

Advances in the RetD at CEA on ATF claddings

H. Palancher, J.C. Brachet, C. Lorrette, A. Michau, T. Forgeron, C. Delafoy, J. Bischoff, E. Pouillier, L. Rancoeur

► To cite this version:

H. Palancher, J.C. Brachet, C. Lorrette, A. Michau, T. Forgeron, et al.. Advances in the RetD at CEA on ATF claddings. 7th EPRI/INL/DOE Joint Workshop on Accident Tolerant Fuel, Feb 2018, Fort-Worth, United States. cea-02339254

HAL Id: cea-02339254 https://cea.hal.science/cea-02339254

Submitted on 14 Dec 2019 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

FROM RESEARCH TO INDUSTRY

<u>Ceaden</u>

framatome

ADVANCES IN THE R&D AT CEA ON ATF CLADDINGS

J.C. Brachet, Ch. Lorrette, L. Rancoeur CEA, DEN, DMN (Department of Nuclear Materials) Saclay

A. Michau CEA, DEN, DPC (Department of Physico-Chemistry) Saclay

F. Schuster CEA, DFP, DPG, Saclay *T. Forgeron* CEA, DEN, DISN, Saclay

<u>*H. Palancher*</u> CEA, DEN, DEC (Department of Fuel Studies) Cadarache

J. Bischoff, C. Delafoy FRAMATOME

E. Pouillier EDF R&D, MMC Department

7TH EPRI/INL/DOE JOINT WORKSHOP ON ACCIDENT TOLERANT FUEL

Outline

1. Introduction

- 2. SiC/SiC cladding
- 3. Cr coated Zr based claddings
 - 1. Why Cr ?
 - 2. Out-of-pile behavior:
 - 1. Under AOO
 - 2. Under LOCA
 - 3. Behavior under irradiation:
 - **1.** Ion irradiation
 - 2. In-pile irradiation

4. Conclusions

BASES OF CEA-FRAMATOME- EDF R&D ACTIVITIES ON EATF

Fort-Worth, the 21st of February 2018

7TH EPRI/INL/DOE JOINT WORKSHOP ON ACCIDENT TOLERANT FUEL

| PAGE 3

Ceaden sic/sic claddings

A decade of R&D activity at CEA has been dedicated to the development of SiC/SiC composites for GFR fuel cladding application: 2005-2015

C. Lorrette et al., TOPFUEL (2015)

Focus on metal/ceramic hybrid cladding: a solution to leak-tightness

300 Inner and outer Leak-tight domain 2013/017621 A1 250 200 SiC/SiC layers with present-day CMC 200 Failure limit Stress $(\sigma_{\rm P} \sim 300 \text{MPa} - \varepsilon_{\rm P} \sim 0,9\%)$ 150 Patent WO -Middle thin (50-100µm) 100 Elastic limit metallic liner $(\sigma_{*} \sim 80 \text{MPa} - \epsilon_{*} \sim 0,04\%)$ 50 Selected on various criteria Beginning of microcracking – current reference is Ta (GFR) – 0 0 0.2 0.8 0.4 0.6 Elongation [8]

CEA « SANDWICH » CLADDING DESIGN

The benefits in terms of dimensional stability at high temperature make this concept very promising for ATFs

Adaptation of this concept to LWR conditions is under investigation with 3 main axes:
Recession in water under normal irradiation conditions,
Fission gas tightness,
Thermal conductivity.

QUENCH BEHAVIOR OF SIC/SIC AFTER A HIGH TEMPERATURE RAMP UNDER STEAM CONDITIONS

Experimental approach

Ceaden

Macroscopic results

- Integrity and geometry fully preserved for all specimen (see Zy4 for a comparison)
- Negligible material reaction:
 - \Rightarrow No weight change can be accurately measured
 - \Rightarrow Consistent results with paralinear oxidation kinetics

C. Lorrette et al., TOPFUEL (2017)

QUENCH BEHAVIOR OF SIC/SIC AFTER A HIGH TEMPERATURE RAMP UNDER STEAM CONDITIONS

Microstructural and mechanical characterization of quenched clad

Ceaden

C. Lorrette et al., TOPFUEL (2017)

- Mechanical properties remain at least unchanged (EP, $\sigma_{\gamma} \epsilon_m$) and may be even improved (higher tensile strength) which could result from an increase of the matrix strength.
- SEM evidences micro-crack density increase (but no dependence on exposure time)
 ⇒ No influence of pre-existing pores on micro-crack propagation

Innovative cLading maTeRials fOr adVAnced accidenT-tOlerant eneRgy systEms

Fort-Worth, the 21st of February 2018

7TH EPRI/INL/DOE JOINT WORKSHOP ON ACCIDENT TOLERANT FUEL

PAGE 7

Ceaden UO2±X /Sic CHEMICAL COMPATIBILITY

Methods

- Knudsen cell mass spectrometry to characterize reaction gases (i.e. open system ~clad failure)
- Diffusion couples (i.e. closed system ~accidental increase of the temperature)

Conclusions

- The chemical reaction between SiC and UO_{2+x} is limited up to 1514 K.
- CO gas along with the generation of USi_x are detected for temperatures higher than 1514 K in open system.
- A liquid phase forms between 1850 and 1950 K in the UO_{2+x}/SiC system.

J. Nucl. Mater. 487 (2017) 380-395

Results are encouraging for the use of SiC/SiC cladding as EATF in LWRs

Fort-Worth, the 21st of February 2018

Outline

1. Introduction

- 2. SiC/SiC cladding
- 3. Cr coated Zr based claddings
 - 1. Why Cr ?
 - 2. Out-of-pile behavior:
 - 1. Under AOO
 - 2. Under LOCA
 - 3. Behavior under irradiation:
 - **1.** Ion irradiation
 - 2. In-pile irradiation

4. Conclusions

CEA SCREENING TESTS ON COATING

First screening tests started at CEA about 10 years ago:

Ceaden

	C	oating	Architec	ture / period (λ*)	Total thickness ±0),2 μm
		TiN	Sir	nglelayered	2,6	
	CrN			nglelayered	3	
	and AITiN	Multilayered, $\lambda = 2 \times 8 \text{ nm}$		3,4		
	CrN a	and AITiN	Multilayered, λ = 2 x 8 nm Singlelayered Singlelayered		3,2	
	Nb	82%V _{18%}			5	
	Nb _{67%}	Cr _{10%} Ti _{23%}			4	
		Cr		nglelayered	1 and 5	
			Multipass, $\lambda = 500 \text{ nm}$		7	
				red, λ = 2 x 5 nm	6	
	C	Cr and	Multilayered, $\lambda = 2 \times (50 \text{ to } 80) \text{ nm}$		5,5	
	Nb _{67%} Cr _{10%} Ti _{23%}			ed, λ = 2 x 300 nm	6	
			Multilayered, $\lambda = 2 \times 400 \text{ nm}$		4	
weight gain (mg/cm ²) 15 14 13 	Crn/AITIN	EX.	steam oxidati = 850s at 110 _{eight-gain} ~ 10% fo	ion in DBA-LOCA cond 0°C + direct water qu pr uncoated Zry-4 - oi	litions — enching ne sided oxidation)	
10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - Fert-Worth, he 2	NbcrTi Cr Cr M10 M100 Cr (1µm) Cr (5 µm) Cr (5 µm) Cr (5 µm) Cr (5 µm) Cr (5 µm) Cr (7		M800 M600	Metallic Cr coatings show the best steam oxid resistance at HT ⇒ selected for further optimization		

AS-RECEIVED 10-15 µm Cr COATED Zr-BASED CLAD

Special PVD deposition process (CEA patent) on 50 cm long Zr-based clad segments

- => Dense and very homogenous coating obtained (no cracks)
- \Rightarrow Very good bonding on the M5TM substrate (no interfacial defects)
- ⇒ No modification of the as-received metallurgical conditions/properties of the M5[™]
- Multi-scale characterization: Optical microscopy, XRD, SEM-EBSD, EPMA, TEM (High resolution mode) on thin foils (FIB)...

A mature coating process

7TH EPRI/INL/DOE JOINT WORKSHOP ON ACCIDENT TOLERANT FUEL

Ceaden Cr COATINGS FOR ENHANCED PERFORMANCES 1- A00

Improved corrosion performances

- Cr-coated samples exhibit significantly reduced weight gain in autoclave (1-3 mg/dm²) with very low variation with time
- 2. No delamination of Cr-coating observed
- 3. No dissolution of Cr in water

framatome

- 1. Mechanical properties of coated samples fall within the range of uncoated samples
- 2. Similar mechanical behavior: ease of licensing

PAGE 12

Cr COATINGS FOR ENHANCED PERFORMANCES <u>ceaden</u> 2-LOCA

Isothermal creep ("EDGAR") test (internal pressure, steam, 600-1000°C):

- 1. Cr-coating HT strengthening effect, especially within the α_{7r} temperature range
- 2. For any internal pressure investigated, creep time to rupture of Cr-coated M5[™] increased by a factor of \sim 2,5 vs. the uncoated cladding
- 3. Significant decrease of the balloon size and/or rupture opening of Cr-coated M5[™]

One-sided steam oxidation at 1200°C and quenching behavior

- 1. For the Cr-coated M5[™] significant delay of the oxidation time (inducing fragmentation upon final (direct) water quenching) due to much slower HT steam oxidation kinetics
- 2. For the Cr-coated M5[™], significant increase of critical oxidation time to achieve macroscopic post quench brittle behavior (RCT at 135°C)

Uncoated M5™ 600 °C Coated M5™

J.C. Brachet et al.,

TOPFUEL (2017) TOPFUEL (2016)

Fort-Worth, the 21st of February 2018

Cr COATING MICROSTRUCTURAL EVOLUTION AND HARDENING UNDER IRRADIATION (Zy4 SUBSTRATE)

<u>Ceaden</u>

(*) "Thermocalc®" + CEA"Zircobase", i.e., CEA thermodynamic database for multicomponent Zr based alloy

7TH EPRI/INL/DOE JOINT WORKSHOP ON ACCIDENT TOLERANT FUEL

PAGE 15

- No evolution of the C15 phase
- □ No obvious evolution of the Zr/Cr profiles after irradiation (the interface remains about 100 nm thick) – as observed on samples irradiated in OSIRIS (~2 dpa, EPMA)
- The interface remains crystalline (TEM)

 \Box Atomic planes are found in coherence (HRTEM) \rightarrow excellent bounding (adherence) Fort-Worth, the 21st of February 2018 7TH EPRI/INL/DOE JOINT WORKSHOP ON ACCIDENT TOLERANT FUEL

BEHAVIOR OF Cr/Zr INTERFACES UNDER ION IRRADIATION (Zy4 SUBSTRATE): HRTEM AND NANO-EDS (2/2)

HRTEM analysis of ion irradiated interfaces

Interface Zr/C14

Ceaden

Interface C14/Cr

7TH EPRI/INL/DOE JOINT WORKSHOP ON ACCIDENT TOLERANT FUEL

IRRADIATION TEST IN THE HALDEN REACTOR

Ceaden

START of the irradiation test in July 2017

CEA-AREVA-EDF provided Cr coated cladding specimens for 4 rodlets: 3 M5 and 1 Zry-4 with ~7 or ~15 μ m thick Cr coating (special PVD process)

Seg.	CEA	KAERI	WEC/OR NL	ORNL	EPRI	REF		
	Rod 1	Rod 2	Rod 3	Rod 4	Rod 5	Rod 6		
Тор	~7 µm Cr	~50 μm <u>CrAl</u>	Cr coat		Mo/ <u>Nb/Zr-</u> <u>Nb</u>	Zry-4		
Top- mid	~15 µm Cr	ODS + ~50 μm <u>CrAl</u>	<u>FeCrAI</u>		Mo/Zr-Nb	Zry-4		
Bot- mid	~15 µm Cr	∼100 μm Cr/ <u>FeCrAl</u>	Cr coat	FeCrAl	Mo/ <u>Nb/Zr-</u> Nb	Zry-4		
Bottom	∼7 µm Cr	ODS + ~100 μm Cr/ <u>FeCrAl</u>	FeCrAl		Mo/Zr-Nb	Zry-4		
ALCYONE calculations used for irradiation design								

Fort-Worth, the 21st of February 2018

IFA-796 for LWR conditions

7TH EPRI/INL/DOE JOINT WORKSHOP ON ACCIDENT TOLERANT FUEL

IRRADIATION TEST IN THE HALDEN REACTOR

<u>Ceaden</u>

Interim visual inspection after about 50 irradiation days

Good behavior of the coating at this point: No evidence for any macroscopic delamination

IFA-796 for LWR conditions

Fort-Worth, the 21st of February 2018

7TH EPRI/INL/DOE JOINT WORKSHOP ON ACCIDENT TOLERANT FUEL

| PAGE 19

IRRADIATION TEST IN THE OSIRIS REACTOR

<u>Claden</u>

Analytical irradiation test performed in 2015 up to 2 dpa

Many irradiated samples with:

- 1. Different coating thicknesses (from 2 to 15 μ m),
- 2. Different coating processes,
- 3. Different Zr-based substrates: M5, Zy4, Q12,
- 4. Different sample geometries (flat and tubular). Uncoated references

Irradiation conditions:

- 1. Fast neutron fluence (E>1 MeV) at MFP: 1.2×10²¹ n.cm⁻²
- 2. Temperatures: 308 < T < 350°C
- 3. NaK environment

Irradiation completed with the OSIRIS definitive shutdown (mid-december 2015)

IRRADIATION TEST IN THE OSIRIS REACTOR

Cl2den

First analyses (preliminary results) show that:

1. The Cr thickness is **stable under these irradiation conditions**: **no Cr diffusion** towards the Zr substrate (EPMA)

2. Excellent adherence of the Cr coating i.e. no local delamination: defects are very difficult to find (SEM)

Further studies should focus on high resolution measurements FIB/TEM and APT (currently under commissioning at LECI)

7TH EPRI/INL/DOE JOINT WORKSHOP ON ACCIDENT TOLERANT FUEL

COMPARISON BETWEEN IONS AND NEUTRON IRRADIATION: Ceaden **GOOD AGREEMENT**

lons

Hardening after irradiation at 400 ℃ – 15 dpa

□ Excellent adherence of the coating after ion irradiation

Neutrons (in-pile)

Hardening after irradiation at 340 ℃ - 2 dpa

25%

□ Excellent adherence of the coating after in-pile irradiation

Fractograph after tensile tests at 350°C on similar Cr coatings

Fort-Worth, the 21st of February 2018

7TH EPRI/INL/DOE JOINT WORKSHOP ON ACCIDENT TOLERANT FUEL

| PAGE 22

The use of NaK environnement could impact Zy mechanical properties

Chromium

Signal A = SE2

WD = 21.2 mm

^{□ 10 % - 20%}

Ceaden conclusions

CEA-FRAMATOME-EDF collaborative program on eATF: two cladding developments

- SiC/SiC cladding:

- \Rightarrow Longer term (>10 years) R&D with many challenges to overcome
- \Rightarrow Promising materials
- Zr based Cr coated claddings
 - ⇒ Mid-term (~10 years) R&D with negligible/limited impact on the geometry, mechanical, neutronic and thermal properties of the nuclear fuel assembly

 \Rightarrow Easier/faster licensing

- ⇒ Last generation of Cr-coated M5 nuclear fuel clad behavior shows enhanced performances under out-of-pile tests in both:
 - \Rightarrow Normal conditions
 - \Rightarrow LOCA conditions
- \Rightarrow Behavior under irradiation is actively investigated:
 - \Rightarrow OSIRIS test: completed
 - \Rightarrow HALDEN test: in progress preliminary results already available

⇒ In-pile tests are supported by well spotted ion irradiation experiments (fruitful approach) Fort-Worth, the 21st of February 2018 7TH EPRI/INL/DOE JOINT WORKSHOP ON ACCIDENT TOLERANT FUEL | PAGE 23

Ceaden Acknowledgements

M. Dumerval, V. Lezaud-Chaillioux, M. Le Saux, J. Ribis, A. Wu, E. Rouesne, S. Urvoy, P. Bossis, T. Guilbert, M. Le Flem, Y. Robert, J. Braun, C. Sauder CEA, DEN, DMN (Department of Nuclear Materials) Saclay

F. Lomello, H. Maskrot, C. Guéneau, F. Balbaud CEA, DEN, DPC (Department of Physico-Chemistry) Saclay

M5 is a registered trademark of FRAMATOME or Affiliate in the USA or other countries

Fort-Worth, the 21st of February 2018

7TH EPRI/INL/DOE JOINT WORKSHOP ON ACCIDENT TOLERANT FUEL

| PAGE 24

THANK YOU FOR YOUR ATTENTION