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Some examples of porous materials with small-scale voids

From the Nuclear Industry: Irradiated materials

PWR, (Edwards et al., 2003) Fast reactor, (Garner et al., 2002)

Austenitic stainless steels irradiated by high-energy particles:

◦ Creation of crystalline defects in the microstructure

◦ Under specific conditions: Nanovoids (5nm . R . 100nm)
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Some examples of porous materials with small-scale voids

From the Nuclear Industry: Irradiated materials

PWR, (Edwards et al., 2003) Fast reactor, (Garner et al., 2002)

Austenitic stainless steels irradiated by high-energy particles:

◦ Creation of crystalline defects in the microstructure

◦ Under specific conditions: Nanovoids (5nm . R . 100nm)

The material becomes nanoporous: Behavior under stress ?
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Some examples of porous materials with small-scale voids

From the Nuclear Industry: Irradiated materials

(Ding et al., 2016) (CEA - DMN/SEMI/LM2E Microscopy team)

Nanovoids are observed to contribute to the fracture of the material through
classical mechanisms of ductile fracture:

◦ Void growth to coalescence

◦ Small dimples on fracture surfaces
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Nanovoids are observed to contribute to the fracture of the material through
classical mechanisms of ductile fracture:

◦ Void growth to coalescence

◦ Small dimples on fracture surfaces

Towards homogenized models of nanoporous materials
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Towards homogenized models of nanoporous materials

Some porous unit-cell simulations accounting for void size effects

With interface stresses
(Dormieux & Kondo, 2010)

Void/Matrix interface⇒ 2D plasticity

3

2
σ2D
D : σ2D

D ≤ γ2

with 2D yield stress γ.

Lengthscale: l =
γ

σ0
⇒ Γ =

γ

σ0R
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Towards homogenized models of nanoporous materials

Some porous unit-cell simulations accounting for void size effects

With strain-gradient plasticity
(e.g., Fleck & Hutchinson, 2001)

Hardening due to strain-gradient

Ė2
p = ε̇2

p + l2ε̇p,iε̇p,i

Lengthscale l related to the presence
of GND’s.

Υ =
l

R
(Niordson, 2008)

For both models: qualitatively similar observations ...

◦ Hardening

◦ Delayed softening

... as void size decreases down to the characteristic lengthscale.
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Towards homogenized models of nanoporous materials

Some porous unit-cell simulations accounting for void size effects
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(Scherer et al.) (Niordson, 2008)

Analytical homogeneized yield criteria for porous materials with size
effects, under the assumption of isotropy:

◦ Growth regime: (Wen et al., 2005), (Monchiet & Bonnet, 2013),
(Dormieux & Kondo, 2010), (Monchiet & Kondo, 2013), ...
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Towards homogenized models of nanoporous materials

Some porous unit-cell simulations accounting for void size effects
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(Scherer et al.) (Niordson, 2008)

Analytical homogeneized yield criteria for porous materials with size
effects, under the assumption of isotropy:

◦ Growth regime: (Wen et al., 2005), (Monchiet & Bonnet, 2013),
(Dormieux & Kondo, 2010), (Monchiet & Kondo, 2013), ...

Coalescence yield criteria showing size effects are needed
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Coalescence criterion for porous materials with small-scale voids

Yield criterion in the coalescence regime for nanoporous material

◦ Relevant for large porosity: localization of plastic flow between voids

Key parameters:

Void aspect ratio:

W =
h

R

Ligament length:

χ =
R

L

Thomason analysis (1985) to be re-done accounting for:

◦ Interface stresses

◦ Strain-gradient plasticity

Main assumption: Periodic arrangement of voids
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Homogenization of porous material accounting for interface stresses

Yield criterion for nanoporous material F(Σ, ...)

Homogenisation and limit analysis (Rigid-non hardening solid)

◦ RVE homogenisation with appropriate boundary conditions

Σ =
1

volΩ

∫
Ω

σ dΩ D =
1

volΩ

∫
Ω

d dΩ

◦ Limit analysis (Dormieux & Kondo, 2010)

Σ : D ≤ Π(D) = infv∈κ(D)
1

vol(Ω)

[∫
Ωm

σ0d
VM
eq dV +

∫
Sint

γdVMS,eq dS

]
where κ(D) is a subset of velocity field compatible with D and verifying the
property of incompressibility

◦ Effective yield criterion for porous RVE

Σ =
∂Π(D)

∂D

This theoretical approach stands on the choice of a trial velocity field v
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Homogenization of porous material accounting for interface stresses

Yield criterion in the coalescence regime for nanoporous material

F(Σ, σ0, γ, ...) or Σ33 = G(σ0, γ, ...)
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Homogenization of porous material accounting for interface stresses

Yield criterion in the coalescence regime for nanoporous material

F(Σ, σ0, γ, ...) or Σ33 = G(σ0, γ, ...)

Geometry and boundary conditions

◦ Cylindrical void in cylindrical unit-cell

◦ Axisymmetric loading conditions
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Homogenization of porous material accounting for interface stresses

Yield criterion in the coalescence regime for nanoporous material

F(Σ, σ0, γ, ...) or Σ33 = G(σ0, γ, ...)

Constitutive equations: Rigid / Perfect plasticity

◦ Matrix: Isotropic von Mises criterion (3D yield stress σ0)

3

2
σD : σD ≤ σ2

0

◦ Void/Matrix interface: Isotropic von Mises criterion (2D yield stress γ)

3

2
σ2D
D : σ2D

D ≤ γ2

Homogenisation and limit analysis

Π(D) = infv∈κ(D)
1

vol(Ω)

[∫
Ωm

σ0d
VM
eq dV +

∫
Sint

γdVMS,eq dS

]
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Homogenization of porous material accounting for interface stresses

Yield criterion in the coalescence regime for nanoporous material

F(Σ, σ0, γ, ...) or Σ33 = G(σ0, γ, ...)

Trial velocity field kinematically admissible, incompressible

◦ Proposed by (Keralavarma & Chockalingham, 2016):


vKCr (r, z) =

3HD33

4h

(
1− z2

h2

)(
L2

r
− r
)

vKCz (r, z) =
3HD33

2h

(
z − z3

3h2

)

◦ Other trial velocity fields are possible (see (Morin et al., 2015))
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Homogenization of porous material accounting for interface stresses

Yield criterion in the coalescence regime for nanoporous material

F(Σ, σ0, γ, ...) or Σ33 = G(σ0, γ, ...)

Estimation of the coalescence stress (isotropic, axisymmetric loading):(
Σ33

σ0

)
c

=

√
6

5

[
b ln

1

χ2
+
√
b2 + 1−

√
b2 + χ4 + b ln

(
b+

√
b2 + χ4

b+
√
b2 + 1

)]

+
2Γ√

3

√
1 + 3χ4

with b2 =
1

3
+ α

1

3

5

8W 2χ2
, α = [1 + χ2 − 5χ4 + 3χ6]/12.

Can be extended to account for anisotropy and shear:

⇒ see (Gallican & Hure, 2017)
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Homogenization of porous material accounting for interface stresses

Yield criterion in the coalescence regime for nanoporous material
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1

3

5

8W 2χ2
, α = [1 + χ2 − 5χ4 + 3χ6]/12.

Can be extended to account for anisotropy and shear:

⇒ see (Gallican & Hure, 2017)

How good is this analytical coalescence criterion ?:
⇒ Comparison to Numerical limit-analysis
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Homogenization of porous material accounting for interface stresses

Yield criterion in the coalescence regime for nanoporous material

F(Σ, σ0, γ, ...) or Σ33 = G(σ0, γ, ...)

◦ Numerical limit-analysis simulations: Standard finite element
simulations, coalescence boundary conditions, no geometry update,
perfectly plastic von Mises matrix and interface
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Homogenization of porous material accounting for interface stresses

Yield criterion in the coalescence regime for nanoporous material

F(Σ, σ0, γ, ...) or Σ33 = G(σ0, γ, ...)

◦ Numerical limit-analysis simulations: Standard finite element
simulations, coalescence boundary conditions, no geometry update,
perfectly plastic von Mises matrix and interface
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2� for elongated spheroidal voids W � 1

2� for spherical voids W ∼ 1 with additional fitting parameter
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Homogenization of porous material with strain-gradient plasticity

Yield criterion for porous strain-gradient material F(Σ, ...) = 0

Similar framework as for the case of interface stresse

◦ Fleck & Willis version of strain gradient plasticity

Ė2
p = ε̇2

p + L2
D ε̇

2
ij,kε̇

2
ij,k

◦ Extension of Hill-Mandel lemma (Azizi et al., 2014):

Σ : D =
1

volΩ

∫
∂Ω

[Tivi + tijdij ]dS

for periodic boundary conditions

◦ Extension of Limit analysis theorem (Fleck & Willis, 2009)

Σ : D = infv∈κ(D)
1

vol(Ω)

∫
Ω

σ0

√
2

3
dijdij + L2

Ddij,kdij,k dV

where κ(D) is a subset of velocity field compatible with D and verifying the
property of incompressibility

J. Hure 16th European Mechanics of Materials Conference 10/15



Homogenization of porous material with strain-gradient plasticity

Yield criterion in the coalescence regime for porous strain-gradient
material

F(Σ, σ0, γ, ...) or Σ33 = G(σ0, γ, ...)

Trial velocity field (Morin et al., 2015)
vMr (r, z) =

HD33

h2
(h− z)

(
L2

r
− r
)

vMz (r, z) =
HD33

h2

(
2hz − z2)

Estimation of the coalescence stress (isotropic, axisymmetric loading):(
Σ33

σ0

)
c

=
2

W 2χ2

∫ Wχ

0

dz

∫ 1

χ

√
α(r, z) + L2

Dβ(r, z)rdr

with α(r, z) =
4

3
(Wχ− z)2

(
1

r4
+ 3

)
+

1

3

(
1

r
− r
)2

and β(r, z) =
16

r6
(Wχ− z)2 +

3

r4
+ 7
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Homogenization of porous material with strain-gradient plasticity

Yield criterion in the coalescence regime for porous strain-gradient
material

F(Σ, σ0, γ, ...) or Σ33 = G(σ0, γ, ...)
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How good is this analytical coalescence criterion ?:
⇒ Comparison to Numerical limit-analysis
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Homogenization of porous material with strain-gradient plasticity

Yield criterion in the coalescence regime for nanoporous material

F(Σ, σ0, γ, ...) or Σ33 = G(σ0, γ, ...)

Numerical limit-analysis simulations:

◦ Cubic-unit cell with pediodic boundary conditions

◦ Coalescence boundary conditions

◦ Fleck-Willis strain-gradient material without hardening

◦ Coalescence boundary conditions
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The model captures well the increase of coalescence stress as LD increases

◦ One parameter needed to account for unit-cell shapes (cylindrical vs.
cubic)
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Coalescence criteria for porous materials with small-scale voids

Accounting for interface stresses:(
Σ33

σ0

)
c

=

√
6

5

[
b ln

1

χ2
+
√
b2 + 1−

√
b2 + χ4 + b ln

(
b+

√
b2 + χ4

b+
√
b2 + 1

)]

+
2Γ√

3

√
1 + 3χ4

Accounting for strain-gradient plasticity (Fleck-Willis):(
Σ33

σ0

)
c

=
2

W 2χ2

∫ Wχ

0

dz

∫ 1

χ

√
α(r, z) + L2

Dβ(r, z)rdr

From coalescence criterion to yield criterion in the coalescence
regime (axisymmetric loading conditions)

F(Σ) =
Σeq
σ0

+
3

2

Σm
σ0
− 3

2

(
Σ33

σ0

)
c

≤ 0
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Coalescence criterion for porous materials with small-scale voids

A hybrid yield criterion for porous material exhibiting size effects:

◦ Growth criterion Fg(Σ,α,Γ) ≤ 0
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Coalescence criterion for porous materials with small-scale voids

A hybrid yield criterion for porous material exhibiting size effects:

◦ Growth criterion Fg(Σ,α,Γ) ≤ 0

◦ Coalescence criterion Fc(Σ,α,Γ) ≤ 0
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Complete homogenized model:

◦ Adding evolution laws

◦ Numerical implementation of constitutive equations
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Homogenization of porous material with strain-gradient plasticity

Numerical implementation of the constitutive equations:

◦ Strain-gradient plasticity: qualitative agreement to be further validated
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(Niordson, 2008)

Hardening and delayed softening observed as R/LD decreases

◦ Interface stresses: Talk of J.M. Scherer)
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