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Motivations for inverse UQ in TH simulations



The CATHARE 2 computer code

� Best Estimate thermal-hydraulic system code developed by CEA,

� Based on six balance equations: mass, momentum and energy conservation
• require building correlations (also called closure laws or physical models)

� Nuclear simulations with several levels of complexity:
• Separate/Combined Effects Test (SET, CET)

- at reduced scale, few physical phenomena
• Integral Effect Test (IET)

- many phenomena together.

� Simulating accidental transcients
for safety analysis

� Great effort devoted to V&V
implementation

- Verification : Are the equations
solved right ?

- Validation : Are the right equations
solved ?
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Uncertainties at all stages

CONCEPTION OF CORRELATIONS

� ex: heat transfers (convection, condensation, etc):

Cnom(x, θ)

where x is a vector of physical variables and θ is a fitting parameter.

� parameter uncertainty affecting θ (neglected by physicists)

V&V IMPLEMENTATION

� Verification stage : numerical uncertainties (ex: mesh convergence)

� Validation stage : where CATHARE 2 predictions are confronted to experimental
data from SET.
• correlation uncertainty assessed from differences between both of them

=⇒ inverse UQ process
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The CIRCE method



Correlation uncertainty

MAIN ASSUMPTIONS

• Model uncertainty is multiplicative:

CΛ(x) = Λ× Cnom(x)

• Λ follows a probability distribution

• Λ is log-Gaussian, calculated by the CIRCE method (De Crécy and Bazin, 2001).
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The CIRCE statistical method

CIRCE = Calcul des Incertitudes Relatives aux Corrélations Élémentaires.

STATISTICAL MODELING

• zi ∈ R the QoI experimentally measured at xi ∈ Rm

• Y (.) the CATHARE 2 code (used as a black-box function)

• For i ∈ [[1;n]], we assume that

zi = Y (Cλ1,i (xi), · · · , Cλp,i (xi)) + εi

= Y(λ1,i,··· ,λp,i)(xi) + εi

where
- λj,i ∼ Λj = LN (mj , σ2

j ), j ∈ [[1; p]]

- αj,i = log (λj,i) ∼ Aj = N (mj , σ2
j ),

- εi ∼ N (0, σ2
εi

).

The CIRCE method consists in estimating mj and σ2
j for j ∈ [[1; p]]
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Ex: condensation flow rate at the safety injection

Cooled water injected in the cold leg during LOCA

• One correlation per area,

• We focus on area B and C,

• Condensation higher in the
area B than area C,

• Qi = condensation flow
rate measurement to the
edge of area C (kg/s),

� The CATHARE 2 code can predict Q by using two correlations of condensation
Cλ1 (xi) (area B) and Cλ2 (xi) (area C)

� Qi = Y(λ1,i,λ2,i)(xi) + εi
where xi includes injection pressure, injection temperature, water height in the
cold led, etc.
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Other assumptions and implementation process

OTHER ASSUMPTIONS UNDERLYING CIRCE:
� The factors are not correlated each other: Cov(Λj ,Λk) = 0 ; 1 ≤ j 6= k ≤ p,

� The experimental variances σ2
εi

are assumed known.

CIRCE IMPLEMENTATION:
1. Linearization at αnom = log (λnom), typically at the nominal model 0p = log 1p

• zi − Y nomi = h
T
i (αi − αnom) + εi with αi := logλi

• Identifiability: rank(H) = p where H = [h1, · · · , hn]T ∈ Mnp.

2. Computation of MLE estimates (m̂j , σ̂2
j ) using an EM algorithm:

• Both E and M steps are explicit,
• ECME to speed up the convergence (Celeux et al., 2010).

3. Post treatment:
• Statistical analysis of residuals, LOO cross validation,
• Check the linearity assumption on

IF0.95(Aj) = [m̂j − 1.96σ̂j , m̂j + 1.96σ̂j ], j ∈ [[1; p]],

• Deduce the 95%-interval of Λj :
IF0.95(Λj) = [exp (m̂j − 1.96σ̂j), exp (m̂j + 1.96σ̂j)], j ∈ [[1; p]]
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The Bayesian counterpart of CIRCE



The Bayesian setting

Notations:
� z = [z1, · · · , zn]T ∈ Rn the matrix of field measurements

� α = [α1, · · · , αn]T ∈Mnp the matrix of missing model log-samples:
� m = (m1, · · · ,mp)T ∈ Rp and σ2 = (σ2

1 , · · · , σ
2
p)T ∈ Rp.

STATISTICAL MODEL

� zi = hTi αi + εi for i ∈ [[1;n]],
• zi ∈ Rq ; hi ∈ Rp ; αi ∼ N (m,σ2) ∈ Rp;

POSTERIOR DISTRIBUTION

� Bayes formula gives [m,σ2|z, α] ∝ [z, α|σ2,m][m,σ2]
• Likelihood: z|α, σ2

,m ∼ ⊗ni=1N (hTi αi, Ri),
• Prior: [m,σ2] = [m|σ2][σ2]

- Conjugate Gaussian-inverse-gamma,
- Gaussian for m|σ2 along with a folded non-standardized-t for σ (Gelman, 2006).
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Prior distributions

INVERSE-GAMMA (ε, ε) FOR σ2
j

� Leads to an improper posterior as ε −→ 0.
• Spiegelhalter et al. (2004) took ε = 0.001,
• Inference is sensible to ε (mainly when low values of σ provide large likelihood values),
• Such diffuse priors cannot fix troubles with improper posteriors (Kass and Wasserman,

1996).

FOLDED NON-STANDARDIZED STUDENT DISTRIBUTION FOR σj (via the
augmented model)

� zi = hTi × (Cα̃i) + εi for i ∈ [[1;n]], with
αi = Cα̃i
• Priors: C ∼ N (mC , 1) and
σ

2
α̃ ∼ IG(0.5× ν, S)

• Thus, σ = |C|σ̃ is a folded noncentral-t
- half-t if mC = 0,

- half Cauchy if mC = 0 and ν = 1 (which
tends to be uniform on R+ as S → +∞)

[σ] ∝
1

σ2 + S
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MCMC algorithms in the standard model

SUBSTITUTION (OR DATA-AUG.) SAMPLING (Gelfand and Smith, 1990)

By following the hierarchical structure [m,σ2, α|z] = [m,σ2|α, z][α|z]
� Start with a first sample (m0, σ

2
0)

� In a loop k ≥ 1, sample until convergence :
1. αk ∼ α|z,mk−1, σ

2
k−1 (Gaussian),

2. mk, σ
2
k ∼ m,σ

2|αk, z (Gaussian-inverse-gamma).

GIBBS SAMPLING
Based on the full conditional posterior distributions

� Start with a first sample (m0, σ
2
0)

� In a loop for k ≥ 1, sample until convergence :
1. αk ∼ α|z,mk−1, σ

2
k−1 (Gaussian),

1. mk ∼ m|σ2
k, αk, z (Gaussian),

2. σ2
k ∼ σ

2|bk, αk, z (inverse-gamma),
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MCMC algorithms in the augmented model

SUBSTITUTION (OR DATA-AUG.) SAMPLING (Gelfand and Smith, 1990)

Full posterior [m̃, σ̃2, α̃, C|z] = [m̃, σ̃2|α̃, z, C][α̃, C|z]
� Start with a first sample (m̃0, σ̃

2
0 , C0)

� In a loop for k ≥ 1, sample until convergence :
1. α̃k ∼ α̃|z, m̃k−1, σ̃

2
k−1, Ck−1 (Gaussian),

2. Ck ∼ C|z, α̃k (Gaussian),
3. m̃k, σ̃

2
k ∼ m̃, σ̃

2|α̃k, z, Ck (Gaussian-inverse-gamma).

GIBBS SAMPLING
Based on the full conditional posterior distributions:
� Start with a first sample (m̃0, σ̃

2
0 , C0)

� In a loop for k ≥ 1, sample until convergence :
1. α̃k ∼ α̃|z, m̃k−1, σ̃

2
k−1, Ck−1 (Gaussian),

2. Ck ∼ C|z, α̃k (Gaussian),
3. σ̃2

k ∼ σ̃
2|m̃k, α̃k (inverse-gamma),

4. m̃k ∼ m̃|σ̃2
k, α̃k (Gaussian),
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Fisher information and Sobol indices

The Sobol indice for Model Aj and
experiment i quantifies the fraction of
the output variance that is due to Aj .

Sj(xi) =
V[zi]− E[V[zi|Aj ]

V[zi]
=
V[E[zi|Aj ]

V[zi]

=
σ2
j × hi(j)

2

hTi diag(σ2)hi + σ2
εi

Based on the marginal likelihood [z|m,σ2] after integrating with respect to the missing
samples, we can prove that the Fisher information matrix is written as

In(m,σ2) =
(
In(m) 0

0 In(σ2)

)
where

In(m)j,k =
n∑
i=1

hi(j)hi(k)
hTi diag(σ2)hi + σ2

εi

1 ≤ j, k ≤ p

and

In(σ2)j,k =
n∑
i=1

0.5× h2
i (j)h

2
i (k)

hTi diag(σ2)hi + σ2
εi

1 ≤ j, k ≤ p

Therefore, we can get

In(mj) =
nS̄j

σ2
j

and

In(σ2
j ) =

nS2
j

2σ4
j
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Relation between inverse UQ and sensitivity analysis

� The smaller the Sobol indice SΛ, the less accurate the estimates (Celeux et al.,
2010):
• Bayesian counterpart?

- studying the role of the prior in terms of size of credible regions.

� Well-posedness principles in inverse UQ:
• in the Hadamard sense (condition number as low as possible)
• in the Sobol sense: SΛ > Sε (i.e. the input contribution to the randomness of Z is larger

than that of the noise)
• in the entropy sense, in the Fisher sense (Bousquet and Blazère, 2016).

� In real inverse UQ problems, the Sobol indices are unknown
• the matrix H can provide a local sensitivity measure

Synthetic example: xi ∈ [0.1, 1], α = (α1, α2), n = 50
� zi = xiα1,i + 1.6× x3

iα2,i + εi

• α1,i ∼ N (2, 0.022) and α2,i ∼ N (2, 0.052)
• εi ∼ N (0, 0.012)

Inverse UQ applied to TH simulations Statistics seminar in Rochebrune
G. Damblin, P. Gaillard Page 17/28



Relation between inverse UQ and sensitivity analysis

• Sobol indices S(xi) against
x ∈ [0.1, 1]
• In averaging over x ∈ [0.1, 1],

Model 1 gets higher Sobol indices
than Model 2 :

- S̄1 = 0.57, S̄1 = 0.39 and
S̄ε = 0.04

� Comparison of marginal posterior distributions [σ2
j |z] according to the prior

distribution in attempting to make a default Bayesian estimation:
• IG(ε, ε) with ε = 10−3 for σ2

j vs half-Cauchy with S = 20 for σj (j = 1, 2)
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Impact of the prior: IG(ε,ε) for σ2 vs half-Cauchy for σ

� Comparison being done over 50 simulated data set:
• credible intervals at 95% are calculated in two cases: IG(0.001, 0.001) vs half-Cauchy

with S = 20
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A worse case

Synthetic example: xi ∈ [0.1, 1],
α = (α1, α2), n = 50
• zi = xiα1,i + 1.1× x3

iα2,i + εi

• S̄1 = 0.67, S̄1 = 0.28 and
S̄ε = 0.04

� Comparison of marginal posterior distributions [σ2
j |z]

• IG(ε, ε) with ε = 10−3 for σ2
i vs half-Cauchy with S = 20 for σj (j = 1, 2)
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A more favorable case

Synthetic example: xi ∈ [0.1, 1],
α = (α1, α2), n = 50
• zi = xiα1,i + 2.3× x3

iα2,i + εi

• S̄1 = 0.47, S̄1 = 0.49 and
S̄ε = 0.04

� Comparison of marginal posterior distributions [σ2
j |z]

• IG(ε, ε) with ε = 10−3 for σ2
j vs half-Cauchy with S = 20 for σj (i = 1, 2)
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Application to the condensation tests

STEPS FOR BAYESIAN CIRCE:
1. Make linear approximation at αnom = log λnom (begin at the nominal
αnom = 0p)

2. Sample the joint posterior distribution m,σ2|z
- if the MAP for m is close to α0, then go to the next step
- else, go back to Step 1 (Iterative Bayesian Circe)

3. Calculate the marginal distribution of A :

[A] =
∫

[A|m,σ2][m,σ2|z]dmdσ2

4. Check the validity of the linear assumption on IF0.95(Aj) for 1 ≤ j ≤ p,

5. Deduce IF0.95(Λj) for 1 ≤ j ≤ p.

APPLICATION TO THE CONDENSATION MODELS

� 50 tests with two output values: condensation flow rate and temperature
=⇒ n = 100 physical measurements. Two models are considered:

- Model Λ1 (flow rate on the free surface in area B)
- Model Λ2 (flow rate due to the turbulent mixing in area C)

Inverse UQ applied to TH simulations Statistics seminar in Rochebrune
G. Damblin, P. Gaillard Page 22/28



Results (Gibbs implemented with the ROOT library)
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Non linear generalization



Non linear setting

Instead of linearizing the computer code, we aim to tackle the exact situation where
Y (.) is non-linear with respect to α :

� α̃k ∼ α̃|z, m̃k−1, σ̃
2
k−1, Ck−1 is no longer Gaussian =⇒ MH sampling =⇒ MH

within Gibbs algorithm

� Y (.) is thermal-hydraulic system code, moderately time-consuming (several
minutes per simulation)
=⇒ several weeks for a converged Gibbs sampler, along with possible failed simulations.

� Emulator is needed such as Gaussian process (GP), neural networks. GP
interpolates the learning simulations, which is expected for deterministic ones:
=⇒ α̃k ∼ α̃|z, m̃k−1, σ̃

2
k−1, Ck−1 is based on both mean and variance of the GP

emulator.

� How to control the gap between the GP-based posterior distribution and the actual
one?
• see Barbillon (2017) in the context of mixed models from a classic point of view (SAEM

algorithm instead of MH-within Gibbs).
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Some questions/future works



Some questions/future works

� How to specify priors for scale parameters in hierarchical models when an
objective Bayesian estimation is expected ?
• Should we specify a prior for the scale S of the half-Cauchy prior?
• How to measure how strong the estimation is data-dominated?
• Studying the frequentist properties of credible intervals obtained from various priors

proposed in the literature including the half-Cauchy.

� Statistical modeling to carry out in future works:
• Estimating the experimental variances σ2

εi
when they are unknown, promoting the

multidimensional version, taking into account a model Λk that is already known,
• Assuming a functional multiplier coefficient Λ(x) as a log-Gaussian process (functional

Bayesian CIRCE).

� Convergence diagnostics to implement for future users in CEA (I hope so !).
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