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Abstract 
 

Large Eddy Simulation (LES) consists in explicitly resolving the largest turbulent scales while the 

small-scale motions are taken into account by means of a subgrid-scale (SGS) model. Although it 

remains computationally expensive, LES seems to constitute an increasingly employed tool for 

engineering applications in fluid mechanics. In a nuclear context e.g., LES is a relevant approach for 

the numerical study and prediction of the thermal striping, which can occur during the functioning of 

sodium-cooled nuclear reactors and may cause some damage to the structures. Numerous experiments 

where three differentially heated jets mix inside a cavity were designed and conducted by the Japan 

Atomic Energy Agency for studying these phenomena. In order to evaluate the quality of LES using 

the CEA in-house TrioCFD code, a Verification and Validation study is proposed. Several LES of triple 

parallel jets are conducted with various grid sizes and SGS models. Following the idea of Celik et al. 

(2009), we look for the effective SGS kinetic energy under the form ���� = �Δ� + 	Δ
, where Δ is the 

grid size, � the order of the numerical scheme and � the order of the subgrid-scale model. In a first part, 

no SGS model is set and two different calculations allow to determine the values of the parameters in 

the above model. Then, a SGS model is added and its order of convergence is calculated. Thus, one can 

assess the quality of various SGS models, such as Smagorinsky and WALE. In the last part, a Validation 

of the results is proposed by comparing computed velocity profiles to experiment. The effects of grid 

resolution, SGS model and boundary conditions are discussed. 

1. INTRODUCTION 

 Thermal striping refers to the random temperature fluctuations resulting from the mixing of non-

isothermal flows and leading to thermal fatigue and crack appearance in the structures. The 

understanding and limitation of this phenomenon is of great interest in the nuclear reactors safety 

domain, and it has been the subject of various studies since the 1980s (Wood, 1980, Tokuhiro, 1999, 

Kimura et al., 2007). The Japan Atomic Energy Agency performed a series of experiments in water and 

liquid sodium to evaluate the mixing process along the jet and the transfer characteristics of temperature 

fluctuations from fluid to structure (Kimura et al., 2001, Miyakoshi et al., 2003). The existence of 

numerous associated experimental measurements gave rise to a CFD benchmark exercise which showed 

the overall ability of CFD codes to reproduces correctly the phenomena of interest (Angeli, 2015). 

 The CFD study of thermal striping requires unstationary approaches like DNS, LES or URANS to 

gain access to fluctuation intensity and frequency. In LES, the largest turbulent structures of the flow 

are calculated and the effect of small-scale motions is traduced by a subgrid-scale (SGS) model. As 

pointed out by Pope (2011), the ratio of resolved kinetic energy should reach 80% for a regular LES. 

Below the value of 80%, a LES is sometimes called VLES (Very LES) (Speziale, 1998). A value greater 

than 95% can be considered as a DNS (Celik, 2005). Thus, the quality of a LES can be assessed using 

the amount of kinetic energy in the subgrid-scales (Celik, 2009). Mathematically, this ratio can be 

expressed as follows: 
��� = ������������� (1) 

where ���� is the kinetic energy of the resolved motions and ���� the residual kinetic energy. While ���� arises from the solution of the calculation, the estimation of ���� requires a model. The residual 

kinetic energy can be related to the subgrid-scale kinematic viscosity ���� and the local mesh size Δ: 



���� = ������� �� (2) 

where C is a constant depending on the SGS model. For the Smagorinsky model, Benard et al. (2016) 

consider the value C = 0.1 and Yoshizawa et al. (1985) the value C = 0.043, judging that a value of 

0.094 is too large. Celik et al. (2009) suggest C = 0.165 and emphasizes that C can be taken within the 

range 0.05–0.30. 

 The grid convergence in LES has a particular meaning in the sense that a good LES is a DNS when 

the grid size tends to the Kolmogorov scale (i.e. the smallest scale in the flow). The spirit of LES to set 

a lower bound to the grid resolution involves the existence of a numerical viscosity which may be of 

the same order than the SGS viscosity (Celik et al., 2005), resulting in the deterioration of the 
��� ratio. 

Liu et al. (2006) note that the 
��� ratio is not necessarily improved by just reducing the grid spacing. 

The discrimination between the SGS contribution and the numerical discretization error is made 

difficult by their dependence to the grid size. Vreman et al. (1996) point out that any LES is polluted 

by two kinds of errors: the numerical error mentioned above, and a modelling error arising from the 

shortcomings of the SGS model. Following the notations of Celik et al. (2009), these two contributions 

write respectively, for any quantity φ: ��� !"# = "$%��	��%'	()* − "()* (3) � ,'!"# = "-.* − "$%��	��%'	()* (4) 

so that the total error is: �/,/!"# = "-.* − "()* = ��� !"# + � ,'!"#  (5) 

In these definitions, "()* is the resolved " field resulting from LES on any grid, "$%��	��%'	()* is the 

solution when the grid resolution tends to zero (i.e. the “exact” solution of the employed SGS model), 

and "-.* is the filtered DNS solution (i.e. without SGS model and when grid resolution tends to zero). 

It results from these definitions that if the individual errors are of opposite signs, the total error may be 

small (Celik et al., 2005). 

 Assuming that the right equations are solved, the solution of the filtered DNS should be an accurate 

representation of the real phenomenon. Hence the DNS solution is not needed and can be replaced by 

the experimental measurements. Unfortunately, obtaining the fine grid LES solution is rarely 

practicable in engineering applications. However it can be estimated by performing at least two 

simulations on different grids and using a Richardson extrapolation (Roache, 1998), based on a 

polynomial variation of the error: "0 − "� = ∑ ��Δ���20 + 3!Δ��4# (6) 

In this equation, the quantity "� is the numerical solution for the grid size ∆ and "0 is the extrapolated 

solution for ∆ → 0. The assessment of the numerical and modelling errors is part of the Verification 

and Validation (V&V) process (Schlesinger, 1979, Roache, 1998). The Verification part copes with the 

resolution accuracy of the governing equations (are the equations correctly solved?), including the 

estimation and minimization of the discretization error ��� . The Validation part handles the proper 

modelling of the physical phenomenon of interest (are the correct equations solved?) and relates to the 

magnitude of �/,/. 
 The present study is devoted to the V&V of LES of a triple parallel jet in the thermal striping context, 

and is focused on the hydraulic part of the phenomenon. Several LES with varying mesh sizes and SGS 

models are performed using the in-house CEA code TrioCFD. The case of explicit filtering is not 

handled. Thus the filter size and the grid size reduce to a unique parameter. The paper is divided as 

follows: the next section describes the experimental facility and measurement procedure. Then, the 

following section summarizes the numerical setup used for the simulations. Section 4 is dedicated to 

Verification with an estimation of the numerical errors and a discussion on the accuracy of subgrid-

scale models. Section 5 relates to Validation and proposes some comparisons between CFD results and 

experiment with an evaluation of the discrepancies. The last section draws several conclusions and 

considers some perspectives. 



2. EXPERIMENTAL SETUP OF THERMAL STRIPING FACILITY 

 The series of thermal striping experiments under consideration were performed by JAEA with 

varying parameters like the fluid utilized (water or liquid sodium), the velocity and the temperature of 

the jets. The present study is only focused on the water case under isovelocity condition. The water 

experiment is represented in Fig. 1. The test section is a rectangular tank limited by partition plates at 

front and back, and by a curved metal plate at the bottom with a raised flat part on which three nozzle 

outlets of rectangular cross section are designed. Their depth is 170 mm and their width is D = 20 mm. 

A metal test plate made of stainless steel is placed along one side wall to examine temperature 

fluctuations in the structure. The parallel jets are configured as one cold stream vertically flowing out 

from the center nozzle and two hot streams vertically flowing out from side nozzles. 

 

Fig. 1: Sketch of the mixing cavity (left) and jet exits (right) of the triple jet facility. 

 The experimental conditions used in the present work are summarized in Table 1 (Tokuhiro et al., 

1999, Miyakoshi et al., 2003). The velocity field is captured by Particle Image Velocimetry (PIV). The 

principle of PIV is recalled by Miyakoshi et al. (2003) and a schematic of the image capturing system 

is provided. The PIV system consists of a Nd-Yag laser, a CCD camera, a timing controller and a 

computer. The image size is 640 x 480 pixel and the spatial resolution is 1.3 x 1.3 mm. A field of 2520 

velocity vectors is obtained with a recording time interval of 1 ms. The accuracy of image analysis is 

one pixel or less by using the sub-pixel method. The system has a high measurement accuracy with an 

order of magnitude of the velocity measurement error around 0.013 m/s, corresponding to 2.6% of the 

average inlet velocity. 

Table 1: Experimental conditions selected for the numerical calculations. 

 Velocity (m/s) Temperature (°C) Reynolds 

Left and right jets 0.5 39 15,000 

Center jet 0.5 29 13,000 

 

 The temperature in the mixing area and the thermal exchange near the adjacent steel plate are 

measured by movable thermocouples, yet the comparison of temperature field is not of primary interest 

in the present study. JAEA provided numerous velocity measurements for comparisons with the 

simulations, under the form of time-averaged velocity components charts at typical positions. The 

whole of these data represents around 150,000 measurement points. 

3. NUMERICAL SETUP OF LES 

3.1 Governing equations 

 Although the hydraulics is the phenomenon of interest here, the choice is made to solve the energy 

equation to account for viscosity variations due to thermal fluctuations. The dynamic viscosity is 

defined as a polynomial function of temperature with values ranging in the interval 0.000663–0.000814 

Pa.s, being a maximal variation of 20%. Given the weak temperature difference between the jets 



(Δ5 =10 °C), the temperature is treated as a passive scalar. In LES, the large and small-scale motions 

are separated by means of a spatial filtering operation denoted by an overbar. The governing equations 

for resolved velocity 67, pressure �̅ and temperature 57 are as follows: 

- Mass conservation: 96:;9<: = 0 (7) 

- Momentum conservation: 96:;9> + 96:;6;?9<? = − 4@ 9�;9<: + 99<? A� B96:;9<? + 96;?9<:CD + 9E:?9<?  (8) 

- Energy conservation: 95;9> + 67F 95;9<? = 99<? B �G� 95;9<?C + 9H:?9<?  (9) 

The SGS stress tensor in (8) is related to the SGS viscosity coefficient by the Boussinesq approximation: E%F ≡ 67%67F − 6J6K77777 = 2����M%̅F + 4N E��O%F (10) 

The SGS stress tensor in (9) is modeled by a simple gradient-diffusion hypothesis: H%F ≡ 67%57 − 6J577777 = ����G�P 95;9<? (11) 

where QR/ is the turbulent Prandtl number for which the value 0.9 is used. The rate of strain tensor in 

(10) is defined by: 

M%̅F = 4� B96:;9<? + 96;?9<:C (12) 

Two models for the SGS eddy-viscosity are considered. In the Smagorinsky model, it is expressed as: 

���� = !S�Δ#�T2M%̅FM%̅F (13) 

In the WALE model (Nicoud et al., 1999), the expression is: 

���� = !SUΔ#� �*̅VWX *̅VWX�Y/[\*̅VW*̅VW]^/[��*̅VWX *̅VWX�^/_ (14) 

The tensor M%̅F'  is defined by the following expression: 

M%̅F' = M%̅�M�̅F + Ω;%�Ω;�F − 4N !M �M � − Ω; �Ω; �#, Ω;%F = 4� B96:;9<? − 96;?9<:C (15) 

The values used for the constants Cs and Cw appearing in (13) and (14) are respectively 0.18 and 0.5. 

The wall shear stress and heat flux are estimated respectively with the Reichardt and Kader laws of the 

wall, excepted when the mesh is fine enough at walls (a� < 1). In that case, no wall treatment is applied. 

3.2 Numerical procedure and boundary conditions 

All the calculations performed lean on a Finite Difference Volume discretization, described in 

Angeli (2015). The normal velocity components are located at faces and the pressure unknowns at 

gravity centers of the cells. This staggered arrangement avoids the creation of spurious pressure modes 

(“checkerboard”) compared to a collocated arrangement. The resolution is based on finite difference 

approximations of fluxes. A projection method is used to decouple velocity and pressure (Hirt et al., 

1975): an intermediate velocity is first computed, then the mass conservation is corrected by solving a 

Poisson equation or pressure. The resolution of this equation uses a preconditioned conjugate gradient 

solver with SSOR preconditioner. 

The discretization of operators consists of a second order central scheme for the diffusion term, 

and a QUICK scheme for the convection term. The time integration is performed by an explicit third 



order Runge-Kutta scheme. A stability time step is computed at each new time step such that the 

Courant the number is kept lower than unity in the whole domain throughout the computation. 

Short intake channels are modeled downstream the jet exits to help the boundary layer 

development, and uniform velocity and temperature profiles without turbulent velocity nor temperature 

fluctuations are applied at their inlet. The computational domain is visible in Fig. 1 at the left. The 

height d = 0 is taken at the middle of the center intake channel. The lateral and top boundaries are 

outlets with a prescribed uniform reference pressure, and the other boundaries are walls. The LES 

solutions are time-averaged after a period of 10 physical seconds corresponding of the flow 

development, and over a period of 90 physical seconds in order to reach a satisfactory convergence. 

3.3 Computational meshes 

 Three cartesian grids are constructed using blocks with non-uniform grid distribution. A 

preliminary RANS calculation is carried out in order to estimate the Kolmogorov scale, defined by: 

ef = ��Yg �4/h (16) 

The successive meshes are approximately refined by a factor two in the mixing region, i.e. z/D < 15. 

The region located at z/D > 15 downstream the nozzle exits is significantly coarsened because it is of 

lower interest. The main characteristics of the meshes are gathered in Table 2. 

Table 2: Overview of the meshes. 

 Mesh 1 Mesh 2 Mesh 3 

Number of elements 3,775,224 21,981,960 155,762,880 

Average mesh size (mm) 1.872 1.025 0.535 

Average Δ/ef 27 15 8 

Average time step (ms) 1.259 0.543 0.024 

 

The range of spatial scales reachable is directly related to the mesh resolution, as shown in Fig. 2. 

   

Fig. 2: Velocity field after two seconds in the mixing region with a 46 x 46 mm square zoom, from 

the mesh 1 (left) to the mesh 3 (right). 



For the needs of Verification procedure, a series of LES is performed using the different grids and 

subgrid-scale models (Table 3). One calculation on mesh 3 is attempted but is not reported in the table, 

because it is still in progress. 

Table 3: Summary of the LES performed for the Verification procedure. 

 Mesh SGS model 

LES 1a 1 None 

LES 1b 1 Smagorinsky 

LES 1c 1 WALE 

LES 2a 2 None 

LES 2b 2 Smagorinsky 

LES 2c 2 WALE 

 

4. VERIFICATION OF LES 

4.1 Effective subgrid-scale kinetic energy without SGS model 

 In the absence of SGS model, the numerical viscosity plays implicitly the role of the SGS viscosity 

in the spirit of iLES (implicit LES) approaches. According to definition (3) applied to the kinetic energy 

as the variable φ, the numerical error on energy is approximated under the following form: |��� !�#| = j�$%��	��%'	()* − �()*j = �Δ� (17) 

The necessity of absolute value in (17) is discussed by Celik et al. (2005): in LES, the turbulence field 

is not fully resolved due to the filtering process of small-scale motions. It is then expected that ��� !�# 
is positive. However, an oscillatory convergence may happen for unclear reasons, leading to negative 

values of ��� !�#. The three unknowns in equation (17), �$%��	��%'	()*, �, and � can be determined 

using three LES with different grid resolutions; yet this is an expensive procedure. If one assumes a 

value for the order of accuracy of the numerical scheme �, LES 1a and LES 2a in Table 3 are sufficient. 

Celik et al. (2009) suggests to take � = 2. According to the convergence test reported in Angeli et al. 

(2017) for an unstationary Navier-Stokes, � = 1.5 seems to be a fair approximation with the numerical 

scheme employed in the present study (Fig. 3). 

 

Fig. 3: Order of convergence for the generalized Beltrami flow. 

Using LES 1a and LES 2a, expression (17) leads readily to a set of two equations: 

mj�$%��	��%'	()* − �()*	4nj = �Δ4�j�$%��	��%'	()* − �()*	�nj = �Δ�� (18) 

Practically, the system (18) can be numerically or analytically resolved for given values of �. The 

numerical error for both LES are plotted in Fig. 4, confirming that it can take either positive or negative 

values, but the error in absolute value decreases with the grid size. However, it should be noted that the 

model (17) is clearly not suitable in regions where the flow is laminar, mainly because the coefficient 



� should depend on the local turbulence Reynolds number. Considering a uniform order of convergence 

may produce a negative extrapolated kinetic energy. To avoid such issues, Celik et al. (2009) suggest 

to apply a damping function, which has not been done here. 

  

Fig. 4: Profiles of εpqr!k# at < = 0 (left) and at d t⁄ = 5 (right). 

4.2 Effective subgrid-scale kinetic energy with SGS model 

SGS modelling introduces an additional dissipation term which combines with the numerical 

dissipation. Then, the effective SGS kinetic energy is assumed to satisfy the following equation: j��$$,���!�#j = j�$%��	��%'	()* − �()*j = �Δ� + 	Δ
 (19) 

If � > � (resp. � < �), then the numerical error goes to zero more (resp. less) rapidly than the SGS 

contribution does, and the effective kinetic energy varies as Δ� (resp. Δ
) when Δ → 0. If � = �, then 

both contributions have the same asymptotic behaviour. For this reason, it is postulated that equation 

(19) reduces to a simpler form: j��$$,���!�#j = j�$%��	��%'	()* − �()*j = yΔ� (20) 

Using the solution �$%��	��%'	()* computed in the previous section without SGS model, the coefficients y and R can be determined for Smagorinsky and WALE models using respectively LES 1b and LES 2b, 

LES 1c and LES 2c. The analytical solution, e.g. in the Smagorinsky case, is: 

zR = 4{p!�| �[⁄ # ln Bj��V��	��VX	��������	|�jj��V��	��VX	��������	[�jC																y = j��V��	��VX	��������	|�j�|� = j��V��	��VX	��������	[�j�[�
 (21) 

Fig. 5 shows the average values of R in the mixing area of the flow computed for each SGS model 

and various values of �. It is remarkable that for the WALE model, R varies roughly the same way as � 

in the expected interval of � (between 1 and 2), and remains always greater than the order of the 

Smagorinsky model. The interpretation is that the SGS kinetic energy decreases more rapidly with the 

grid size with the WALE model than with the Smagorinsky model. If �=1.5, then R ≈ 1.5 for the WALE 

model so that the numerical viscosity and SGS viscosity follow the same asymptotic behaviour. If �=1.5, then R ≈ 2/3 for the Smagorinsky, which is in good agreement with the evaluation made by Pope 

(2011) and also found by Celik et al. (2009): ����~Δh N⁄  and ����~Δ� N⁄  (see equation (2)). This also 

implies that for finest grids, the effective kinetic energy is mostly contaminated by the numerical 

viscosity when employing the Smagorinsky model. 

The definition (1) of the ratio of resolved kinetic energy 
��� is adapted under the following form: 


��� = 1 − j��V��	��VX	��������j��V��	��VX	���  (22) 

Fig. 6 shows the profiles of 
��� for the effective kinetic energy calculated according to equations (2) 

and (20) for the Smagorinsky model. The model (2) with S = 0.043 yields a uniform ratio ranged from 

80% to 90%. The unreasonable values in the central region indicates that model (20) fails. Two reasons 



can be put forward. First the assumption (20) is two coarse compared to (19) where the contributions 

of numerical dissipation and SGS model are separated. Then the value � = 1.5  is probably too 

pessimistic in the mixing area. The numerical convergence order �  is expected to increase for a 

decreasing local turbulent Reynolds number. The LES results on the third mesh are needed to estimate 

accurately the values of � in the whole domain with the equation (17), as well as the other unknowns 

in model (19). 

 

Fig. 5: Plot of the computed order of the SGS models in function of the numerical order of accuracy. 

 

Fig. 6: Ratio of resolved kinetic energy for � = 1.5 in the Smagorinky SGS model case, at d t⁄ = 10. 

5. VALIDATION OF LES 

5.1 Influence of mesh size and subgrid-scale model 

 The flow exhibits regions of low turbulence but strong velocity gradients (d t⁄ < 2.5) and regions 

of strong turbulence but low velocity gradients (d t⁄ > 2.5). Fig. 7 compares the time-averaged 

velocity profiles at d t⁄ = 2.5, d t⁄ = 5 and d t⁄ = 7.5 resulting from the different simulations, at 

midpoint between front and back plates. The profiles are normalized using the average inlet velocity � = 0.5  m/s. Surprisingly, the results on mesh 1 achieve a better overall agreement with the 

experimental measurements. This is particularly true for the vertical component at d t⁄ = 5, where the 

LES on the finest mesh fail at correctly reproducing the jet mixing. An attempt at explaining this 

behaviour is proposed in the next section. In the experiment, the velocity profiles at d t⁄ = 5 are almost 

uniform (< t⁄  between -1 and 1), while the simulated profiles still show strong heterogeneities. As 

consequence, the length at which the mixing occurs is overestimated in the calculations, especially with 

the mesh 2. Among the SGS models, Smagorinsky yields the worst results compared to WALE and 



even to the case without model. This in coherence with the well-known shortcomings of the 

Smagorinsky model such as: weakness in the laminar-turbulence transition and over-dissipation. 

 
 

 
 

 
 

Fig. 7: Vertical and horizontal time-averaged velocity components at d t = 2.5⁄  (top), d t⁄ = 5 

(middle) and d t⁄ = 7.5 (bottom). 

5.2 Influence of wall modelling and inlet velocity conditions 

The above observations are confirmed by the Table 4 where the normalized error (in �� norm) between 

the experimental and calculated �� points is reported for each simulation. Additional calculations using 

the WALE model are performed in order to evaluate the influence of wall modelling and inlet velocity 

profile. In the first case, the LES become wall-resolved (WR) with a refined grids at walls (a� < 1) in 

order to account for the boundary layers without the use of wall functions. In the second case, an 

artificial noise is added to the velocity profile at the inlet (10% of � ). A slight improvement is achieved 



with these modified simulations. However, the coarsest mesh still leads to a better agreement than the 

finest mesh. 

Table 4: Normalized �� norm of error between experimental and calculated values of ��. 
 Experiment  Experiment 

LES 1a 0.1764 LES 2a 0.2371 

LES 1b 0.2616 LES 2b 0.2484 

LES 1c 0.1705 LES 2c 0.2384 

LES 1c WR 0.1644 LES 2c WR 0.2225 

LES 1c 10% 0.1684 LES 2c 10% 0.2114 

 

Three hypotheses, not mutually exclusive, can be considered to explain the discrepancy: 

 

- Error compensation: the numerical error and modelling error are strong with the coarse mesh 

but of opposite signs, leading to a relatively small total error. As a corollary, the convergence 

to the exact solution of the resolved equation is non-monotonic. Such a possibility is mentioned 

by Celik et al. (2005). 

- Erroneous experimental data: this explanation seems unlikely for the two following reasons. 

First, it can be checked from the experimental points that they correspond to � = 0.5 m/s. 

Second, the measurement system employed is highly accurate, as aforementioned. 

- Inappropriate modelling: the equations and/or boundary conditions and/or initial conditions are 

unsuitable. This hypothesis is deemed to be the most probable since some tests not reported 

here indicate that the length at which the mixing occurs is very sensitive to whether the inlet 

velocity profile is flat or established. It should be confirmed by launching additional LES with 

established inlet velocity profiles. 

 

6. CONCLUSIONS AND PERSPECTIVES 

This study was dedicated to Verification and Validation of Large Eddy Simulations applied to triple 

parallel jet flow in the context of a thermal mixing investigation for nuclear reactors. In the Verification 

part, the numerical error was first estimated with two LES on different grids where no SGS model was 

set. It was shown that the kinetic energy was mostly overestimated in the mixing region of the flow, 

leading to a negative effective SGS kinetic energy. Then, the contribution of the SGS model was 

investigated. The order of convergence of the SGS kinetic energy with the Smagorinsky model was 

found to be in good agreement with the result of Pope (2011). The WALE model was found to converge 

more rapidly towards the total kinetic energy than the Smagorinsky model. However, a third LES on a 

finer grid is needed to refine the model, especially to compute locally the numerical order of 

convergence. The Validation part was made according to a set of 150,000 experimental points. The 

time-averaged velocity profiles were compared to the experiment and it was pointed out that the jets 

are mixing earlier in the experiment. Moreover, the LES on the coarsest mesh had a lower discrepancy 

than those on the finest mesh; the origin of this unexpected results needs to be found out. In particular, 

additional LES employing established inlet velocity profiles will be performed. 
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