gp metamodel (noted sGp) built for Ym and considering a homoscedastic nugget
effect. Gp conditional simulations are then done using the standard method [2];

• The joint Gp metamodel (noted jGp) which uses a heteroscedastic nugget effect predicted
by the Gp metamodel on Yd . In this case, a new technique is required:
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1. The Gp for Ym (noted jGpm) is predicted,

2. The Gp for Yd (noted jGpd) is predicted and provides the heteroscedastic nugget effect
which is added to the diagonal of the covariance matrix of jGpm,

3. The conditional simulations are then done using the standard method [2].

3. LOCA APPLICATION

3.1 Description of the use-case

Our use-case consists in thermal-hydraulic computer experiments, typically used in support of
regulatory work and nuclear power plant design and operation. Indeed, some safety analysis con-
siders the so-called “Loss Of Coolant Accident” (LOCA), which takes into account a double-
ended guillotine break with a specific size piping rupture. It is modeled with code CATHARE2
(V2.5_3mod3.1) which simulated the thermal-hydraulic responses during a LOCA in a Pressurized
water Reactor [13].

In this use-case, 27 scalar input variables of CATHARE2 are uncertain, defined by their probability
density function (uniform, log-uniform, normal or log-normal). They correspond to various system
parameters as initial conditions, boundary conditions, some critical flowrates, interfacial friction
coefficients, condensation coefficients, . . . The output variable of interest is a single scalar which
is the maximal peak cladding temperature (PCT) during the accident transient. Our objective with
this use-case is to provide a good metamodel to the safety engineers. Indeed, the cpu-time cost of
this computer code is too important to develop all the statistical analysis required in a safety study
only using direct calculations of the computer code. A metamodel would allow to develop more
complete and robust demonstration.

3.2 Design of experiments

n = 500 CATHARE2 simulations of this test case are performed following a space-filling LHS
with good projection properties as the design of experiments. The input values have been sampled
following their prior distributions defined on their variation ranges. Indeed, as we are not ensured
to be able to build a sufficiently accurate metamodel, we prefer to sample the inputs following the
probabilistic distributions in order to have at least a probabilized sample of the uncertain output,
on which statistical characteristics could be estimated. Moreover, dependence measures can be
directly estimated on this sample, providing first usable results of sensitivity analysis.

The obtained inputs-output sample constitutes the learning sample. The figure 1 contains the his-
togram of the PCT (temperature is in ◦C).
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Figure 1 – Histogram of the PCT from the learning sample.

For this exercise, 600 remaining simulations, not included in the learning sample, are available.
Therefore, this sample of ntest = 600 point will be our test sample, used to validate the results.
In practical cases, if no test sample is available, it is possible to use a cross-validation method to
perform the validation procedure [12].

3.3 Screening step with HSIC

From the learning sample of n = 500 simulations, R2
HSIC dependence measures are estimated and

bootstrap tests with α = 0.1 are performed. 11 inputs are selected as significantly influential.
Ordering them by decreasing R2

HSIC reveals the predominance influence of X10 (R2
HSIC ≈ 0.39),

followed by X2, X12 and X22, (R2
HSIC ≈ 0.04, 0.02 and 0.02 respectively). X15, X13, X9, X5, X14,

X26 and X27 have a lower influence (R2
HSIC around 0.01) and the others variables are considered as

negligible by statistical tests.

In the next steps, the 11 significant inputs are considered as the explanatory variables, denoted PII,
in the joint metamodel and will be successively included in the building process. The other 16
variables will be joined in a so-called uncontrollable parameter.

3.4 Joint Gp fitting

As described in Section 2.4, two Gp metamodels are built from the learning sample of n = 500:

• The simple Gp metamodel sGp (just the mean component) which takes into account the
residual noise in a homoscedastic nugget effect (see [12] for example);

• The joint GP metamodel jGp, using the method described in Section 2.3.

The 11 PII identified at the end of the screening step are considered as the explanatory variables
while the 16 others are considered as an unique uncontrollable parameter. The Gp on the mean
component (and on the dispersion component for the joint Gp) are built using the sequential build-
ing process where PII ordered by decreasing R2

HSIC are successively included in Gp.
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The Q2 predictivity coefficient is computed thanks to the test sample. We obtain the same values
for sGp and for the mean component jGpm of jGp:

Q2 ≈ 0.90 .

Thus, only 10% of the output variability remains not explained by jGpm, this includes both the
inaccuracy of the jGpm (part of Ym not fitted by Gp) and the total effect of the uncontrollable
parameter, i.e. the group of non-selected inputs.

Figure 2 gives the results obtained with the confidence interval predicted by the simple Gp (ho-
moscedatic nugget effect) and the joint Gp (heteroscedatic nugget effect) modeling. It clearly
illustrates both the interest of considering a heteroscedatic nugget effect and the efficiency of using
a joint Gp model to fit and predict this nugget. Indeed, it can be seen that the joint Gp is the most
accurate model: all its points are close to the theoretical y = x line, while the simple Gp tends to
give too large confidence intervals. Thus, in this case, the heteroscedasticity hypothesis is justified
and, consequently, the proposed joint Gp model is clearly more competitive than the simple one.

Figure 2 – Proportion of observations that lie within the α theoretical confidence interval as a
function of the confidence level α for the data.

3.5 Quantile estimation results

In this section, we estimate the 95%-quantile of the PCT by our Gp metamodel and compare the
results with other methods. The reference value of the 95%-quantile is obtained from a the full
sample of size n = 1100 (learning sample plus test sample) from the classical empirical quantile
estimator:

q̂ref
95 = 742.28 ◦C .

By just using the learning sample of size n = 500, we obtain

q̂emp
95 = 746.80 ◦C .

The bootstrap method (see for example [20]) allows to obtain a 90%-confidence interval for the
true quantile: [736.706;747.4076].
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We estimate now the 95%-quantile by a direct use of the two metamodels obtained previously.
This is called the plug-in (noted pi) estimators. We obtain:

q̂sGp-pi
95 = 736.26 ◦C ,

and
q̂jGp-pi

95 = 735.83 ◦C .

No confidence intervals are obtained using this estimation method. As expected, the plug-in
method provides nasty estimations of the quantile, which is here strongly underestimated.

We apply now the Gp conditional simulation method described in Section 2.4. We obtain:

q̂sGp
95 = 747.11 ◦C

with [742.93;751.32] as a 90%-confidence interval for the true quantile, and

q̂jGp
95 = 741.46 ◦C

with [738.76;744.17] as a 90%-confidence interval for the true quantile. This last result shows that
the best precision of the quantile estimation is obtained with conditional simulation method based
on the joint Gp metamodel (heteroscedastic Gp). This approach yields a more accurate prediction
than the simple Gp metamodel based on homoscedatic hypothesis and outperforms the empirical
estimator in terms of confidence interval.

4. CONCLUSION

Using an efficient sequential building process, we fitted a predictive joint Gp metamodel on a
high dimensional thermal-hydraulic test case simulating accidental scenario in a Pressurized Water
Reactor (LOCA test case). An initial screening step based on advanced dependence measures and
associated statistical tests enabled to identify a group of influential inputs, allowing dimension
reduction. The efforts of optimization when fitting the metamodel fitting can be concentrated on
the main influential inputs and the robustness of metamodeling is thus increased. Moreover, thanks
to the joint metamodel approach, the non-selected inputs are not completely removed: the residual
uncertainty due to dimension reduction is integrated in the metamodel and the global influence of
non-selected inputs is so controlled.

In nuclear safety, methods of conservative computation of quantiles [14] have been largely stud-
ied. However, several complementary information are often useful and are not accessible in a
high-dimensional context. Then, we expect that the joint Gp metamodel could help to access this
information by complementary sensitivity analysis. Moreover, the uncertainty of the influential
inputs will be directly and accurately propagated through the mean component of the joint meta-
model while a confidence bound could be derived from the dispersion component in order to take
into account the residual uncertainty of the other inputs.

From this joint Gp metamodel, several statistical analyses, not feasible with the numerical model
due to its computational cost, become accessible. For example, a sensitivity analysis based on
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variance decomposition can be performed using the joint Gp [11]. In this paper, we have used
the joint Gp metamodel to perform uncertainty propagation for the estimation of a 95%-quantile.
Indeed, in LOCA test cases, we are particularly interested by the estimation of high quantile of the
model output temperature. We have demonstrated the interest and advantages in terms of precision
of a heteroscedastic joint Gp metamodel compared to simpler model which does not accurately
capture the residual errors.
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