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ABSTRACT 

An OECD/NEA sub-group on Uncertainty Analysis in Modelling (UAM) for Design, Operation 

and Safety Analysis of Sodium-cooled Fast Reactors (SFR-UAM) has been formed under the 

NSC/WPRS/EGUAM to check the use of best-estimate codes and data. This work comes from 

the desire to design reactors with improved safety performance while preserving a sustainable 

source of energy at a rather low cost.  

Two SFR cores are being studied: a large 3600MWth oxide core and a medium 1000MWth 

metallic core. In order to assess tools being used for studying these cores, various sub-exercises 

have been set up for what concerns neutronics with cell, sub-assembly, super-cell and core 

benchmarks under steady state conditions either at BOL conditions or at EOEC. A sub-assembly 

depletion benchmark is being set up before going into full core calculations with depletion.  

Since the objective is to define the grace period or the margin to melting available in the 

different accident scenarios and this within uncertainty margins, uncertainties of different origins 

(methods, neutronics, thermal-hydraulic, fuel behavior) once identified and evaluated will be 

propagated through.  

In order to ensure validity to these exercises, the sub-group incorporates some experimental 

validations on neutronics, thermal hydraulics, fuels and systems. This will be done with 

experiments from IRPhE & ICSBEP, SEFOR, THORS and the SUPER-PHENIX start-up 

transient programme.  
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1. INTRODUCTION 

There is a strong incentive to design reactors with improved safety performance while preserving 

a sustainable source of energy at a rather low cost. The Generation IV International Forum (GIF) 

has defined the key research goals for advanced Sodium-cooled Fast Reactors (SFR): 

 improved safety performance, specifically a demonstration of favorable transient 

behavior under accident conditions;   

 improved economic competitiveness;  

 demonstration of flexible management of nuclear materials, in particular, waste reduction 

through minor actinide burning. 

Sodium-cooled Fast Reactors offer the most promising type of reactors to achieve such 

Generation IV goals at a reasonable time scale given the experience accumulated over the years. 

However, it is recognized that new regulations and safety rules as they exist worldwide are 

requiring improved safety performance. In particular, one of the foremost GIF objectives is to 

design cores that can passively avoid core damage when the control rods fail to scram in 

response to postulated accident initiators (e.g., inadvertent reactivity insertion or loss of coolant 

flow). The analysis of such unprotected transients depends primarily on the physical properties 

of the fuel and the reactivity feedback coefficients of the core.  

Under the auspices of the Working Party on Scientific Issues of Reactor Systems (WPRS), an 

OECD/NEA sub-group on Uncertainty Analysis in Modelling (UAM) for Design, Operation and 

Safety Analysis of Sodium-cooled Fast Reactors (SFR-UAM) has been formed under the 

NSC/WPRS/EGUAM to check the use of best-estimate codes and data.  

Recently, the International Atomic Energy Agency (IAEA) produced guidance on the use of 

deterministic safety analysis (DSA) for the design and licensing of nuclear power plants (NPPs): 

‘‘Deterministic Safety Analysis for Nuclear Power Plants Specific Safety Guide’’. Since the 

early days of civil nuclear power, the conservative approach has been used and is still widely 

used today. However, the desire to utilize current understanding of important phenomena and to 

maximize the economic potential of NPPs without compromising their safety has led many 

countries to use best-estimate codes and data together with an evaluation of the uncertainties. 

The group benefits from the results of a previous Sodium Fast Reactor core Feed-back and 

Transient response (SFR-FT) Task Force work [1] which demonstrated that for the benchmark 

cores under study the major source of bias between participants is coming from nuclear data.  

Doppler and Void coefficients were calculated as well as some important dynamic characteristics 

of the core. Missing in the benchmark were feedback coefficients associated to thermal 

expansions and hence transient studies were not performed. 

The UAM-SFR working group will have to define the grace time or the margin to melting 

available in the different identified accidental scenarios, have to apply the Best Estimate Plus 

Uncertainty (BEPU) methodology and possibly recommend some changes to the design so that it 

meets some safety concerns. 

The work is progressive so as to avoid possible compensating errors. Two SFR cores are being 

studied: a large 3600MWth oxide core and a medium 1000MWth metallic core [2].  In order to 

assess tools being used for studying these cores, various sub-exercises have been set up for what 

concerns neutronics with cell, sub-assembly, super-cell and core benchmarks under steady state 
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conditions either at BOL conditions or at EOEC depending on the benchmark. A sub-assembly 

depletion benchmark is being set up before going into full core calculations with depletion.  

Since the objective is to define the grace period or the margin to melting available in the 

different accident scenarios and this within uncertainty margins, uncertainties of different origins 

(methods, neutronics, thermal-hydraulic, fuel behavior) once identified and evaluated will be 

propagated through. At first two simple Unprotected Transients over Power (UTOP) and Loss of 

Flow (ULOF) are proposed because they allow useful insights without need to model the 

secondary loop and the primary vessel (negligible impact). 

Another benchmark on control rod withdrawal has been added recently and will challenge tools 

on a particularly difficult asymmetrical transient. 

 

In order to ensure validity to these exercises, the sub-group incorporates some experimental 

validations on neutronics, thermal hydraulics, fuels and systems. This will be done with 

neutronic experiments from IRPhE & ICSBEP, SEFOR, thermal hydraulic experiments from 

THORS and system experiments with the SUPER-PHENIX start-up transient programme.  

2. BEST ESTIMATE NEUTRONIC RESULTS FOR THE SFR 3600 MWTH CORE 

AND THE ABR 1000 MWTH CORE 

The section focuses on the neutronic contributions of the different participants on the two core 

benchmarks: the SFR 3600MWth Core and the ABR 1000MWth Core, which are presented in 

more details in [3]. The main core characteristics of the large and medium SFR cores 

investigated are summarized in Table 1. 

 

Table 1: Comparison of The Main Core Characteristics 
SFR Cores ABR 1000MWth Core SFR 3600MWth Core 

Thermal Power (MW) 1,000 3,600 
Type of fuel used U-Pu-10Zr (U,Pu)O2 
Cladding / Duct material HT-9 ODS/EM10 

Number of fuel assemblies in:   
 

- inner fuel 

-  

 

 

 

78 

 
225 

- outer fuel 

 
102 228 

Number of control rods in:   

- primary system 15 24 

- secondary system 4 9 

Inlet sodium temp. (°C) 355 395 
Outlet sodium temp. (°C) 510 545 
Avg. Fuel temperature (°C) 534 1,227 
Height of fissile zone (cm) 85.82 100.56 
Lattice pitch (cm) 16.25 21.22 
Fuel cycle duration (efpd

1
) 328.5 410 

1
 Equivalent Full Power Days 

 

The results expected are for the End Of Cycle (EOC) parameters such as steady state reference 

reactivity/multiplication factor, feedback coefficients as “perturbation” from nominal operating 
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conditions, materials thermal expansion configurations as well as Doppler effect, kinetics 

parameters (eff, , …). 

The oxide core description is a large 3600 MWth core that exhibits power densities that result in 

low reactivity swing during the equilibrium burn cycle. Details of the core are given in [3].  

Currently 9 participants provided their results for the large-size oxide SFR core problem. Among 

those, only 6 provided their results for the medium-size metallic SFR core. Most of the results 

are based on ENDF/B-VII cross sections library and were obtained using both deterministic and 

stochastic calculation methods. Results are shown in the following Table 2. 

  
Table 2: Results of the 3600 MWth SFR core, oxide fuel benchmark 

Institute 
 ANL 

CEA 

Cadarache 

CEA       

Saclay 
CER GRS HZDR IKE ININ IPPE 

Library 
 

ENDF/B-
VII.1 

ENDF/B-
VII.1 

JEFF 
3.1.1 

ENDF/B-
VII.1 

ENDF/B-
VII.1 

ENDF/B-
VII.1 

ENDF/B-
VII.1 

JEFF-3.1.1 
ABBN-RF 

(ROSFOND) 

Code 
 

MC2-3/ 

VARIANT 
ERANOS TRIPOLI4 SERPENT KENO-IV SERPENT MCNP SERPENT 

TRIUM 

(MMKK) 

K-effective  1.0162 1.0102 1.0185 1.0289 1.0194 1.0134 1.0075 1.0164 1.0087 

eff [pcm] 351 372 361 348 344 361 353 360 361 

Control rod worth  
(fully inserted) 

[pcm] -6360 -6511 -6135 -5556 -6243 -6315 -6439 -6111 -6206 

Control rod worth 

(5cm from top) 
[pcm] -140 -139 -146 -126 -140 -133 -138 -127 -136 

Doppler Constant [pcm] -857 -929 -875 -758 -886 -778 -800 -791 -787 

Na Void Worth [pcm] 1863 2005 1768 1726 1650 1821 1690 1851 1889 

1% Sodium [pcm/K] 0.420 0.448 0.466 0.446 0.523 0.500 0.366 0.828 0.480 

1% Wrapper [pcm/K] 0.023 0.022 0.025 0.019 0.018 0.017 0.019 0.027 0.027 

1% Cladding [pcm/K] 0.036 0.041 0.038 0.041 0.044 0.047 0.034 0.051 0.039 

1% Fuel [pcm/K] -0.300 -0.310 -0.304 -0.292 -0.298 -0.306 -0.312 -0.310 -0.318 

1% Fuel + Axial  [pcm/K] -0.127 -0.133 -0.120 -0.144 -0.119 -0.139 -0.128 -0.127 -0.152 

1% Grid [pcm/K] -0.745 -0.755 -0.758 -0.726 -0.744 -0.761 -0.822 -0.614 -0.811 

The results displayed in this table 2 show quite satisfactory agreement. A statistical analysis is 

conducted in [3] and most of the results are within 2-.  

The 1000 MWth Advanced Burner Reactor (ABR) metallic core is a compact core concept with 

a transuranics (TRU) conversion ratio of ~0.7 which was developed for a one-year cycle length 

with 90% capacity factor. Detailed description is presented in [3]. Both deterministic and 

stochastic approaches are used with different nuclear data libraries. The results for the 1000 

MWth ABR metallic core are presented in the following Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 



ANS Best Estimate Plus Uncertainty International Conference (BEPU 2018) BEPU2018-253 
Real Collegio, Lucca, Italy, May 13-19, 2018 

Table 3: Results of the 1000 MWth SFR core, metallic fuel benchmark 
Institute 

 
ANL CEA/Cad CEA/Saclay GRS ININ IPPE 

Library  
ENDF/B-

VII.1 

ENDF/B-

VII.1 
JEFF-3.1.1 

ENDF/B-

VII.1 

JEFF-3.1.1 ABBN-RF 

(ROSFOND) 

Code  
MC

2
-3/ 

VARIANT 
ERANOS TRIPOLI4.9

®
 

KENO-IV SERPENT MMKK 

K-effective 
 

1.0171 1.0128 1.0299 1.0223 1.0284 1.0215 

eff [pcm] 332 352 342 324 342 343 

Control Rod Worth  

(fully inserted) 
[pcm] -9905 -10029 -9540 -9801 -9640 -9542 

Control Rod Worth  

(5cm from top) 
[pcm] -239 -230 -241 -233 -233 -241 

Doppler constant [pcm] -383 -407 -394 -397 -384 -351 

Na Void Worth  [pcm] 1327 1219 1579 1464 1247 1423 

1% Sodium [pcm/K] 0.383 0.340 0.405 0.362 0.565 0.393 

1% Wrapper [pcm/K] 0.021 0.022 0.022 0.022 0.032 0.023 

1% Cladding [pcm/K] 0.043 0.050 0.050 0.048 0.070 0.040 

1% Fuel [pcm/K] -0.553 -0.568 -0.538 -0.553 -0.594 -0.570 

1% Fuel + Axial  [pcm/K] -0.257 -0.265 -0.260 -0.271 -0.307 -0.267 

1% Grid [pcm/K] -1.137 -1.115 -1.074 -1.078 -1.097 -1.162 

Good agreement is observed for most of the parameters as all the results are within 2-.  

However, in order to allow the identification of the cause of the observed differences, several 

sub-exercises have been set up. The models defined in the following exercises are derived from 

the medium-sized metallic core (MET1000) and the large oxide core (MOX3600) of the UAM-

SFR specifications.  

Some transient studies have been done by 4 different organizations (CEA, ANL, CER and IKE) 

on simple unprotected transients. Comparisons between results are still to be done but 

conclusions are the following ones for the 2 UTOP (fast and mild) and 1 ULOF.  

For the ULOF, sodium boiling occurs at 873
o
C within 17s in the large Oxide core.  

 Max fuel temp: center of the hot pin in the third (middle) node  

 Max cladding temp: inner wall of the cladding in the hot pin in the fifth (top) node 

For the UTOPs in the large oxide core, fuel temperatures increase up to 2700
o
C around. 

Those modelled transients and core models used are meant to be simple and not especially 

representative of the real behavior of SFRs during transients. However, modifying the 

specifications in order to avoid fuel melting or sodium boiling are recommended to avoid 

misinterpretation of results and to allow meaningful uncertainty propagations. 

3. UNCERTAINTIES 

3.1 Identification of the Different Sources of Uncertainties 

As feedback coefficients are the main neutronic inputs in the transient analysis, uncertainty 

estimation have to focus on these parameters. Uncertainties may come from different origins: 

 Uncertainties from nuclear data knowledge (cross section, delayed neutron fraction, 

etc…) 

 Uncertainties on isotopic number densities from manufacturing processes such as  
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o geometrical tolerances for pellets, cladding and wrapper geometries  

o various material densities (porosity, etc..) 

 thermal expansion correlation for sodium as coolant 

Other items of interest to be investigated are:  

 uncertainties coming from depletion effects [14],  

 bias from core modeling assumptions. 

3.2 Nuclear Data Uncertainties 

Uncertainty levels can be computed using several methods such as sensitivity studies (from 

either deterministic methods or direct calculations) or probabilistic propagation. The work has 

started already with the major source of uncertainties among these, the nuclear data 

uncertainties.   

Calculations were performed for reactivity, Doppler, Na Void and eff. The uncertainties due to 

nuclear data are being calculated with different covariance matrices (COMAC, ENDF/B-VII.1, 

COMMARA-2.0, JENDL4.0). The different covariance matrices should in principle reflect the 

way the nuclear data evaluation has been made. This means that differential measurement 

uncertainties should have been propagated towards the evaluation itself. Since, there is a 

rationale in the choice of these differential measurements which depends on the evaluator; the 

final induced uncertainty might differ and, in practice there are significant differences. 

The nuclear model being used links together the different differential measurements and might 

add some more correlations (some exist already since differential measurements are conducted in 

a limited range of energy) in energy and between different cross section types. 

The conclusions [4,5] are the following:  

 The keff uncertainty is predominantly due to the uncertainties in inelastic scattering of 
238

U and in the fissions of 
239

Pu and 
238

U. 

 TheDoppler uncertainty is predominantly due to the uncertainties in inelastic scattering of 
238

U and in the capture of 
239

Pu and in the elastic removal of 
23

Na and 
56

Fe. 

 TheNa void uncertainty is predominantly due to the uncertainties in inelastic scattering of 
238

U and 
23

Na, in the capture of 
238

U, in the fission of 
239

Pu and in the elastic and inelastic 

removal of 
23

Na. 

 The differences in the 
238

U inelastic cross section are presumably due to the optical 

models being used, differential measurements being scarce. 

 The differences in the 
23

Na cross sections are due to the use of more recent differential 

measurements performed at IRMM (inelastic) and Oak Ridge (total). 

Independently, the OECD/NEA conducted a work on “JEFF-3.3T1 Processed Covariances: 

Uncertainty Propagation Analysis and Comparison” with the goal to compare nuclear data 

uncertainties propagated from new COMAC V1 (JEFF3.2
++

), ENDF/B-VII.1 and JENDL-4.0 

covariance data. At first, the work shows the missing covariance data and those available while 

highlighting the most important differences and the underlying reasons. Given the large 

differences between covariance sets, there was a proposal to create an NEA Subgroup with the 

aim to improve/select/recommend covariances for Uncertainty Quantification in reactor physics 

domain. The establishment of the subgroup under NSC Working Party on Integral Nuclear Data 

Evaluation Co-operation (NSC/WPEC) is in progress at the moment. 
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3.3 Uncertainty propagation 

Three different studies have been conducted for propagating different sources of uncertainties 

through UAM SFR ULOF and UTOP transients: 

 the work conducted by CER uses the standard deviations between benchmark results of 

the different participants, 

 the work conducted by IKE uses different pellet clad gaps to account for the heat transfer 

coefficient, 

 the works conducted by ANL and CEA use nuclear data uncertainties. 

Simulated transients are the ones specified in the specifications with 2 UTOP (fast and mild) and 

1 ULOF.  

3.3.1 Standard Deviation between participants 

Hot channel results with their uncertainties (Figure 1) from CER are performed with the 

ATHLET3.1A code. Uncertainties come from the standard deviations between benchmark 

results of the different participants which come from both nuclear data and methods. 

Figure 1: Hot Channel results with their uncertainties 

 

The maximum temperatures including the uncertainties lead to sodium boiling in case of ULOF 

and to fuel melting both in the UTOP1 and the UTOP2 cases.  

3.3.2 Pin mechanical models 

Results of the UTOP and ULOF transient Benchmark for the large oxide core were calculated by 

IKE using DYN3D/ASTEC-Na.  ASTEC-Na includes, in particular, an advanced pin mechanical 

models, a fission gas model and an in-pin fuel motion. 
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Since ASTEC-Na embark no neutronic module in opposition to SIMMER, a coupling of 

ASTEC-Na with nodal diffusion code DYN3D (HZDR) for more accurate neutronics description 

has been done. Macroscopic, group-wise XS data for DYN3D are generated with SERPENT2.  

Since the calculations could not use the heat transfer coefficient specified, various gap sizes were 

used as a parametric study. As a result, different gap sizes induce different fuel temperatures 

with a smaller gap size leading to a lower fuel temperature and a later boiling onset from 30 to 

40 s for the ULOF.  

3.3.3 Nuclear data 

ANL and CEA results conducted ULOF & UTOP transients with SAS4A and MAT4DYN 

respectively. ANL uses DAKOTA to propagate uncertainties on SAS4A calculations while CEA 

uses URANIE to propagate uncertainties on MAT4DYN calculations (Table 4).  

Table 4: Hot Channel results with their standard deviations

 

As a conclusion, the impact of nuclear data uncertainties is generally small on transient 

behaviours.  

Sensitivity analysis performed show:  

 LHS provides quicker convergence (~100 simulations) but random sampling can be used as 

well 

 Inter-reaction correlations can be evaluated, but effect is small 

 Largest impact comes from uncertainties on Doppler and sodium density effects  

4. EXPERIMENTAL EVIDENCE IN SUPPORT TO CALCULATIONS  

For a reliable prediction of the characteristics of the core, it is necessary to use integral 

experiments of great confidence. It is the aim of the last component of the SFR-UAM task force.  

In order to study in more details the relevance of OECD experimental benchmarks [6, 7] 

(committed in the ICSBEP and in the IRPhE experimental data bases) to the SFR-UAM cores, it 
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is envisaged to provide sensitivities to the NEA Data Bank to be able to calculate representability 

factors as well as some means to possibly reduce the final SFR-UAM core characteristics 

uncertainty.  

4.1 Validation Exercises 

The methods that were applied for the analysis of the specified theoretical exercises shall be used 

for the calculation of experiments. The calculated output quantities can be compared to the 

experimental values while considering the obtained uncertainties.  

The validation experiments were chosen based on a similarity assessment between various 

experiments from the International Criticality Safety Benchmark Experiment Handbook 

(ICSBEP) handbook [6] and the MET1000 and MOX3600 fuel assemblies, respectively. First the 

experiments and the fuel assemblies were calculated using the TSUNAMI code of the SCALE 

6.2 code package[8] to obtain the energy-dependent sensitivities of the eigenvalue to the cross 

sections. Then TSUNAMI-IP was used to determine the correlation coefficient index ck between 

the systems using on ENDF/B-VII.1 covariance data. This index describes an estimate of the 

correlated uncertainty between systems. Systems with the same materials and similar spectra are 

correlated, while systems with different materials or spectra are not correlated.  

The TSUNAMI-IP calculations resulted in negligible correlation factors between the fuel 

assemblies and experiments with the identifiers PU-MET-FAST and MIX-MET-FAST. Only for 

the MIX-COMP-FAST experiments, significant correlation factors were obtained (Table 5). 

Based on this assessment and the description of the MIX-COMP-FAST experiments, the ZPR-6 

Assembly 7 and the ZPPR-2 experiment were chosen as validation exercises in this benchmark. 

Table 5: Correlation factor between the experiment and the MET1000 and MOX3600 fuel 

assemblies, respectively, determined with TSUNAMI-IP. 

  MET1000  MOX3600 

MIX-COMP-FAST-001-001 0.8269 0.9117 

MIX-COMP-FAST-002-001 0.8264 0.9124 

MIX-COMP-FAST-003-001 0.8421 0.9197 

MIX-COMP-FAST-003-002 0.8550 0.9352 

MIX-COMP-FAST-004-001 0.6438 0.7346 

MIX-COMP-FAST-005-001 0.8849 0.9546 

MIX-COMP-FAST-006-001 0.8143 0.8882 

4.1.1 ZPR-6 Assembly 7 

The first validation exercise is the ZPR-6 Assembly 7, a fast reactor core with mixed (Pu,U)-

oxide fuel and sodium with a thick depleted-uranium reflector. A description of this experiment 

including the detailed specifications is given in the International Handbook of Evaluated Reactor 

Physics Benchmark Experiments[8] under the acronym ZPR-LMFR-EXP-001. The parameters 

for which the uncertainties due to nuclear data shall be compared are the following: 

 Multiplication factor, 

 Sodium void worth for loading 46. 
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4.1.2 ZPPR-2 

The second validation exercise is the ZPPR Assembly 2, cylindrical assembly with mixed 

(Pu,U)-oxide fuel and sodium reflected by depleted uranium, sodium, and steel. A description of 

this experiment including the detailed specifications has recently been added to the IRPhEP 

handbook under the acronym ZPPR-LMFR-EXP-011. The parameters for which the nominal 

value and the corresponding uncertainty caused by uncertainties of the nuclear data shall be 

compared are the following: 

 Multiplication factor (case 1), 

 Sodium void worth for case 9. 

4.2 eff experimental validation 

There are a number of available experiments for assessing the calculation of βeff in the ICSBEP 

and in the IRPhE experimental databases among which are JEZEBEL, SNEAK7A and SNEAK 

7B. To these experiments, one can add the BERENICE experiments performed in MASURCA 

[5]. Based on the interpretation calculations of Rossi and eff measurements, a series of C/E 

comparisons is being done with modern tools such as MCNP IFP method, TRIPOLI4 IFP 

method, SUSD3D, SERPENT IFP method and the latest evaluated nuclear data ENDF/B-VII.1, 

JEFF3.2, JENDL4.4. The importance of a neutron is needed to calculate     , the Iterated Fission 

Probability method (IFP) [9] is the most accurate method to obtain it with Monte Carlo and has 

been implemented in various codes quite recently. Uncertainty assessments due to nuclear data 

(including those for delayed neutron constant values) have been done using the SUSD3D and 

ERANOS tools. Uncertainties on delayed neutron constant values are only available in the 

JENDL4.0 library.  

The calculations of uncertainties were carried out by JSI, CEA and GRS for a series of 

experimental benchmarks: SNEAK 7A, SNEAK 7B, JEZEBEL, POPSY, BERENICE ZONA2, 

and the SFR 3600MWth. These calculations of uncertainties have been done with various sets of 

covariance matrices including JENDL4.0 on which one can compare the calculations done at JSI, 

CEA and at GRS. Since uncertainties for delayed neutron constant values are available only in 

the JENDL4.0 library, a series of actions (differential measurements, models) are studied at 

CEA, ILL and Subatech-Nantes in order to provide in the future, new recommended values. 

4.3 Doppler measurements 

Doppler coefficient is an important dynamic characteristic of the core. A review of relevant 

experiments in the IRPhE database has identified a lack of experiments on Doppler. The SEFOR 

reactor has been built for the purpose of measuring the Doppler coefficient [10]. SEFOR 

documentation is not in the IRPhE standard but has been used in the past [11] and is worth being 

investigated. Uncertainties on Doppler coefficient lie in the 100eV-1keV energy domain and are 

mainly due to the knowledge of the flux level at the bottom edge of the fast reactor flux. 

The SEFOR static tests were performed at power levels up to 20 MW while maintaining the 

average core coolant temperature constant at 678K. The reactivity effects due to power changes 

were measured by the reflector positions, adjusted to compensate the reactivity feedback. The 

Doppler coefficients were then evaluated by subtracting the contributions from the fuel axial 

expansion. Since SEFOR was particularly designed, using segmented fuel rods and dished fuel 
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pellets, the reactivity change due to the axial expansion is as small as 5% of the total feedback 

and its uncertainty little affects the Doppler reactivity evaluation. 

Hence, the SEFOR static tests are recommended as an experimental evidence of the validity of 

Doppler calculations. 

Careful attention should be given to the different sources of experimental uncertainties (fuel 

thermal conductivity, temperature increase, etc…). Uncertainties on Doppler coefficient 

calculations lie in the 100eV-1keV energy domain and are mainly due to the nuclear data 

uncertainties. Calc. & Exp. uncertainties should be compared together with C/E values to give an 

estimation of recommended uncertainty. 

4.4 Super-Phénix start up measurements 

A benchmark based on the selected Super-Phénix (SPX) start up test has been developed [12, 13] 

and aims at supporting transient calculations performed within the SFR-UAM working group i.e. 

ULOF (Unprotected Loss Of Flow), UTOP (Unprotected Transient Over Power) and CRW 

(Control Rod Withdrawal).   

SPX is a SFR reactor which operated within the 1986 – 1996 period. The design power was set 

to 3000 MWth/1200 MWe with an inlet/outlet coolant temperature of 395ºC / 545ºC and a 

coolant flowrate of 16.4 t/s. The sub-assembly uses MOX fuel and SS cladding.  

The proposal is to select one test for the benchmark: the 3-step negative reactivity insertion. 

The power is initially at 51% nominal power (1540 MWth) with a 63% nominal flowrate (10.4 

t/s). The perturbations are achieved through inlet coolant temperature reduction and control rod 

insertion in three steps (–25 pcm × 3). The proposal is set up with Excel template based on the 

input requirements of the TRACE code used at PSI. Reactivity coefficients are provided and the 

aim of the work is to verify the ability of participants to reproduce experimental results. The 

UAM-SFR Benchmark will take advantage of these data as an experimental evidence to support 

its activities. 

5. CONCLUSIONS 

The OECD/NEA sub-group on Uncertainty Analysis in Modelling (UAM) for Design, Operation 

and Safety Analysis of Sodium-cooled Fast Reactors (SFR-UAM) has started its work under the 

NSC/WPRS/EGUAM two years ago and has been meeting every year.  

The participants to the sub-group have been launching a series of benchmarks to support current 

understanding of important phenomena to define and quantify the main core characteristics 

affecting safety and performance of SFRs. Different codes and data have been used to support 

the evaluation of the uncertainties which challenges existing calculation methods.  

Two SFR cores have been selected for the SFR-UAM benchmark, a 3600 MWth oxide core and 

a 1000 MWth metallic core. Their neutronic feedback coefficients are being calculated for 

transient analyses. The SFR-UAM sub-group is currently defining the grace period or the margin 

to melting available in the different accident scenarios and this within uncertainty margins. 

Experimental evidence in support of the studies is also being developed with neutronic, thermal 

hydraulic and system experiments. 
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