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ABSTRACT 
 

In the framework of the R&D on GEN IV Sodium-cooled Fast Reactors (SFRs) at the CEA, a 

hypothetical Unprotected Loss of Flow (ULOF) is investigated and could lead to sodium boiling if one 

assumes the non-activation of passive complementary safety devices. As a qualification basis, the CEA 

is currently developing and coupling reference codes at different scales. Supposing a complete 

integrity of hydraulic channels geometry, reactor case studies have shown the possibility of a periodic 

boiling regime: the density wave mechanism, which is believed to be enhanced by low void worth 

core design distinctive of a GEN IV SFR, is interestingly characterized by pins claddings cooling 

possibility at sodium saturation temperature (instead of dry-out). In that scientific framework, this 

paper presents the ongoing development of an innovative semi-analytical methodology to perform 

stability and bifurcation analyses of boiling flows. While equations for a 1D multiphase model based 

on a drift model are classically used, the Asymptotic Numerical Method (ANM) is implemented to 

solve steady-state equations whose non linearities drive the observed dynamic phenomena. Inline, 

elements of the Theory of Dynamical Systems are first recalled, such as the Hopf bifurcation linked to 

the appearance of a periodic solution and its stability, to provide the necessary mathematical 

background. The added-value for this specific study of the ANM over a zero-order continuation 

method is illustrated on a test case. Some simulation results are then reported to investigate flow 

phenomenology that was addressed along boiling stability experiments led by Saha in 1970's. On one 

hand, the runs show our model’s numerical ability to efficiently handle a non-linear set of equations 

while imposing a numerically stringent pressure difference for flow boundary conditions; on the other 

hand, no qualitative evidence of unstability onset has been observed while such a phenomenon is the 

central point of Saha experimental work. Even if only eigenvalues analysis, to be next carried out, 

could assert a miss of the model, this point could reveal some limitations regarding the set of closure 

laws or geometrical description that is up to now considered in our model. To support this statement, 

some additional simulation results on an academic case are given which exhibit how a non linearity of 

the model, not engaged in the Saha experimental conditions, could lead to an oscillating response in 

the bifurcation diagram. 

 

KEYWORDS 
Thermal-hydraulics, stability of boiling flows, semi-analytical methods, continuation methods. 

 

 

1. INTRODUCTION 
The fourth generation of nuclear reactors is focusing on enhanced safety requirements and closing the 

fuel cycle. There has therefore been a lot of research on Sodium-cooled Fast Reactors (SFRs) at the 

CEA [1]. As for the safety, hypothetical scenarios are extensively studied such as an Unprotected Loss 
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of Flow (ULOF), assuming the non-actuation of complementary passive safety devices, which can 

lead to sodium boiling.  

Sodium boiling has been studied in the 1980's in France [2] and abroad [3-4] in the geometry typical 

of SUPERPHENIX (homogeneous core). A static phenomenology was observed and the possibility for 

a stabilized boiling, avoiding dry-out, was shown thanks to a Ledinegg static stability criterion. 

The GEN IV SFR (CFV, French acronym for Low Sodium Void Effect) core characteristics are very 

different from the previous generation, with a heterogeneous composition and a sodium plenum on top 

of the fuel bundle. At the CEA, reference codes such as CATHARE for thermal-hydraulics and 

APOLLO for neutronics have been adapted to sodium and especially the set of closure laws validated 

and some revised to the GEN IV geometry using experiments such as GR19 [5] and more recently 

SENSAS [6]. The results illustrated in Fig. 1 show a dynamical phenomenology, with strong 

oscillations in void fraction or mass flow rate for example. Moreover, some simulations tend to a 

scenario where these oscillations remain stable, which could enhance safety by keeping the 

temperature at the saturation level hence avoiding dry-out similarly to the stabilized boiling in the 

1980's. 

 

 
Fig. 1 : Illustration of a dynamic boiling behaviour computed with CATHARE [7]. 

 

Elsewhere, dynamic boiling phenomenology and its stability has long been a topic of interest for the 

Boiling Water Reactors (BWRs). Many experiments have been led as early as in the 1950's to gain a 

better understanding of the phenomenology and deduce more accurate closure laws, such as two-phase 

wall friction for example [8]. These experiments were then used as basis for analytical models, like the 

drift model first developed by Zuber and Findlay [9], then further improved by Saha [10] after his own 

experiments on oscillations stability, Ishii [11] and more recently Hibiki [11-12]. Such models, 

specific to the study of boiling dynamic phenomenology, allowed the development of semi-analytical 

stability analysis methods. The stability criteria derived from these methods were drawn into stability 

maps depending on reactors' operating parameters as illustrated in Fig. 2 [14]. Further on, the different 

types of observed oscillations have been classified methodically [15-16]. Thermal-hydraulic drift 

models have also been coupled to thermomechanics and neutronic models to improve predictions [17]. 
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Fig. 2 : Illustration of a stability map in the Npch-Nsub space [14]. 

 

As detailed in [18], the purpose of the present work is to take advantage of semi-analytical 

methodologies to deal with the strong non-linear phenomena involved in the related governing 

equations. This approach should allow to link the physical limit cycle appearing with oscillations such 

as density waves to a mathematical phenomenon called the Hopf bifurcation, which indicates in the 

bifurcation diagram the appearance of a periodic solution. Moreover, the study of the characteristics of 

a Hopf bifurcation gives the stability of the periodic solution. Further on, the occurrence of such 

phenomena is to be linked to the characteristics of the CFV core. Our approach is based on the 

Asymptotic Numerical Method (ANM), a high-order predictor-corrector continuation algorithm 

worked on expertly at the Aix-Marseille University. It enables us to find all solutions of a strongly 

non-linear problem and especially all the points of interest, such as bifurcation points, where a linear 

stability anlaysis is particularly relevant. In this paper we illustrate our methodology and its added-

value as well as first experimental comparison results based on the data from Saha [19]. Finally we 

draw some perspectives for the remainder of this PhD work. 

 

 

2. STATE-OF-THE-ART ON NONLINEAR NUMERICS 
 

2.1. Minimal Background from the Theory of Dynamical Systems 

 

The Theory of Dynamical Systems focuses on non-linear calculations, hence allowing to overcome the 

usual linearization assumption [20], a crucial point in the case of interest of this paper where strong 

non-linearities take place. 

 

Let us consider a system of equations, typically Ordinary or Partial Differential Equations (ODEs or 

PDEs) [21] that read as follows:  

 

                                                       (1) 
 

where   is the unknowns vector,    its derivative with respect to time and   a parameter. This 

formulation assumes the time-derivative terms can be written as direct derivative of the unknowns. 

The stationary solutions of the system,   , can be found by solving: 

 

                                                                                           (2) 

 

The linear stability of a stationary solution can be defined as follows [22]: 

-  A solution is called asymptotically stable if its response to small amplitude perturbations tends 

to zero as time goes to infinity; 



12th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-12) 

Qingdao, China, October 14-18, 2018 

 

Abstract No: 30          Paper No.: 

4 

-  A solution is called stable if its response to small amplitude perturbations remains small as 

time goes to infinity; 

-  A solution is called unstable otherwise. 

To compute the linear stability of a steady solution, one introduces small amplitude perturbations, 

assumed to be exponential in time. This leads to rewriting our system, linearized around the stationary 

solution, as an eigenvalue problem:  

 
                                           (3) 

 

where J is the Jacobian matrix, hence the derivative of all governing equations with respect to all the 

unknowns, μ is the frequency and w is the spatial amplitude mode of the perturbations. 

Therefore, the eigenvalues of the Jacobian matrix of the system give the linear stability, assuming the 

time derivative terms are written as direct time derivatives of the unknowns like in Eq. (1). If this 

condition isn’t met, the identity matrix will be replaced by a monodromy matrix [23]. 

 

2.2. Continuation Methods and Bifurcation Points 

 

A continuation method is defined as an algorithm able to compute and follow a branch of solutions. A 

branch of solutions is itself defined as the continuum of solutions of a system parametrised following 

the lambda parameter defined in Eq. (1). The Implicit Function Theorem stipulates the existence of a 

branch of stationary solutions if the Jacobian matrix is non-singular for a hyperbolic system. 

Using a continuation method ensures to find all the solutions of a system and therefore all the points of 

interest such as bifurcation points. A bifurcation point is a point where the branch of solutions cannot 

be extended uniquely. There are three main categories of bifurcation points [22]: 

- The turning point, so called because the branch of solutions literally “turns” as illustrated in 

Fig. 3, is a point where the Jacobian matrix is singular. To find the solution at this point, it has 

been proposed to add a new equation to the system describing the behaviour of the 

continuation parameter lambda. This extended system is not singular at the turning point, 

hence the solution can be computed and the branch of solutions extended uniquely. At a 

turning point, the stability of the stationary solution changes. Because of the unicity of the 

branch of solutions at a turning point, many authors consider it not to be a bifurcation point 

per se. 

 

 
Fig. 3 : Illustration of a turning point [24]. 

 

- The stationary bifurcation is a point where not only the Jacobian is singular, but the extended 

system as well. This means the branch of solutions cannot be extended uniquely as there are 

several branches emanating from that point, as illustrated in Fig. 4. A matrix being singular 

means the dimension of its kernel is higher than one. The decomposition of this kernel gives 

the number of coexisting branches and their tangent vector. A stability analysis is then 

necessary for each branch. 
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Fig. 4 : Illustration of a stationary bifurcation [24]. 

 

- The Hopf bifurcation [25] is different as it is characterized by the appearance of a periodic 

solution. The Jacobian matrix is not singular at a Hopf bifurcation because the stationary 

solution is unique and defined. However, its stability changes due to the appearance of the 

aforementioned periodic solution. A stability analysis is therefore required to determine the 

stability of both coexisting stationary and periodic solutions. There are two types of Hopf 

bifurcation depending on the stability evolution scenarios. A Hopf bifurcation is called 

supercritical is the stationary solution is destabilized by the appearance of a stable periodic 

solution. It is subcritical otherwise. 

 

 
Fig. 5 : Illustration of both Hopf bifurcation scenarios [17]. 

 

 

The Asymptotic Numerical Method (ANM) is the continuation method used in this work. This 

predictor-corrector algorithm is based on an arbitrarily high order Taylor-series decomposition of the 

unknowns in order to transform the original non-linear set of equations into a set of linear algebraic 

systems. The mathematical treatment is detailed in [24], so in the remainder we will only introduce the 

main concepts of the approach. The Taylor series are written with respect to the path parameter, which 

defines the continuation step along the branch of solutions. This parameter is implicit in the system, 

which means that the length of each step is adapted to the strength of the non-linearities via the radius 

of convergence of Taylor series. The stronger the non-linearities, the shorter the continuation step. This 
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ensures not to miss any important behaviour, meanwhile allowing optimal step length. On the other 

hand, the main constraints relateed to the ANM is for every part of the model to be written in a 

continuous and derivable way. For example, a sudden change of hydraulic diameter of the channel 

needs to be written using typically a hyperbolic tangent to smoothen it. In the present work the ANM 

is implemented in the DIAMANLAB software [26] written in MATLAB, that includes the automatic 

differentiation on top of the continuation algorithm. This allows the derivatives to be computed 

automatically, no matter the original writing of the equations. 

 

3.  METHODOLOGY 

3.1. Model Equations 
In this section we set our model equations up, which are based on the classical drift formulation [12]. 

The drift model has been thought specifically for the study of multiphase flows. Its subtle mix of terms 

describing the mixture behaviour and terms describing the interaction between the two phases via the 

drift velocity allows it to remain compact in the amount of equations while keeping the ability to study 

complex phenomena of interest such as density waves [27]. The classic formulation of a 1D drift 

model includes 4 conservation equations : mixture mass, momentum and energy, and dispersed phase 

mass [12]. The energy conservation equation is written in its enthalpy form. Let us note that we solve 

the stationary form of the drift model with the ANM, the time-related terms of the equations being 

introduced only for the stability analysis. 

We decided to modify this classic drift model in stationary form. Let us first expose our equations then 

detail how they differ from the classic formulation. 

We write the mixture mass conservation as: 

     

  
                                               (4) 

The stationary form means keeping only the advection term. 

The mixture momentum conservation: 

     
 

  
 

   
  

               
 

  
       

    

  
       

             (5) 

We find in the equation an advection, a pressure gradient, a wall friction, a gravity and a drift term. 

The enthalpy equation: 

       

  
 

   

  
 

 

  
       

    

  
                               (6) 

This equation is composed of an advection, a heat source and a drift term. 

Our final equation is based on the thermal equilibrium assumption and links the vapour quality to the 

void fraction: 

                                                        (7) 

 

Firstly, we rewrote the drift terms of the momentum and enthalpy equations so as to fit the necessity 

for continuity and derivability of the ANM. The classic formulation includes a (1-α)
-1

 factor, which 

means the drift term of these equations is not defined for a vapour single-phase scenario where α=1. 

Rewriting this term using the definition of the drift velocity below [28] ensure our model can study the 

whole range of void fractions: 

                                                    (8) 
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Secondly, we assumed thermal equilibrium to replace the dispersed phase mass conservation by a 

relation between the void fraction and the vapour quality. As a consequence no closure law on the 

vapour production rate is necessary. Thermal equilibrium hypothesis is seen as a relevant first 

hypothesis in the scope of Na boiling simulation, compared for instance to some strong fluid 

mechanics effects (wall friction, flow patterns, buoyancy) which are driven by the 3 order magnitude 

ratio between liquid and vapour densities. This statement can be supported by the following points: i) 

no strong superheat of the liquid was experience in the past on Na boiling French facilities [2] as far as 

they were operating under conditions that were mimicking a reactor loss of flow, by so making 

available inert gas entrainement; ii) application of classical adimentional correlations from the 

literature for heat and mass transfers at the interface, such as the ones implemented in CATHARE [7], 

was found to lead to liquid and vapour temperatures in the bulk very close from interface one’s 

(typically, not more than a 1 to 2°C difference from saturation value). Additionaly, in the current 

applicative frame in Freon addressed in this paper, one can note that such an effect was numerically 

investigated by Saha [10] so that the deviation from the actual stability boundary location could be 

balanced as a refinement of secondary order compared to the first order target of the current work, 

which is methodologic. To write it, we need a regularisation describing the evolution of the vapour 

quality as a function of the mixture enthalpy, even for single-phase scenarios beyond saturation 

enthalpy. We propose the following, where ε is a regularisation factor whose typical value is 10
-2

: 

   
 

          
                  

              
         (9) 

Furthermore, our equation on the void fraction is by essence mathematically binding the void fraction 

between 0 and 1 without any dependance on external conditions or closure laws.  

Finally, the Ffric term is the wall friction term in the mixture momentum conservation equation. The 

classic formulation is written as a function of the liquid phase equivalent velocity [12]: 

              
  

   
  
                                       (10) 

Where φ is a two-phase multiplying factor determined by an empirical correlation, f is the wall friction 

coefficient, which can be computed using the Churchill law for example [29], depending on the liquid 

phase Reynolds number and Jl is the liquid volumetric flux. To avoid these empirical closure laws, we 

decided to write the wall friction term as a function of the mixture parameters rather than the liquid-

phase parameters: 

             
  

   
  
                                      (11) 

All we need is a correlation for the mixture viscosity, which for the moment we consider as a linear 

combination of the liquid and vapour viscosities depending on the void fraction: 

                                                   (14) 

It is of importance for the validation of our model to compare the equivalent two-phase wall friction 

multiplying coefficient of our model to the values used in the literature and adapt our formulation if 

needed to ensure an appropriate order of magnitude of the wall friction as the relative weight of the 

non-linearities has an impact on the stability of the oscillations. 

It is useful to note at this point that all our equations are pure advection equations. Time and space are 

therefore interchangeable. This means that our asymptotic method finds oscillations in space only, as 

the equations are solved without the time-related terms, but these spatial oscillations can be converted 

to temporal oscillations. Moreover, the impact of changing the boundary conditions on the spatial 

characteristics of the solution are equivalent to the impact due to the time-related change of boundary 

conditions typically found in an ULOF scenario of interest for this work. Finally, the time-derivative 
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terms will be re-introduced in the stability analysis upon finding a Hopf bifurcation typically after the 

ANM resolution finds all the stationary solutions. 

Secondary unknowns, such as mixture density for example, are computed with the usual definitions 

found in the literature, such as for example the mixture enthalpy definition [28]: 

                                                    (13) 

 

3.2. Algorithm 
Let us now detail the implementation of our methodology. Since the governing equations are Partial 

Differential Equations, the residual vector and Jacobian matrix should be computed at a discrete level. 

We have opted for a second order centered finite difference scheme. The discretization scheme for a 

first order derivative reads as: 
  

   
  

         

   
                                           (14) 

 

A similar scheme of order 4 has also been implemented to allow a sensibility study to the core 

numerical stability enhancement coming from using a higher-order discretization scheme:  
  

   
  

    

    
  

    

   
  

    

   
 

    

    
                       (15) 

 

The boundaries of the computation domain are treated with either forward or backward finite 

difference schemes of same order. For the second order, this is written as: 
  

   
  

           

   
                                         (16) 

 

While for the fourth more terms are involved: 
  

   
     

  

    
  

  

  
  

  

  
  

  

   
 

  

   
              (17) 

 

 

Moreover, a staggered scheme has been chosen for pressure with relation to velocity as illustrated in 

Fig. 6.  

 

 
 

Fig. 6 : Illustration of pressure-velocity discretization scheme. 

With this scheme, the pressure derivative at point ui where the velocity is computed, which is 

necessary for the momentum conservation equation, gives at the second order: 
  

    
  

           
  

                                          (18) 

And at the fourth order: 
  

    
 

     
    

   
     
    

   
   
    

 
     
    

                  (19) 

 

 

This reduces numerical challenges due to solving incompressible flows such as aliasing or other 

numerical oscillations. The sensibility of the convergence to the discretization scheme is to be studied 

in further details. 

 

The algebraic system to be solved by the ANM algorithm needs to be fully implicit with respect to the 

principal unknowns of our model. These unknows have been chosen as the mixture velocity, pressure, 
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enthalpy and the void fraction. This means that the equations solved for these unknowns are hard-

coded in the residual vector and Jacobian matrix. The secondary unknowns, such as the mixture            

density, can be computed as linear combination of the principal unknowns and are therefore solved 

explicitly. This allows to improve the solving algorithm's efficiency without compromising the 

advantages of using an implicit solver. Let us illustrate here a typical member of the Jacobian matrix, 

which is defined as the derivatives of the equations with respect to the unknowns, here the advection 

term for the enthalpy equation following the second order discretization scheme: 

 

  
 

  
        

 

  
                                     (20) 

 

If we consider the first term only, which is the derivative with respect to the density, we write the 

derivative of the product as the product of the derivatives: 
           

   
                                            (21) 

 

   
             

   
                                        (22) 

 

As this term is computing the contributions to the Jacobian matrix of this term from the density, we 

can consider the product uh to be a single unknown. This means that, for each mesh element, three 

contributions will be added to the Jacobian matrix:    ,       and      , and of course even more 

for the fourth order discretization scheme. One can realise how reducing the number of unknowns and 

equations to be treated implicitly as well as finding a simpler but mathematically equivalent numerical 

formulation for these contributions is crucial to the efficiency of the algorithm: as such a 400 elements 

mesh as used here requires a 1600x1600 Jacobian matrix if we have four unknowns to a 1200x1200 

for three implicit unknowns. The added-value of the automatic differentiation as implemented in 

Diamanlab also becomes clear as it allows the automatic computation of the Jacobian matrix instead of 

the manual procedure explained above. 

 

3.3. Preliminary Continuation Tests 

 
Some exploratory studies have been led on a homogeneous model, which is a reduced version of the 

model introduced later in this paper keeping only the three conservation equations written with respect 

to the mixture parameters, so without drift terms describing the interactions between the phases. The 

aim was to gain a first insight on the ability of our model to recreate the physics and phenomena 

involved and on the workings of continuation methods. The parameters, such as phase change 

enthalpy or density ratio, are arbitrary but chosen so as to be representative of those of a low pressure 

water flow, itself ressembling those of sodium as far as the liquid/vapour density ratio is seen as a fluid 

mechanics driving mechanism. 

With that in mind, we implemented this simplified model in both ANM and a zero-order continuation 

method (using the solution at the previous continuation point as the first guess for the current 

continuation point, without improvement on the prediction) coupled to a Newton-Raphson solving 

algorithm as the corrector. This latter algorithm will be referred to as zero-order continuation for the 

rest of this section.  

 

Firstly, we solved our equations written with the mixture velocity as one of the primary unknown with 

our zero-continuation resolution algorithm. This means we have four unknowns: velocity, pressure, 

enthalpy and density of the mixture. The continuation parameter was chosen to be the pressure 

difference between inlet and outlet, as this would be the most realistic for a loss of pump power supply 

typical of an ULOF transient initiator. This converges for low void fractions only and struggles when 

we reach a turning point as the branch of solutions is not a bijection at that point anymore: two flow 

rates coexist as solutions for a single pressure difference and this basic algorithm therefore struggles to 

converge, as illustrated in Fig. 7. Furthermore, the Jacobian matrix is singular at a turning point, and 

the zero-order continuation algorithm does not compute the extended system, so it cannot handle that 

singularity. 
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Fig. 7 : Zero-order continuation algorithm, equations written as velocity, pressure difference as 

continuation parameter. 

 

Secondly, to solve this issue, we rewrote our equations using the mass flux as a primary unknown, 

instead of velocity and density, hence reducing to 3 the number of primary unknowns. Furthermore, 

we chose the mass flow rate as the continuation parameter, hence ensuring the unicity of solution for 

each value of continuation parameter. As a result, the zero-continuation algorithm could draw the 

whole boiling characteristic curve in one calculation without any convergence problem, as illustrated 

in Fig. 8.  

 

 
Fig. 8 : Zero-order continuation algorithm, equations written as mass flux, mass flow as continuation 

parameter. 

 

Thirdly, we kept the mass flux formulation of the equations as more efficient numerically while 

equivalent physically. But we changed the continuation parameter back to the pressure difference to be 

more realistic with an ULOF scenario in mind. This is important because it may have an impact on the 

nature and weight of the non-linearities and therefore on the final stability. In such configuration, the 

zero-continuation algorithm was able to draw the boiling characteristic curve in three parts, divided at 

each of the turning points. It could not indeed find the exact solution at the turning point because the 

Jacobian matrix is singular there, as illustrated in Fig. 9.  

 



12th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-12) 

Qingdao, China, October 14-18, 2018 

 

Abstract No: 30          Paper No.: 

11 

 
Fig. 9 : Zero-order continuation algorithm, equations written as mass flux, pressure difference as 

continuation parameter. 

 

Finally, we implemented the same model in the ANM with the pressure difference as continuation 

parameter. The ANM draw the whole characteristic curve in one calculation, computing the solution at 

the turning points as well thanks to its extended system formulation. Moreover, the adaptability to 

non-linearities allows a substantial reduction of the amount of continuation steps required, from 999 

for the zero-continuation algorithm to 38 for the ANM in the same configuration, as illustrated in Fig. 

10.  

This allows us to illustrate the added-value of the ANM over a classic resolution algorithm, not only 

ensuring the find all the solutions, even if the branches of solutions are not unique, but also in a more 

efficient manner. 

 

 
Fig. 10 : Zero-order continuation (left) vs ANM (right), equations written as mass flux, mass flow as 

continuation parameter (left), pressure difference as continuation parameter (right). 

 

4.  RESULTS 
 

In this section, we apply our approach to the configuration of the experimental campaign led by Saha 

in the 1970’s in the framework of the R&D for the BWRs [19]. 

These experiments were designed to study the oscillatory instabilities in a uniformly heated single 

fluid channel. The fluid used was Freon-113 because of its low critical pressure, hence low boiling 

point at moderate pressure (typically 149°C at 1.2Mpa) and low latent vaporization heat (14.7*10
4
 

J/kg at atmospheric pressure), hence reducing operating costs for a physical behaviour similar to water. 

The test section is composed of a single vertical cylindrical steal tube of 10mm inner radius heated 

externally by a DC supply uniformly along its 2.7m height. Valves at the inlet and outlet allow the 

setting of the throttling in the test section. A large bypass (50mm of diameter) runs paralel to the test 

section. Instruments were installed to measure flow rate, pressure, temperature and power to the test 

section. 

The purpose of these experiments was to plot the onset of oscillations on the subcooling number 
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versus phase change number introduced by Ishii and Zuber [9], [30]. For each run, hence each stability 

map, the system pressure, the inlet and outlet valves and the inlet flow rate were kept constant. The 

large bypass allows the assumption of the total pressure drop remaining constant too. The heating 

power was increased step by step until sustained oscillations were observed. To obtain several points 

to plot in one stability map, the inlet subcooling was set thanks to a pre-heater system. 

These points were then compared to the equilibrium theory developed by Ishii and Zuber [9], [30] and 

the non-equilibrium theory of Saha and Zuber [10] as illustrated in Fig. 11. 

 

 
Fig. 11: Stability map by Saha [19]. 

 

To use those experimental results as a comparison basis for our method, we ran simulations in a 

configuration as close as possible. The physical parameters for Freon-113 in the experimental 

operating conditions were taken from NIST database
1
. We fixed the total pressure drop and set the 

heating power as the continuation parameter. The bifurcation diagram obtained for an Nsub=5 in Fig. 

12 does not indicate any specific behaviour.  

 

 
Fig. 12: Bifurcation diagram in Saha case. 

 

The experiments reported by Saha show the onset of oscillations at Npch=10. The results of our 

simulation at such operating point are shown in Fig. 13. On the top left the mass flux is plotted versus 

the axial position. It remains constant indicating the continuity equation is solved correctly. The 

bottom left shows the enthalpy’s evolution, which is linear along the heated length. It is important to 

note at this point that we set the heating on only the first four fifths of the length of the channel so as 

to avoid a strong slope of void fraction close to the outlet, which is likely to destabilize the boundary 

condition and hence the whole computation. However we do not expect this to have a strong impact on 

                                                 
1
 https://webbook.nist.gov/chemistry/ 
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the relative weight of non-linearities hence the appearance of oscillations or their stability. The top 

right figure shows the dynamic pressure. It decreases monotonly along the test section, showing a 

difference of slope depending on the void fraction as the viscosity evolves, as expected. Finally the 

bottom right figure illustrates the void fraction and flow quality. The latter fully respects the 

regularization as a function of enthalpy described earlier while the former shows the impact of the drift 

velocity. By looking at Eq. (7), which links the void fraction and the flow quality, we see the middle 

term shows the impact of the drift. This term is proportional to α(1-α), this means that for void fraction 

lower than 0.5 it has a positive slope, and vice versa for void fractions higher than 0.5. This explains 

the shape of the void fraction curve. 

 

 
Fig. 131: Main variables at the point of onset of experimental oscillations. 

 

Saha proposed an analytical model based on these experiments where he uses a constant drift velocity 

of 0.11ms
-1

 (corresponding to the application of the correlation from Zuber and Findlay [9] for a 

bubbly-churn flow) and a constant two-phase wall friction multiplying coefficient of 2. In our model, 

we set the drift velocity as constant at the same value but we do not use a multiplying coefficient, as 

explained in the section about the equations. In Fig. 14, we can see the equivalent multiplying 

coefficient of our model at the point of onset of oscillations according to the experiments. It is clear 

that our model is not equivalent from this point of view, and it overestimates the wall friction. This is 

expected to have a stabilizing impact by decreasing the relative weight of the acceleration effects, 

hence delaying or avoiding the apparition of oscillations.  
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Fig. 14: Equivalent two-phase wall friction multiplying coefficient. 

 

Furthermore, our model does not include any pressure drop at inlet or outlet due to the throttling 

valves of Saha. These differences have an impact on the weight of non-linearities and may explain the 

lack of oscillations observed in our simulations.  Several other sources of non-linearities could also be 

considered such as the impact of interfacial friction abrupt change connected to flow pattern change 

(bubbly, slug/churn, annular), a threshold mechanism depending on liquid and vapour volumetric flux. 

 

 

To illustrate the importance of the relative weight of non-linearities, we have devised an academic 

study case which differs from the experimental case in the density ratio between the liquid and vapour 

phase being one order of magnitude higher and both phases viscosities being an order of magnitude 

higher as well. As a result, we observe in Fig. 15, for similar Nsub and other parameters, oscillations 

on the bifurcation diagram. This can be related to the Reynolds number. In this scenario, and on the 

contrary from the Saha paramters, we see a transition from a turbulent to a laminar regime by crossing 

the value Re=2300, which is the limit in the Churchill law we use. This means a non-linearity due to 

the flow regime transition appears and may trigger these oscillations that can be seen as the onset 

mechanism of density waves oscillations in an incompressible flow solved without the time-related 

terms of the equations.  

 

 
Fig. 152: Bifurcation diagram of Academic case with apparition of oscillations. 

 

As explained when describing the equations of our model, their pure advective nature means temporal 

oscillations such as density waves are transposed into spatial oscillations like those observed in Fig. 15. 

Nevertheless, a proper stability analysis based on the eigenvalues of our set of equations is required to 

prove the existence of a Hopf bifurcation which would evidence the appearance of a periodic solution 
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and its stability, as was already explored in [18]. Using the mathematical definitions introduced in the 

section about the Theory of Dynamical Systems, we know such an analysis requires the writing and 

solving of a monodromy matrix in addition to the Jacobian matrix. This requires some additional work. 

A sensibility study of the stability analysis to the impact of such monodromy matrix compared to the 

use of the Jacobian matrix on its own is considered so as to quantify the necessity of this monodromy 

matrix. On a simplified case of our model, we have shown our ability to detect the change from non-

imaginary eigenvalues to conjugated imaginary eigenvalues, which is typical of a Hopf bifurcation. 

 

 

5. CONCLUSIONS  
This paper presented the work achieved during the first half of a PhD work at the CEA and Aix-

Marseille University on the stability and bifurcation analysis of sodium boiling. In regard to the highly 

dynamical and non-linear phenomenology observed in previous studies at the CEA, a semi-analytical 

method based on the ANM is developped to get an efficient and rigorous solution of the governing 

non-linear equations. It enables to find all steady-state solutions and among them those of particular 

interest (bifurcation points) where a stability analysis has to be performed. The relevant mathematical 

highlights from the Theory of Dynamical Systems have been reported to support the inner workings of 

the approach which have been detailed. The added-value and feasibility are illustrated. A model based 

on the classical drift model from the literature is used to describe the physics involved, but some 

modifications have been introduced to fit the demands requirements of our semi-analytical approach. 

The resulting numerical model has been run in different continuation configurations, such as mass 

flow rate or pressure drop imposed at the boundaries, which are indeed representative of experiments 

from the literature and reactors’ ones along a loss of flow transient. Interestingly, the method has 

proven capable of handling such a variety of situations. A validation case on experiments led by Saha 

in the 1970’s has been investigated so as to balance the predictive ability of the model regarding two 

phase flow stability boundary. The simulations using the experimental parameters have shown no sign 

of oscillations on the bifurcation diagram. However, an academic scenario with a different ratio 

between the non-linearities has been used to trigger oscillations – which are seen as prototypic of a 

density wave mechanism onset – on the bifurcation diagram. The validity of these indicators is to be 

verified by a linear stability, which is actually the only appropriate methodology to identify them. 

Moreover, in the Saha experimental case, the closure laws and effects of the singularities have to be 

studied to evaluate their possible role regarding the onset of density wave mechanism that was 

observed. 

Investigating the ability of the present model to reproduce a stability boundary comparable to the one 

reported by Saha with his drift model, while using the same set of parameters and closure laws is 

indeed a key step to the understanding of the phenomenology observed in the experiments. 

For the second half of this PhD work, several directions will be investigated. Firstly, sensibility studies 

to the closure will be led, as there are many formulations proposed in the literature and it would be 

enlighting to gain a better understanding of their validity range on our specific study case. Secondly, 

sensibility studies focusing on the characteristics of a typical CFV reactor case are considered. This 

includes a rapid change of hydraulic diameter or a coupling between power and void fraction. Finally, 

the stability study method needs further development with the inclusion of a monodromy matrix and a 

sensibility study to the different approaches of linear stability study. 

 

 

NOMENCLATURE 

 

a. Roman Letters 

 

Letter Definition Units 

D Diameter m 

f Generic function / 

G Mass flux Kg.m
-
2.s

-1
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g Gravity acceleration m.s
-2

 

h Enthalpy J.kg
-1

 

I Identity matrix / 

i Index of current discretization point / 

J Jacobian matrix / 

P Pressure Pa 

q Heating flux W.m
-2

 

u Velocity m.s
-1

 

w Perturbation amplitude / 

X Vapour quality / 

y Generic solution / 

y
s
 Generic stationary solution / 

z Position m 

 

b. Greek Letters 

Letter Definition Units 

α Void fraction / 

Δ Differential of the unknown / 

ε Approximation error / 

λ Eigenvalue or continuation parameter / or / 

μ Viscosity or perturbation frequency Pa.s or / 

ρ Density Kg.m
-3

 

 

c. Indices 

Index Definition 

H Hydraulic 

l Liquid phase 

m Mixture 

v Vapour phase 

w Wall 
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