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I. INTRODUCTION  

Recently (2006), the clogging phenomena of the tube support plates (TSP) increased in some steam generator 

of French nuclear power plants. The evolution of the clogging is a long run, more than 10 years mainly located 

in the hot branch, the peripheral zone and the upper part of the steam generators. The first results of EDF 

investigation identify the pH as an important factor (Corredera G, 2008). All the TSP clogging affected plants 

run at target pH25°C of 9.2. In contrary most of the plants, having same type of SG and running at target pH25°C 

of 9.6 seem not affected by TSP blockage. 

While chemical cleaning is the main effective remedy against clogging, this method is expensive and time 

consuming. Thus, it seems of great interest to study an alternative solution to avoid clogging of the TSP and 

understand the parameters having in influence on the clogging deposits kinetics.  

In order to cope to these issues and determine the parameters having an influence on the clogging deposits, 

EDF and the CEA launched since 2007 an R & D collaborative program. To carry out this experimental 

program, a representative test loop co-financed by EDF1 and the CEA2 was designed, built and specifically 

instrumented, to identify on line, the local parameters (thermohydraulic and chemical parameters) supposed 

to influence the very first steps of clogging. The three thermohydraulic loops which composed the 

experimental tests facility aim to reproduce, in a scale SG mock-up, the two-phase flow thermal hydraulic 

conditions met in the secondary side of a SG at the upper TSP level (277°C, 61 bars, and void fraction up to 

80%).    

The clogging deposits are mainly composed of magnetite (Fe3O4). With tracer injection (59Fe), -Ray emitter, 

a nondestructive estimation of the deposit rates and a measure of the kinetics of deposition becomes possible 

on line at nominal conditions. This experimental phase begins in 2018 and focuses on radioactive tracing 
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(59Fe) associated to on-line γ counting. The planned program must determine in situ, on the deposit of the SG 

mockup, the pH conditioning influence. 

This measurement technique are widely used on CEA tests facilities, for over 30 years. First, in a two-phase 

liquid/vapor flow environment, to study the sodium hideout and hideout-return in the confined areas of the 

Steam Generator (Schindler P, 1995 August 7-10). Second, in monophasic phase flow, representative of the 

primary side of a PWR, to determine the contamination transfers (Blet V, 2007). CIRENE loop is one of the 

out-of-pile loops dedicated to the study of activated corrosion product deposits on the surfaces of the core and 

the steam generator (SG).  

However, this is the first time this technique is used in such an environment. Due to the lack of knowledge of 

the instantaneous effects of the studied parameters, measurement remains a challenge with regard to modeling, 

measurement methods and sizing. The deposit develops in the quatrefoils, in the area between the tube and 

the tube support plate. The tube support plate (TSP) has a complex and massive geometry with respect to the 

quantity and position of the 59Fe incorporated in the deposit. For this reason, the SG mock-up environment 

required specific equipment. 

The implementation of this type of measurement leads to a precise dimensioning of the instrumentation and 

associated devices. The modeling combines the 3MCNPIV code and the 4MercureV code to converge towards 

the most appropriate measurement configuration by associating the γ spectrometer best suited to this type of 

measurement.  

II. CONTEXT OF THE STUDY 

Clogging deposit is located at the inlet of the hole of the quatrefoils of broach tubes. This deposit develops 

perpendicularly to the tube or the Tube Support Plate (TSP) and forms a characteristic lipping form, which 

progressively reduces the hole’s section of the quatrefoils (see Figure 1). At least, two phenomena, flashing 

and veina contracta (Rummens H.E, 1999) (Rummens H.E, 2004), describe the formation of this lipping form. 

Then the secondary flow reaches the TSP, it undergoes a sudden contraction at the entrance of the foils, which 

causes its acceleration as well as a sudden loss of pressure. In addition, at the entrance of the foils, the main 

stream separates from the wall after this brutal contraction. The low velocity recirculation zone created along 

the wall promotes the trapping of particles. (Rummens H.E, 2004). In addition, this sudden contraction induces 

local vaporization (flashing) (Prusek T, 2013) which cause precipitation of soluble species. Therefore, the 

deposit is the result of two processes, the precipitation of soluble species at the wall, associated with the impact 
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of particles formed in situ by precipitation, and particles resulting from corrosion of surfaces upstream and 

transported at the wall (Pointeau V, 2014).  

 

Figure 1: Clogging phenomena in PWR’s SG (EDF source) 

The foils of the upper tubes support plates, hot leg side and placed in the peripheral areas are considered as 

the most clogged. For this reason, the thermohydraulic conditions of the COLENTEC tests are preferentially 

representative of this zone of the steam generator. The fluid at the top of the tube bundle of the steam generator 

is a two-phase liquid / vapor flow, 277 °C, 61 bar, and a void fraction of up to 80%. We can therefore assume 

that a dispersed droplets pattern arrives at the 8th TSP (see Figure 3).  

The first results of EDF investigation identify the pH as an important factor (Corredera G, 2008). All the TSP 

clogging affected plants run at target pH25°C of 9.2. In contrary most of the plants having same type of SG and 

running at target pH25°C 9.6 seem not affected by TSP blockage.  

The clogging deposits are mainly composed of magnetite (Fe3O4). With tracer injection (59Fe), -Ray emitter, 

a nondestructive estimation of the deposit rates and a measure of the kinetics of deposition become possible 

on line at nominal conditions. The in-situ technique, which combines γ-spectrometry and radioactive tracing 

technique, has been widely used for more than 30 years in the CEA tests facilities. First, to measure the hideout 

and hideout return of sodium (Na) in the confined area of SG mockups ( (Brunet JP, 1987 july), ( (Schindler P, 

1995 August 7-10). The tests performed under two-phase flow liquid/vapor conditions were representative of 



the secondary conditions of the PWR steam generator. More recently, tests under conditions representative of 

the primary side of the PWR have helped to understand the transfers of contamination (Blet V, 2007).  

In the case of Colentec tests, the 59Fe will allow powerful parametric sensitivity analyzes to access the impact 

of chemistry and thermo-hydraulic parameters on the clogging phenomenon and to have the answer of this 

influence online. However, this is the first time this technique has been used in such an environment and it 

remains a challenge. 

III. COLENTEC: A THERMOHYDRAULIC AND CHEMICAL REPRESENTATIVE TEST FACILITY 

Description of the experimental set-up 

The experimental COLENTEC set-up consists of three thermal-hydraulic loops to reproduce the conditions 

encountered in the secondary side of a SG at the 8th level tube support plate (Schindler P, 2012). The fluid at 

the top of the tube bundle of the steam generator is a two-phase liquid / vapor flow, 277 °C, 61 bar, and a void 

fraction of up to 80%.  

 

 

Figure 2: Schematic view of Colentec Tests Loop.  Figure 3: Two phase flow pattern 

 

A precise description of the Colentec test set-up is given by (Schindler P, 2012). The primary circuit connects 

to an auxiliary boiler, which provides water at operating conditions, pressure and temperature, representative 

of the primary of a PWR (350°C, 155bar). This loop connects to the secondary loop by a boiler and a test 

section (Figure 2). The boiler placed upstream of the test section, provides the thermal-hydraulic conditions at 

the selected steam quality. The primary fluid, passing through the tubes of the test section, maintains a 

representative heat flux. A steam condenser associated to a cooler placed downstream restores the sub-nucleate 



boiling conditions and a pump ensures the fluid circulation. A condensate tank, placed after the steam 

condenser, ensures a buffer volume. Figure 4  gives a general view of the Colentec test facility 

Test section  

The test section (Figure 4) is a scale mock-up of a portion of the 8th TSP. It is composed of 4-SG tubes. The 

TSP of the SG mockup has been designed with movable test coupons in the four quatrefoils (Schindler P, 

2012), to preserve the deposits in term of mass and localization and to ensure the possibility of characterizing 

the deposits (Pointeau V, 2014). 

The Chemical and Volume Control System 

Connected at the condensate container there is a Chemical and Volume Control System (CVCS). This circuit, 

functioning at room temperature, measures chemical parameters (pH, Redox, O2, conductivity) adjusts the fluid 

chemistry and purifies if necessary. Periodic analyzes show the evolution of iron concentration and an injection 

device makes it possible to adjust this concentration. 

 

Figure 4: Colentec stet up and the SG mock up associated 

IV. CIRENE AND CLARINETTE TESTS FEEDBACK 

In order to determine the procedures for implementing 59Fe injections and to size γ-spectrometry techniques, 

we used the Cirene and Clarinette test methods carried out in 2007 (Blet V., 2007) and 1995 (Schindler P, 1995 

August 7-10). 



Description of Cirene test loop results 

The CIRENE loop is dedicated to the study of activated corrosion products deposit on core and steam generator 

(SG) tubes surface areas, PWR’s primary side. Cirene loop simulates a core with four zircaloy fuel claddings 

representing a PWR fuel assembly geometry and a primary heat exchanger with four SG tubes. Tests reproduce 

the thermal-hydraulic and chemical representative conditions of a French PWR. The primary side thermal 

hydraulic conditions of a PWR is a monophasic liquid flow, 350°C 155 bar. Cirene 2007 tests studied the 

contamination transfer of corrosion products, primary side of a PWR, during nominal conditions and shutdown 

periods. The thermal hydraulic conditions applied favored the deposition at the upper part of the fuel assembly 

mock-up by sub-nucleated conditions (Blet V, 2007). The test was performed with a continuous injection at 

the inlet of the core section of iron and nickel solutions to be representative of the potential contamination level 

of a French PWR. The radioactive isotopes used for this type of tests were respectively 58Co and 59Fe. The 

physical half –lives of 59Fe and 58Co are respectively 44.5 days and 70.8 days. 59Fe has two -peaks, one at 

1099 keV (56%) and the other at 1291 keV (44%) and 58Co only one at 811 KeV (99%). For the measured 

spectrum, this only 3 peaks are considered.   

The use of multi-radiotracers made it possible to make assumptions about the formation of mixed oxides of 

nickel ferrite, simple chromite or magnetite, these species not having the same solubility temperatures.  

The injection tank was prepared under the same chemical conditions of the Cirene loop conditions. This 

radiotracer injection device has been placed downstream of the stable element injection device. The main 

injection rate, in terms of injected activity, is ~ 38 kBq/h including 25 kBq/h of 58Co and 12.5 kBq/h of 59Fe 

(see orange graph Figure 5) (Blet V, 2007). No Injection performed during the weekends. After 15 days, the 

injected total represents 825 kBq, 465 kBq as58Co and 360 kBq as59Fe. 

The on line -measurement was performed using HP-Ge -detectors. One of the detectors was placed at the 

upper part of the core and a second one at the SG section inlet. The detectors were collimated by lead and the 

measuring set placed at 1cm of the thermal jacketing. The relationship between the detector collimator diameter 

and the distance to the measuring point determines the measurement angle. Under these conditions, the 

sensitive measurement volume corresponds to about a 25 cm height zone at each measurement locations (Blet 

V, 2007). The -counting was usable 2 hours after the start of the first radioactive tracer injection sequence for 

a counting period fixed at 3600 s. 

This measurement is considered comfortably achievable because of the position of the deposit, the favorable 

hydraulic thermal conditions, the choice of multiple radiotracers and the volume of the loop, 50L taking into 

account the pressurizer of 25L, involved with respect to the flow (~ 5000 L) / h. 



 

Figure 5 : Cirene - deposit evolution measure by γ counting ( (Blet V, 2007) 

Description of Clarinette test loop results 

Clarinette test loop (Brunet J.P., 1987 march) was built specifically to study corrosion problems in the 

secondary side of the PWR' Steam generators. This loop studied the hideout and hideout return in the confined 

area of the PWR SG using a radio tracing technique. The program ended in 1996.  

This loop was representative of the secondary side of a SG with a two-phase flow liquid/vapor. The first 

radioisotope used was 24Na (Brunet JP, 1987 march) (Brunet JP, 1987 july) then 22Na (Schindler P, 1995 August 

7-10). 24Na has a half-life time of 15 hours, a single -peak at 1330 KeV. 22Na has a half-life time of 2.6 years 

and a single  peak at 1275 KeV. The use of 22Na offers a longer test period with a lower stable Na 

concentration. Therefore, hideout kinetics is more accurate.  

The tests were performed with a 22Na volume activity established at 37 KBq/h. The Na/22Na (µg/Bq) ratio 

remains constant and monitored by regular secondary fluid samples. The volume of the loop was ~ 70 L taking 

into account a buffer tank (50L), and the flow rate was similar to that of the Cirene test loop.  

The point to be measured was the confined zone between the tube and the TSP. The relationship between the 

detector collimator diameter and the distance to the measuring point determines the measurement angle. The 

on line -counting has been performed with only one NaI detector. This detector was collimated by lead and 

the measuring set placed at 1cm of the thermal jacketing. Under these conditions, the sensitive measuring 

volume corresponds to about 2 cm height zone at the measurement location. 2cm correspond also to the 



thickness of the tube support plate. These measurement conditions are close to the Colentec tests because of 

the position of the deposit. In this case also, -counting is usable 2 hours after the beginning of the radioactive 

tracer injection sequence for a counting period fixed at 3600 s.  

Conclusion  

The results of the Cirene and Clarinette campaigns are interesting for the projection of the Colentec test 

program.  

Clarinette tracing techniques are very close to Colentec's conditions. The activity of Colentec's standard 59Fe 

source is 6.4 MBq, in the same range as that of Clarinette (10 MBq). In addition, 59Fe and 22Na are both 

energetic γ-Ray emitters, in a very close range. 59Fe has two peaks one at 1099 Kev (56%) and the other at 

1291 Kev (44%). 22Na has a single  peak at 1275 Kev.   The γ-counting of Clarinette was operational two 

hours after the first injection sequence for an acquisition time of 3600 s. We can assume also that the 

background noise of the area around Colentec is very close to the Clarinette background noise, because 

Colentec’ loop is placed in the same area then Clarinette’ loop. We notice that the quantities of radiotracer 

injected will be almost the same. The choice of the  Ray-detectors is different, a NaI scintillator detector for 

Clarinette and a High Purity Germanium semi-conductor for Colentec. In clarinette’ tests, only 24 hours (1 

day) are needed to determine the kinetics of sodium sequestration, because we already know the kinetics, 

deduced from previous tests. 

In the Cirene test, the interesting point is the change in pH condition, which is the goal of the Colentec test 

program. Each phase of the test has a minimum duration of 4 days. The graph shows that the kinetics of 

deposition according to the conditions is perceptible on 1 day but that it becomes quantifiable over 2 or 3 days. 

As the change in chemistry and pH occurred after 8 days (phase 3), then the repercussion on kinetics deposition 

is measurable in a day. 

In summary, if each test phase with a change in pH condition is programmed every 24 hours, to sign the kinetic 

variation, it will be important to obtain in situ kinetics for the reference pH. In addition, of course it will be 

necessary to have a sufficiently large signal in the tube support plate. 

 

 MEASURE OF THE CLOGGING PHENOMENA KINETICS 

59Fe choice 

The deposits are mainly composed of magnetite (Fe3O4), the -tracing consists in labeling the 56Fe by 59Fe so 

that, the measurement of the kinetics of the deposits is possible by -Ray spectrometry.  56Fe stable and 59Fe 



radioactive isotopes have the same electronic configuration, so the identical physical and chemical properties. 

The only isotopic effect is the mass difference. This effect could affect the kinetics of the chemical reactions, 

but between 56Fe and 59Fe the difference mass is less than 5%. Moreover, the amount of 59Fe involved is 

negligible compared to the stable 56Fe. The saturation concentration of iron in the secondary fluid under the 

test conditions is 5.6 μg/L. The activity of 59Fe is 1.81015 Bq/g and the activity of the standard source 6.4 106Bq 

that corresponds to 3.6 ng of 59Fe.  

In the Colentec tests, it is necessary to selectively measure low levels of 59Fe activities in a radioactive 

environment.59Fe is an energetic γ-Ray emitter. It has 2 peaks above 1 Mev, one at 1099 keV (56%) and the 

other at 1291 keV (44%) that are detected by γ-spectrometry at very low concentrations. 

Then, to carry out a precise measurement in the deposition zone, it is necessary to be able to discern the 

deposited activity, the activity due to fluid and the fouling deposits (Figure 6). The validity of the measurement 

relies also on the focusing in a specific area, placed at the center of the TSP, to be representative of the heat 

flux of the 4 tubes. In short, to measure the impact of the studied parameters (chemistry or thermohydraulic) 

on the kinetic of clogging deposits, the active environment must not hide a local increase or decrease of 59Fe 

in the TSP. 

The activity of testing hall should be naturally very low (40K potassium peak is above 1400 keV).   

 

Figure 6: Schematic view of the TSP zone  

 



V. SIZING OF THE GAMMA SYSTEM AT THE TSP LEVEL 

Gamma Spectrometry selection (Allinei PG, 2011) 

The detection efficiency makes it possible to connect the peak area observed on the γ-ray spectrum with the 

corresponding activity of radioelement 59Fe. This depends of the energy of the γ-Ray radiation, its attenuation 

in the measured area, the type of detector selected and its useful volume.  

The physical parameters (geometry, detector size, shielding) have been optimized to ensure maximum 

detection sensitivity and optimal measurement of the deposition area. Due to the general environment, a low 

activity of 59Fe present in the lobes with respect to the thickness of the TSP and the amount of 59Fe present in 

the secondary fluid, the γ measurement of 59Fe required a high degree of accuracy in sizing. It was therefore 

necessary to choose a detector capable of measuring then selectively locating low levels of 59Fe activity in 

this specific environment. This requires detectors family equipped with a large volume crystal (high sensitivity 

criterion). Two families of detectors are suitable: 

1) The scintillators family based on a crystal associated with a photomultiplier. In addition, in this family two 

types of crystals are suitable for these measurements: LaBr3 and NaI.  

2) The semiconductor family using a high purity germanium crystal (HP-Ge). The evaluation criterion used 

to select the detector was to obtain the lowest detection limit for 59Fe emission line energies (1099 and 1291 

KeV). This type of detector works if the crystal (HP-Ge) is maintained at liquid nitrogen temperature (~ -195 

° C). The nitrogen tank requires regular filling. Since this constraint has repercussions in test management, it 

was taken into account when analyzing choices. 

Back ground noise modeling 

Realistic and specific modeling of this area was performed to determine the most appropriate -Ray 

spectrometer. Modeling of the 4-tubes steam generator mock up took into account, as much as possible, the 

primary and secondary thermal and hydraulic design conditions. On the secondary side, the temperature the 

range of void fraction is up to 85% and the average density of the two-phase flow fixed at 109 kg/m3(see §. 

III). As an indication, the broached plate of the 4-tubes SG mockup is 3 cm tall, representative of that of the 

French PWR SG. The broached holes are quatrefoil forms. The pitch of the SG mockup tube is the same as 

the pitch of the French PWR SG’s tubes.  



 

Figure 7: Background noise modeling, comparison with a real background 

To carry out this modeling, we used the feedback coming from Cirene gamma counting techniques. The 

counting rate obtained for a 30% coaxial germanium detector inserted in a lead collimator is 20 c/s in the 20-

2000 Kev range. 

The first step of the study is to determine a natural and reliable background modeling of the detector 

environment (Figure 7). It is numerically determined with the MCNPIV code simulating the transport of X-

rays and gamma photons. Modeling provides a spectrum very close to the measured spectrum. 

This spectral distribution of the background noise is placed in the modeling of this detector. The simulated 

count rate is in these conditions of 1.9 10-2 c/s. In this way, we obtain the normalization coefficient that links 

the simulation to the actual count. 

Two detectors are selected a NaI and a Ge-HP. The comparison of the detector performances requires to 

express the detection limits in Bq instead of c/s. The second step consists of modeling the 4-tubes SG mock 

up with the MERCUREV code (Figure 8), and then calculating the efficiency of the γ-detector with the 

MCNPIV.  

For an activity of 1Bq/cm3, the modelling shows that with a HP-Ge crystal the peaks of 59Fe are visible, for a 

realistic counting time of 1200 s (see Figure 8). The selected detector is the detector with a High Purity 

Germanium monocrystal (HP-Ge). This detector is characterized by an excellent energy resolution, and during 

the Colentec tests, other phenomena will surely degrade the performance of the detector. 

The atmosphere around the detector is 40°C and the need to ensure a thermal regulation of the NaI makes its 

use as complex as the use of a detector Ge cooled by liquid nitrogen.  

 



  

Figure 8 : 59Fe in the global spectrum with 1Bq/cm3-Comparison between NaI and HP-Ge Detector 

 

Detection threshold 

These calculations are based on the conventional detection threshold (SD) formula: 

         

𝑆𝐷(𝑠−1) =      
4.4 ∗ √1 + 𝑅 ∗ 𝐵

𝑡
 𝐿𝐷(𝐵𝑞/𝑐𝑚3) =

2 ∗ 𝑆𝐷

𝐼𝑔𝑎𝑚𝑚𝑎 ∗ 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
 

R:  peak width at half-height, B: average background radiation on the area surrounding the peak, t: acquisition 

time. I gamma: intensity of 59Fe peak at the considered energy; Efficiency: counts per second in the peak for 1 

photons/s/ cm3 emitted by the 59Fe source.  

Table1 presents the results of the modeling, the detection thresholds are calculated for an acquisition time of   

1200 s. These results indicate that the Ge is much more efficient in terms of the detection threshold. For an 

activity corresponding to the limit of detection, the peaks are perfectly identifiable and measurable. Figure 9 

gives the 59 Fe global spectrum with 13 Bq/cm3. 

 

59FePeak 

(keV) 

Detection 

threshold (s-1) 

Gamma 

emission 

(%) 

Efficiency  

(c/s pour  

1 Bq/cm3) 

Detection Limit 

(Bq/cm3) 

Ge coaxial 30% (selection modeling ) 

1099 2,53 10-2 56% 6,92 10-3 13,06 

1291 2,1 10-2 44% 6,65 10-3 14,37 

 NaI 3 x 3 inch (selection modeling) 

1099 2,53 10-2 56% 2,39 10-2 25,63 

1291 2,1 10-2 44% 2,34 10-2 27,48 

 

Table 1: Comparison of detection thresholds of Ge and NaI detectors (Tc 1200s) 

 



 
 

Figure 9: 59Fe Spectrum in the global Spectrum with 13 Bq/cm3 

 

Sizing of the radiation protection systems  

The third step is to demonstrate the ability to locate a zone. The results of the MERCUREV calculations have 

shown that it is necessary to protect the area around the Tube Support Plate. To discriminate the signal due to 

the deposit, the SG mock up is inserted into a tungsten screen ( 

Figure 10a). To measure specifically the central area, it is necessary to adjust and then increase the thickness 

of the protection system on both sides of the measured area (see 

Figure 10b) for a better signal-to-noise ratio. A tungsten collimator, with a single opening is around the TSP 

zone, the opening in the TSP axis. In addition, a lead collimator protects the -Ray detector. In this context, 

the detection threshold of HP-Ge increases to 58 Bq/cm3. The main objective of the study is to detect and 

measure the deposits in the central area, due to the representativeness of the thermal flux in this zone (see 

Figure 11).  

The thickness of the different protection systems results of the materials, tungsten having a higher density 

than lead. At 20°C lead has a density of 11.35 g/cm3 and a melting point of 327 ° C compared to tungsten, 

which has a density of 19.3 g/cm3, a melting temperature of 3420°C and its coefficient of thermal expansion 

is very low.  



 

Figure 10: Sizing of the tungsten screen at the TSP level 

 

  

Figure 11: On line -counting at the SG mock up level.  

 

 

Detector positioning 

Two types of positioning are compared using MCNP code in order to determine the most efficient detection. 

The first detector, diameter 7cm, thickness 2.5cm, is inserted in a vertical collimator. The second germanium 

detector, diameter 5.5cm, length 5.5cm is inserted in a horizontal collimator.  

The answer of the two types of semiconductor detectors is compared using the MCNP code (Figure 12). The 

goal is to determine which detector and positioning gives the best detection. To facilitate the reading of the 

Figure 13, the traces have been shifted. The detector inserted in a vertical collimator gives the most efficient 



signal. Of course, this type of configuration, partially hidden crystal, will require a specific experimental and 

numerical calibration phase. 

 

 
 

Figure 12 : Study of the -Ray detector positioning  

 

Figure 13 : Comparison of the results  

 

Deposit measurement and evolution perspectives 

The fourth step is the ability to measure the evolution of activity in each lobe. It can provide additional data 

to understand and analyze the deposit formation mechanisms. For example, the outer lobes are not submitted 

to the same heat flux as the inner lobes. The influence of the heat flux could be measured on line with variated 

focus positions of the measurement.  To obtain a measurement of each lobe, the mapping of the signal emitted 

by the TSP lobes was carried out by modeling. Figure 14 shows the efficiency variation of a quatrefoil for a 

simple rotation of the measuring system. As expected the lobe with the best measurement is the outer lobe 

(blue line Figure 14). The shape of the responses of the four lobes being quite similar, the result of the 

modeling confirms that it is not be trivial to follow on line the distribution in the 16 lobes. Such a complex 

distribution of activity cannot be simply determined by rotations of a measurement system around the test 

section. This option requires an adaptation of the measurement system, associated with a modeling 

reconstituting the measure by lobe. The measuring system and the data analysis associated will progressively 

evolve according to the first tests results.  

The use of a collimator with reduced opening should allow better selectivity of the lobes (Figure 15). 

However, this type of collimator involves a significant reduction of photon flux detected. Its precise 

characteristics will be determined after the first tests. The intensity of the photon beam arriving at the detector 

will be known, as will the minimum aperture of the collimator compatible with realistic time measurements. 

An adaptation of the collimator detector will be facilitated by the change of its front part. 



 
 

Figure 14: Efficiency of the-Ray detector as a 

function of the measured zone  
Figure 15 : Collimator with reduced opening 

VI. MEASUREMENT CONFIGURATION 

Detectors position 

The complete measurement equipment includes a γ-detector 1, placed at the TSP level, a γ-detector 2 placed 

upstream the SG mockup and downstream of the boiler at a pipe section level, a γ-detector 3 inserted in a low 

background noise shielding measuring the 50 mL fluid samples. 

A lifting table raises the detector 1 (Figure 16) inserted in its collimator at the TSP level. A horizontal 

movement system adjusts the position of this detector. The detector 2, type 1 detector, installed in front of a 

pipe section (ND 80, length 80cm) upstream of the test section and downstream of the boiler, tracks in line 

the volume activity of the fluid. A highly efficient detector 3, placed in a very low background noise castle 

ensures the measurement of the volume activity of the fluid. This measurement enables the determination of 

the signal emitted by the fixed deposits on the TSP walls whatever the thermal-hydraulics and chemical 

functioning regime of the loop.  Figure 16 shows the detectors implantation without the thermal jacketing.  

At the start of the test campaign, liquid phase sampling is required to compare on-line measurement and fluid 

activity. During the test campaign, periodic samples check the evolution of the 59Fe/56Fe (Bq/μg) ratio. The 

volumes of 50 ml of secondary fluid are collected on a CVCS sampling line. The iron concentration is 

monitored by a UV spectrophotometry. At the same time, radiochemical analyzes of secondary water samples 

verify the instantaneous mass balances. 



 

 

 

Figure 16: Measurement configuration  

Injection systems 

There are 3 points of injection (Figure 17) in the secondary circuit. The first one I1 is placed at the boiler inlet 

(temperature: 270°C – liquid water), the second one I2 at the SG mockup inlet (temperature: 277°C – two-

phase flow), and I3 in the test section upstream the TSP. Two types of injections are possible, soluble species 

or particle species, associated or not with its isotope 59Fe. The injections of iron determine the concentration 

of soluble and particles species during the phase tests. The two-injection systems 56Fe and 59Fe are prepared 

and connected to the test loop.  

 

Figure 17: injection points  



The injection devices (Figure 18) consist of 8 liters ‘tank (useful volume 6l), made of stainless steel for 56Fe 

device, and polypropylene for 59Fe device. These are equipped with a level sensor, various tubes connected to 

circuits: nitrogen bubbling, nitrogen blanket, vent, and pump. The injection is carried out using a metering 

pump "high pressure", with a flow range from 0 to 40 ml/mn.  

 

 

 

 

Figure 18: Injection devices 

VII. DESCRIPTION OF THE COLENTEC TESTS 

The next Colentec’ test aims to determine the influence of pH on the kinetics of clogging deposition. During 

the test, the secondary fluid conditioning will be representative of secondary fluid of the French PWR’SG. All 

pipes and components of the secondary loop are made of stainless steel (AISI 316), with the exception of the 

carbon steel boiler, which is supposed to provide a part of iron source term. Therefore, the total iron 

concentration is monitored by measuring CVCS samples by UV-spectrophotometry5 . These results are 

verified by ICP-MA6spectrometry, performed by an accredited laboratory.  

A magnetite solution is prepared in an injection tank and iron is injected when the measurement of the CVCS 

samples indicates a decrease in the iron concentration in the fluid. The iron injection rate is calculated to 

maintain the correct concentration.  

                                                           
5 UV : Ultraviolet–visible spectrophotometry 
6 ICP-MA : Inductively-Coupled Plasma Mass spectrometry 



The injection of the 59Fe radioisotope occurs only when the thermohydraulic and chemical operating 

conditions are stable. The selected injection point is I2 placed at the SG mockup inlet.  

The standard source activity is 6,4 MBq. It is diluted in a 6L tank. The initial injection rate is 14 KBq/h.  

During this test, all detectors are used. This includes the γ-detector1, placed at the TSP level to measure the  

signal of clogging deposits, the γ-detector 2 placed at a pipe section to measure the fluid activity, and the γ-

detector 3 inserted into a low background noise shielding for measuring the 50 ml CVCS samples an check 

the secondary fluid mass balance. 

The 59Fe fluid activity is also monitored by measuring the CVCS samples by γ-counting. The two types of 

measurements implemented simultaneously, allow comparison between the offline measurements (50 mL 

CVCS samples) and the online measurement and then evaluate deposits at the walls. On other hand, the CVCS 

samples monitor the ratio 59Fe activity A(Bq/l) and 56Fe concentration C(μg/l).  

During the test, the on-line γ-counting gives an indication of the deposit evolution. This raw signal is 

calculated taking into account the active period of the radiotracer. At the end of the test, the modelling 

techniques with MCNPIV and MercureV allows extracting the results of the clogging deposit only. 

After a first adjustment test, the next step will be a signal processing performed online. 

VIII. CONCLUSION AND PROSPECTS 

The use of 59Fe as 56Fe a radiotracer is very advantageous, even if this type of measure requires precise 

modeling, because of the position of the clogging deposit at the wall just at the inlet of the flow hole of the 

tube support plate. In addition, the activity of the standard source 59Fe chosen to be handled in a ventilated 

chemical hood, is relatively low. 

The perspectives are important and very useful for the Colentec program to follow the deposit and to determine 

online the influence of the various parameters having an impact on the clogging phenomenon and to check 

the hypotheses of the formation and the evolution of the clogging. 

The deposit kinetics are accessible and in this way the impact of thermal hydraulic and chemical parameters. 

59Fe can be only associated with soluble species to determine their effects on the formation and evolution of 

clogging, or only associated with particle species to determine their contribution in the representability of the 

clogging deposit. The size of the particles involved in the phenomenon can be also studied. In this case, the 

injection point will be placed at the entrance of the SG mock-up to minimize the trapping effect of the particles 

by the boiler. 



The γ-detectors and the area to be measured require specific protections. In addition, the position of the 

detectors requires specific adjustments. This is the only way to measure the kinetics of the deposit with 

sufficient precision. The MCNPIV and MercureV are the tools for sizing the measurement configuration, but 

also the tools for expressing the results, isolating the clogging deposition signal from the ambient noise signal.  

Tests with radioactive radionuclides require careful planning to match steady-state nominal conditions with 

the delivery date of the source. Test management is also tricky because HP-Ge detectors require regular 

nitrogen filling. The initiation of this type of tests using radiotracers is time consuming. The sizing and 

development phases must be precise and require constant adjustments.  

Nevertheless, in the end, these tests open up many opportunities to advance the understanding of clogging 

deposit formation and to choose the right remedies. 
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