The CIRCE statistical method CIRCE = Calcul des Incertitudes Relatives aux Corrélations Élémentaires.

STATISTICAL MODELING

• z i ∈ R the QoI experimentally measured at x i ∈ R m

• Y (.) the CATHARE 2 code (used as a black-box function)

• For i ∈ [[1; n]], we assume that

z i = Y (C λ 1,i (x i ), • • • , C λ p,i (x i )) + i = Y (λ 1,i ,••• ,λ p,i ) (x i ) + i where -λj,i ∼ Λj = LN (mj , σ 2 j ), j ∈ [[1; p]] -αj,i = log (λj,i) ∼ Aj = N (mj , σ 2 j ), -i ∼ N (0, σ 2 i
).

The CIRCE method consists in estimating m j and σ 2 j for j ∈ [[1; p]]

Ex: condensation flow rate at the safety injection

Cooled water injected in the cold leg during LOCA

• One correlation per area,

• We focus on area B and C,

• Condensation higher in the area B than area C,

• Q i = condensation flow rate measurement to the edge of area C (kg/s),

The CATHARE 2 code can predict Q by using two correlations of condensation

C λ 1 (x i ) (area B) and C λ 2 (x i ) (area C) Q i = Y (λ 1,i ,λ 2,i ) (x i ) + i
where x i includes injection pressure, injection temperature, water height in the cold led, etc.
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The factors are not correlated each other:

Cov(Λ j , Λ k ) = 0 ; 1 ≤ j = k ≤ p,
The experimental variances σ 2 i are assumed known.

CIRCE IMPLEMENTATION:

1. Linearization at αnom = log (λnom), typically at the nominal model 0p = log 1p

• zi -Y nom i = h T i (αi -αnom) + i with αi := log λi • Identifiability: rank(H) = p where H = [h1, • • • , hn] T ∈ Mnp.
2. Computation of MLE estimates ( mj , σ2 j ) using an EM algorithm:

• Both E and M steps are explicit,

• ECME to speed up the convergence [START_REF] Celeux | Identifying intrinsic variability in multivariate systems through linearized inverse methods[END_REF].

Post treatment:

• Statistical analysis of residuals, LOO cross validation,

• Check the linearity assumption on

IF0.95(Aj ) = [ mj -1.96σj , mj + 1.96σj ], j ∈ [[1; p]],
• Deduce the 95%-interval of Λj :

IF0.95(Λj ) = [exp ( mj -1.96σj ), exp ( mj + 1.96σj )], j ∈ [[1; p]]
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The Bayesian counterpart of CIRCE

The Bayesian setting Notations:

z = [z 1 , • • • , zn] T ∈ R n the matrix of field measurements α = [α 1 , • • • , αn] T ∈ Mnp the matrix of missing model log-samples: m = (m 1 , • • • , mp) T ∈ R p and σ 2 = (σ 2 1 , • • • , σ 2 p ) T ∈ R p .
STATISTICAL MODEL

z i = h T i α i + i for i ∈ [[1; n]], • zi ∈ R q ; hi ∈ R p ; αi ∼ N (m, σ 2 ) ∈ R p ; POSTERIOR DISTRIBUTION Bayes formula gives [m, σ 2 |z, α] ∝ [z, α|σ 2 , m][m, σ 2 ] • Likelihood: z|α, σ 2 , m ∼ ⊗ n i=1 N (h T i αi, Ri), • Prior: [m, σ 2 ] = [m|σ 2 ][σ 2 ]
-Conjugate Gaussian-inverse-gamma, -Gaussian for m|σ 2 along with a folded non-standardized-t for σ [START_REF] Gelman | Prior distributions for variance parameters in hierarchical models[END_REF].

INVERSE-GAMMA ( , ) FOR σ 2 j
Leads to an improper posterior as -→ 0.

• Spiegelhalter et al. ( 2004) took = 0.001,

• Inference is sensible to (mainly when low values of σ provide large likelihood values),

• Such diffuse priors cannot fix troubles with improper posteriors [START_REF] Kass | The selection of prior distributions by formal rules[END_REF].

FOLDED NON-STANDARDIZED STUDENT DISTRIBUTION FOR σ j (via the augmented model) Start with a first sample (m 0 , σ 2 0 ) In a loop k ≥ 1, sample until convergence :

z i = h T i × (C αi ) + i for i ∈ [[1; n]], with α i = C αi • Priors: C ∼ N (m C , 1) and σ 2 α ∼ IG(0.5 × ν, S) • Thus, σ = |C|σ is a folded noncentral-t -half-t if m C = 0,
1. α k ∼ α|z, m k-1 , σ 2 k-1 (Gaussian), 2. m k , σ 2 k ∼ m, σ 2 |α k , z (Gaussian-inverse-gamma).

GIBBS SAMPLING Based on the full conditional posterior distributions

Start with a first sample (m 0 , σ 2 0 ) In a loop for k ≥ 1, sample until convergence :

1. α k ∼ α|z, m k-1 , σ 2 k-1 (Gaussian), 1. m k ∼ m|σ 2 k , α k , z (Gaussian), 2. σ 2 k ∼ σ 2 |b k , α k , z (inverse-gamma), Inverse UQ applied to TH simulations Statistics seminar in Rochebrune Full posterior [ m, σ2 , α, C|z] = [ m, σ2 |α, z, C][α, C|z]
Start with a first sample ( m0 , σ2 0 , C 0 ) In a loop for k ≥ 1, sample until convergence :

1. αk ∼ α|z, mk-1 , σ2 k-1 , C k-1 (Gaussian), 2. C k ∼ C|z, αk (Gaussian), 3. mk , σ2 k ∼ m, σ2 | αk , z, C k (Gaussian-inverse-gamma).

GIBBS SAMPLING

Based on the full conditional posterior distributions:

Start with a first sample ( m0 , σ2 0 , C 0 ) In a loop for k ≥ 1, sample until convergence :

1. αk ∼ α|z, mk-1 , σ2 k-1 , C k-1 (Gaussian), 2. C k ∼ C|z, αk (Gaussian), 3. σ2 k ∼ σ2 | mk , αk (inverse-gamma), 4. mk ∼ m|σ 2 k , αk (Gaussian),
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The Sobol indice for Model A j and experiment i quantifies the fraction of the output variance that is due to A j .

S j (x i ) = V[z i ] -E[V[z i |A j ] V[z i ] = V[E[z i |A j ] V[z i ] = σ 2 j × h i (j) 2 h T i diag(σ 2 )h i + σ 2 i
Based on the marginal likelihood [z|m, σ 2 ] after integrating with respect to the missing samples, we can prove that the Fisher information matrix is written as

In(m, σ 2 ) = In(m) 0 0 In(σ 2 )
where The smaller the Sobol indice S Λ , the less accurate the estimates [START_REF] Celeux | Identifying intrinsic variability in multivariate systems through linearized inverse methods[END_REF]:

In(m) j,k = n i=1 h i (j)h i (k) h T i diag(σ 2 )h i + σ 2 i 1 ≤ j, k ≤ p and In(σ 2 ) j,k = n i=1 0.5 × h 2 i (j)h 2 i (k) h T i diag(σ 2 )h i + σ 2 i 1 ≤ j, k ≤ p
• Bayesian counterpart?

-studying the role of the prior in terms of size of credible regions.

Well-posedness principles in inverse UQ:

• in the Hadamard sense (condition number as low as possible)

• in the Sobol sense: S Λ > S (i.e. the input contribution to the randomness of Z is larger than that of the noise) • in the entropy sense, in the Fisher sense [START_REF] Bousquet | Predicted sensitivity for establishing well-posedness conditions in stochastic inversion problems[END_REF].

In real inverse UQ problems, the Sobol indices are unknown

• the matrix H can provide a local sensitivity measure Synthetic example:

x i ∈ [0.1, 1], α = (α 1 , α 2 ), n = 50 z i = x i α 1,i + 1.6 × x 3 i α 2,i + i • α1,i ∼ N (2, 0.02 2 ) and α2,i ∼ N (2, 0.05 2 ) • i ∼ N (0, 0.01 2 )
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• Sobol indices S(x i ) against x ∈ [0.1, 1] • In averaging over x ∈ [0.1, 1],
Model 1 gets higher Sobol indices than Model 2 :

-S1 = 0.57, S1 = 0.39 and S = 0.04

Comparison of marginal posterior distributions [σ 2 j |z] according to the prior distribution in attempting to make a default Bayesian estimation:

• IG( , ) with = 10

-3 for σ 2 j vs half-Cauchy with S = 20 for σj (j = 1, 2)

Inverse UQ applied to TH simulations Statistics seminar in Rochebrune Synthetic example: Emulator is needed such as Gaussian process (GP), neural networks. GP interpolates the learning simulations, which is expected for deterministic ones:

x i ∈ [0.1, 1], α = (α 1 , α 2 ), n = 50 • z i = x i α 1,i + 1.1 × x 3 i α 2,i + i • S1 = 0.
=⇒ αk ∼ α|z, mk-1 , σ2 k-1 , C k-1
is based on both mean and variance of the GP emulator.

How to control the gap between the GP-based posterior distribution and the actual one?

• see [START_REF] Barbillon | Parameter estimation of complex mixed models based on meta-model approach[END_REF] in the context of mixed models from a classic point of view (SAEM algorithm instead of MH-within Gibbs).

Inverse UQ applied to TH simulations Statistics seminar in Rochebrune How to specify priors for scale parameters in hierarchical models when an objective Bayesian estimation is expected ?

• Should we specify a prior for the scale S of the half-Cauchy prior?

• How to measure how strong the estimation is data-dominated?

• Studying the frequentist properties of credible intervals obtained from various priors proposed in the literature including the half-Cauchy.

Statistical modeling to carry out in future works:

• Estimating the experimental variances σ 2 i when they are unknown, promoting the multidimensional version, taking into account a model Λ k that is already known, • Assuming a functional multiplier coefficient Λ(x) as a log-Gaussian process (functional Bayesian CIRCE).

Convergence diagnostics to implement for future users in CEA (I hope so !).
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-

  half Cauchy if m C = 0 and ν = 1 (which tends to be uniform on R + as S → +∞) [σ] ∝ 1 σ 2 + S Inverse UQ applied to TH simulations Statistics seminar in Rochebrune By following the hierarchical structure [m, σ 2 , α|z] = [m, σ 2 |α, z][α|z]

  67, S1 = 0.28 and S = 0.04 Comparison of marginal posterior distributions [σ 2 j |z] • IG( , ) with = 10 -3 for σ 2 i vs half-Cauchy with S = 20 for σj (j = 1, 2) Inverse UQ applied to TH simulations Statistics seminar in Rochebrune 1. Make linear approximation at αnom = log λnom (begin at the nominal αnom = 0p) 2. Sample the joint posterior distribution m, σ 2 |z -if the MAP for m is close to α0, then go to the next step -else, go back to Step 1 (Iterative Bayesian Circe) 3. Calculate the marginal distribution of A : [A] = [A|m, σ 2 ][m, σ 2 |z]dmdσ 2 4. Check the validity of the linear assumption on IF 0.95 (A j ) for 1 ≤ j ≤ p, 5. Deduce IF 0.95 (Λ j ) for 1 ≤ j ≤ p. APPLICATION TO THE CONDENSATION MODELS 50 tests with two output values: condensation flow rate and temperature =⇒ n = 100 physical measurements. Two models are considered: -Model Λ 1 (flow rate on the free surface in area B) -Model Λ 2 (flow rate due to the turbulent mixing in area C) Inverse UQ applied to TH simulations Statistics seminar in Rochebrune Non linear generalization Non linear setting Instead of linearizing the computer code, we aim to tackle the exact situation where Y (.) is non-linear with respect to α : αk ∼ α|z, mk-1 , σ2 k-1 , C k-1 is no longer Gaussian =⇒ MH sampling =⇒ MH within Gibbs algorithm Y (.) is thermal-hydraulic system code, moderately time-consuming (several minutes per simulation) =⇒ several weeks for a converged Gibbs sampler, along with possible failed simulations.

  

  

  

  

  

Some questions/future works

A more favorable case Synthetic example: Inverse UQ applied to TH simulations Statistics seminar in Rochebrune