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Variance reduction is a key ingredient for solving
radiation-protection problems with Monte-Carlo particle-
transport codes. Many variance-reduction methods require
the definition of an importance map and exhibit optimal per-
formance if the importance map is given by the adjoint flux,
the solution of the adjoint Boltzmann equation.

This paper presents the implementation of the Consis-
tent Adjoint-Driven Importance Sampling (CADIS) method-
ology via a coupling between the TRIPOLI-4 R© Monte-Carlo
particle-transport code and the IDT deterministic solver,
Additionally, we describe the implementation of a new
TRIPOLI-4 R© score that makes it possible to estimate the
adjoint flux during a direct Monte-Carlo calculation. These
new features are expected to simplify the solution of difficult
shielding problems.

I. INTRODUCTION

Monte-Carlo particle-transport codes are often the tool
of choice for performing quantitative radiation-protection
studies. This is mainly motivated by their reference char-
acter (i.e. the solution method does not involve any seri-
ous approximation) and by their powerful geometrical mod-
elling capabilities. However, the response of a particle de-
tector in a strongly attenuated radiation field, by construc-
tion, involves very rare events. The estimation of such a
response via Monte-Carlo methods is inevitably computa-
tionally intensive. Radiation-protection problems, by defi-
nition, fall into this class, and are therefore intractable with
Monte-Carlo methods unless suitable variance-reduction
techniques are applied.

Generally speaking, variance-reduction techniques con-
sist in modifying the estimators and the rules of the Monte-
Carlo game in a way that preserves the expected values of
the response estimators, while at the same time reducing the
expected estimator variance for a given computational ef-
fort. The efficiencies of different Monte-Carlo estimates of
the same quantity can be compared using the figure of merit
(FOM), which is formally defined as

FOM =
1

T · σ2(T )
.

Here T is the elapsed calculation time, and σ2(T ) is the
variance of the considered estimator, which in general is ex-
pected to be asymptotically proportional to 1/T . In practice,
the variance of the estimator is usually unknown, but it can
be estimated from the sampled events.

Many variance-reduction methods, at some point, need to
evaluate how important a particle track is, i.e. how promis-
ing it looks for the purpose of estimating the desired re-
sponse. This information may be used to decide if the track
is worth following. In some schemes, important tracks are
split (duplicated) and unimportant ones are rouletted (possi-
bly killed); in other schemes, the importance of the particle
track is used to modify the laws of tracking in order to push
the particle towards more important regions. Regardless of
the details of the method, it is up to the user to assign an
importance to each point of phase space. A function map-
ping points in phase space to importance values is generally
known as an importance map.

Of course, the FOM for a Monte-Carlo calculation using
variance reduction depends on the chosen importance map.
Good importance maps yield a smaller variance (and thus
a larger FOM) for a given computational effort. A special
role in this context is played by the adjoint flux, i.e. the so-
lution φ† to the adjoint stationary fixed-source Boltzmann
equation1:

−Ω · ∇φ†(r, E,Ω) + Σt(r, E) φ†(r, E,Ω) =∫
Σs(r, E,Ω→ r, E′,Ω′) φ†(r, E′,Ω′) dΩ′dE′

+ Q†(r, E,Ω). (1)

Here (r, E,Ω) represent the coordinates in phase space, Σt

is the total macroscopic cross section, Σs is the macroscopic
double-differential scattering cross section (for the purpose
of this work, fission is considered as included in the scatter-
ing kernel) and Q† is the adjoint source. It is well known
that, if Q† is interpreted as a detector response function,
the average expected contribution to the detector from a
point (r, E,Ω) is a solution of the adjoint equation, Eq. (1)1.
Thus, in some sense, the adjoint flux can be naturally taken
as an indication of the importance of a point in phase space.

It is actually possible to make a stronger statement. For
a certain class of variance-reduction algorithms for neutron
transport, it has been shown that the adjoint flux results in
a zero-variance game2: this essentially means that every
particle history yields exactly the same contribution to the
sought response. In order for this to happen, particle his-
tories must not be killed by mechanisms such as Russian
roulette and must be allowed to last forever3. However, sim-
ulation schemes with truncated particle histories still yield
excellent FOMs; this is perhaps not obvious, but it has been



empirically verified3. As far as it is understood, simulation
schemes with truncated histories employing the adjoint flux
as an importance map are very nearly optimal.

These remarks trigger two important considerations.
First, it is clearly interesting to leverage approximate meth-
ods to compute the adjoint flux and use this as an impor-
tance map in Monte-Carlo calculations; the use of deter-
ministic solvers for the adjoint Boltzmann equation has in-
deed given rise to the Consistent Adjoint-Driven Impor-
tance Sampling (CADIS) family of methodologies, which
has been reviewed by Haghighat and Wagner in Ref. 4.
The CADIS methodology has amply proven its worth, as
shown in many recent studies; see e.g. Refs. 5–7. Second,
the average contribution of particles emitted from a point
in phase space is actually accessible during direct Monte-
Carlo calculations, at least for the points in phase space that
are frequently explored. Therefore, it is conceivable to use
the information contained in the particle tracks of the direct
Monte Carlo calculation to improve the knowledge of the
adjoint flux and thus the efficiency of the importance map
during the direct simulation itself.

The goal of this work is likewise twofold. We present the
development of two new functionalities of the TRIPOLI-4 R©

Monte-Carlo particle-transport code8 that simplify the con-
struction of an efficient importance map. First, a devel-
opment version of TRIPOLI-4 has been coupled with the
deterministic transport solver IDT9. The coupling allows
users to seamlessly invoke IDT for the construction of the
importance map, without having to convert the TRIPOLI-4
simulation geometry to another format. Multigroup cross
sections are automatically condensed and homogenized.
The TRIPOLI-4/IDT coupling thus allows users to perform
Monte-Carlo calculations based on the CADIS methodol-
ogy. Second, we have implemented a new TRIPOLI-4 re-
sponse function that makes use of the particle tracks gen-
erated by a direct (forward) simulation to produce an on-
line estimate of the adjoint flux for a given detector re-
sponse. The principle has already been described in the
literature10–13, but we propose a slightly different, collision-
based estimator. The final goal of this work is to use the
scored adjoint flux as an importance map for the same sim-
ulation.

The plan of the paper is the following. Section II presents
the codes used for this work, namely TRIPOLI-4 and IDT.
Section III describes the coupling between them. Section IV
discusses the implementation of the new TRIPOLI-4 feature
for scoring the adjoint flux during a direct simulation. Sec-
tion V illustrates all the developments with some calculation
results. Finally, conclusions are drawn in Sec. VI.

II. MATERIALS AND METHODS

We briefly describe here the codes used in this work.

II.A. The TRIPOLI-4 R© Monte-Carlo code

TRIPOLI-48 is a Monte-Carlo particle-transport code de-
veloped at SERMA, CEA, Saclay (France). Its main ap-
plication fields are nuclear reactor physics, instrumentation,
criticality safety and radiation protection.

One of the main strengths of TRIPOLI-4 is to offer a wide
palette of variance-reduction methods for shielding prob-
lems. The traditional approach relies on the exponential
transform (ET)14. In this technique, the physical laws for
particle transport are modified in such a way that particles
are pushed from regions of phase space with low impor-
tance to regions with higher importance. Specifically, given
an importance map I(r, E,Ω) one considers the vector field
of directions of interest Ω̂:

Ω̂(r, E,Ω) =
∇I(r, E,Ω)
|∇I(r, E,Ω)|

.

The exponential transform essentially consists in modifying
the mean free path for particles as a function of the scalar
product Ω · Ω̂: specifically, the mean free path is extended
for particles moving along the direction of interest, and it
is contracted for particles moving against it. This way, par-
ticles will acquire a general tendency to follow the gradi-
ent of the importance map and thus move towards regions
with higher importance. The complete formulation of the
exponential transform also involves the application of im-
portance sampling at particle emission from the source and
after collisions; for historical reasons, TRIPOLI-4 only im-
plements importance sampling at the source.

In recent years, a new major variance-reduction technique
called Adaptive Multilevel Splitting (AMS) has been intro-
duced in TRIPOLI-415,16. AMS, in a nutshell, is an itera-
tive algorithm that tracks particles using analogue transport.
After each iteration, particle tracks are evaluated with re-
spect to the maximum importance that they have reached so
far; the "worst" particles are suppressed, and new particles
for the next iteration are generated by splitting the tracks of
the remaining ones. The iterations stop when enough parti-
cles reach the target detector. It has been proved under very
weak conditions that this scheme can yield unbiased esti-
mates of any estimator, including history-based estimators
such as energy deposition.

The role played by the importance map in the ET and in
AMS is sensibly different. In the former case, the gradient
of the importance map is actively used to modify the laws of
propagation for particle tracks; in the latter, the importance
serves as a criterion to rank particle tracks and decide which
ones should be suppressed. The different nature of the two
algorithms is also reflected in the fact that the ET admits a
zero-variance theorem3, while AMS does not. This can be
understood as a consequence of the fact that transport within
each AMS iteration is analogue, and will therefore always
result in residual fluctuations.

On the other hand, it has been empirically established that
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AMS is more robust than the ET against variations of the
importance map15. In other words, the ET is more likely
than AMS to produce nonsensical results in presence of an
inappropriate importance map. This property is crucial for
the algorithms of Section IV.

All the work described in this paper was performed on a
development version of TRIPOLI-4.

II.B. The IDT deterministic flux solver

IDT9 is a 3D Cartesian deterministic solver for the multi-
group time-independent Boltzmann transport equation for
neutral particles. It is also developed at SERMA, CEA,
Saclay (France), and it is part of the APOLLO3 R© suite17.
We limit the description of the code to the aspects that are
relevant for the coupling with TRIPOLI-4.

IDT solves either the direct or the adjoint transport equa-
tion within a multi-group formalism using nodal methods,
finite differences or short characteristics for the space part.
The S N formalism is used for the angular part. The calcula-
tion geometry is defined on a 3D cartesian mesh; each cell
of the mesh is associated with a set of multi-group cross sec-
tions (total, scattering, fission) defined on a group structure
[Eg−1, Eg], with g ∈ {1, 2, . . . ,G}. The result of the calcu-
lation is the multi-group flux φg (in the case of the direct
equation)

φg(r,Ω) =

∫
g
φ(r, E,Ω)du

or the adjoint multi-group flux (in the case of the adjoint
equation)

φ†g(r,Ω) =
1

u(Eg) − u(Eg−1)

∫
g
φ†(r, E,Ω)du,

where u(E) = − ln E denotes the neutron lethargy. A conve-
nient property of IDT (and of deterministic solvers in gen-
eral) is that the solution method is essentially the same for
the direct and the adjoint equations.

III. CADIS METHODOLOGY IN TRIPOLI-4 R©

We coupled IDT to TRIPOLI-4 in order to realize a
CADIS calculation scheme. The coupling is driven by
TRIPOLI-4, which constructs an IDT input file, calls the
solver and collects the result in memory. One of the design
goals of the coupling was to minimize the user interven-
tion required to set up a calculation. We illustrate here the
choices that we have made to this purpose, and the potential
pitfalls involved.

III.A. Mesh definition

The importance map is computed on a user-defined Carte-
sian mesh that can be either regular or variable. The same
mesh is also taken as the support for the description of the
discretized IDT geometry. TRIPOLI-4 constructs the IDT
geometry by querying the TRIPOLI-4 geometry for the ma-
terial at the center of each cell and assuming that the cell

is homogeneous. The same strategy was chosen in Ref. 18.
As a comparison, ADVANTG performs ray tracing on the
geometry to homogenize the composition of each cell19. At
any rate, it is the user’s responsibility to ensure that the cho-
sen mesh coarseness is suitable for the problem description.

III.B. Cross-section condensation

The multi-group cross sections are part of the input to
IDT. It is customary to condense point-wise cross sections
Σ(E) into multi-group cross sections Σg by using the direct
flux as a weighting function:

Σg =

∫
g Σ(E)φ(E)du∫

g φ(E)du
.

Similar condensation equations apply to differential cross
sections for specific processes, such as (elastic or inelastic)
scattering and (n, 2n) reactions. However, the shape of the
direct flux φ(E) is generally not known, so some assump-
tion must be made. For the purpose of the coupling be-
tween TRIPOLI-4 and IDT, cross sections are condensed
by TRIPOLI-4 using an energy spectrum representative of
a pressurized water reactor; this is the same approach used
in INIPOND, TRIPOLI-4’s native module for the construc-
tion of importance maps14. Additionally, TRIPOLI-4 only
generates isotropic (P0) cross sections and neglects upscat-
tering. Finally, no attempt is made to account for self-
shielding.

Depending on the problem at hand, the current condensa-
tion algorithm may or may not be appropriate. The rationale
is that the effects currently neglected by TRIPOLI-4 are not
expected to be very important as long as the resulting adjoint
flux is used for variance reduction. We plan to improve the
condensation procedure in the near future.

III.C. IDT solver parameters

The user may also need to fix a few free parameters spe-
cific to the deterministic solver:

angular quadrature: using too few angles for the angular
(Chebyshev-Legendre) quadrature formulas may result
in the appearance of ray effects in the deterministic so-
lution, especially in the case of well-localized (adjoint)
sources. For the moment, ray effects can be circum-
vented by increasing the quadrature order (equal to 8
by default);

mesh refinement: as mentioned above, the user must de-
fine a mesh to act as a support for the description of the
IDT geometry and for the adjoint flux resulting from
the IDT calculation. However, IDT will actually per-
form its computations on a finer mesh, so as to guaran-
tee appropriate convergence of the solution algorithm.
The maximum size of the computation mesh can either
be manually set by the user, or it can be automatically
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computed by IDT based on the longest optical distance
in the existing materials.

Finally, IDT allows the user to compute importance maps
for geometries with reflection or leakage boundary con-
ditions, which was not possible with TRIPOLI-4’s native
module INIPOND.

IV. SCORING THE ADJOINT FLUX DURING THE
DIRECT CALCULATION

Many particle tracks are simulated during a Monte-Carlo
shielding calculation. Tracks are created at the source and
are transported through the geometry; a few of them will
actually reach the detector and contribute to the desired re-
sponse. The result of such a calculation can be described as
the expected detector response assuming that particles are
created according to the given source. However, the tracks
generated by this calculation actually also provide informa-
tion about the expected detector response from any point
in phase space that they visited. One can rigorously jus-
tify this assertion by invoking the Markov property of the
Monte-Carlo process, although the proof needs be carefully
phrased for the case of calculations using variance reduc-
tion20. Since the expected detector response from a point in
phase space can also be interpreted as the adjoint flux, it is
clearly interesting for the purpose of variance reduction to
try to extract the maximum amount of information about it
during the direct simulation itself.

IV.A. Definition of the adjoint-flux on-the-fly estimator

For the sake of conciseness, we omit rigorous proofs of
most of the results of this section.

Let us consider a given Monte Carlo scheme for the cal-
culation of some detector response, possibly including vari-
ance reduction. Let c be the contribution to the detector
response generated by a particle of weight w created at the
phase-space point (r, E,Ω). For given values of (r, E,Ω,w),
c is a random variable described by a conditional probabil-
ity distribution k(c|r, E,Ω,w). The quantity we wish to es-
timate with Monte Carlo is I(r, E,Ω), the expected detector
response from point (r, E,Ω) in phase space. If the Monte
Carlo game between (r, E,Ω) and the detector is fair, then
the expected value of c over k must be proportional to w,
and I can thus be expressed as

I(r, E,Ω) =
1
w

∫
c · k(c|r, E,Ω,w) dc. (2)

Now let us fix the particle source for the direct calcula-
tion and let f (r, E,Ω,w) represent the probability density
for a particle being produced at (r, E,Ω) (by the source or
by a collision) with weight w during one Monte-Carlo his-
tory. Then, by the law of conditional probability, the joint
probability distribution for all the variables is given by

d(c, r, E,Ω,w) = k(c|r, E,Ω,w) · f (r, E,Ω,w)

and it is crucial to observe that d is the distribution of
the events generated by the direct Monte Carlo calculation.
Therefore, Eq. (2) can be rewritten as

I(r, E,Ω) =

∫
c · d(c, r, E,Ω,w) dc

w · f (r, E,Ω,w)
. (3)

Eq. (3) allows us to construct an approximate estimator
for the integral of I(r, E,Ω) over a certain neighbourhood
X of (r, E,Ω). We consider a Monte-Carlo history, repre-
sented by a sample of n events

S =
{
(c1, r1, E1,Ω1,w1), . . . , (cn, rn, En,Ωn,wn)

}
,

which are intermediate states of the Monte-Carlo Markov
process. The ri should be taken to be collision or source
sites of particles with outgoing weight wi, outgoing energy
Ei and outgoing direction Ωi; ci represents the contribution
to the target score (which may vanish) delivered by the par-
ticle and its descendants after the given point. The sample
S is constructed by recording collision sites during the di-
rect simulation and associating each collision site with the
eventual score contribution.

Armed with the event sample S, we define

F̂ =

n∑
i=1

wi IX(ri, Ei,Ωi). (4)

Here IX(r, E,Ω) is the characteristic function of the phase-
space subset X (equal to 1 inside X and to 0 outside). Clearly
the expectation value of F̂ is the integral

E(F̂) =

∫
dw

∫
X

d3r dE d2Ω
[
w · f (r, E,Ω,w)

]
.

Likewise, we define

D̂ =

n∑
i=1

ci IX(ri, Ei,Ωi); (5)

its expectation value is

E(D̂) =

∫
dw dc

∫
X

d3r dE d2Ω [c · d(c, r, E,Ω,w)] .

We can then define our approximate estimator of I(r, E,Ω):

Î =
D̂
F̂

. (6)

In practice, the estimators D̂ and F̂ are actually separately
cumulated over batches of several Monte-Carlo histories.
Eq. (6) then yields one estimate per batch. We have omitted
this detail from the presentation for the sake of simplicity.

There are several reasons why Î is approximate. First, D̂
and F̂ estimate weighted averages of their integrands over a
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certain neighbourhood X of (r, E,Ω). Second, clearly Î is
biased because of Jensen’s inequality, i.e.

E(Î) ,
E(D̂)
E(F̂)

.

However, Î is consistent (asymptotically unbiased) as the
sample size n tends to infinity and the size of the neighbour-
hood X tends to zero, in this order:

E(lim
X→0

lim
n→∞

Î) = I(r, E,Ω).

In summary, we propose the following recipe for scoring
the adjoint flux in a phase-space cell:

1. collect all particles emitted by collisions within the
cell;

2. associate each point with the contribution to the detec-
tor response delivered by the particle and its descen-
dants from that point onwards;

3. calculate D̂ (Eq. (4)) by summing the particle contri-
butions;

4. calculate F̂ (Eq. (5)) by summing the particle weights;

5. divide D̂ by F̂ to estimate the adjoint flux in the phase
space cell.

IV.B. Variance reduction

The explicit treatment of the particle weights in the esti-
mator outlined in the previous section hints at the fact that
the estimator remains applicable in presence of variance re-
duction. In particular, the estimator works in presence of
AMS, although care must be exercised in the definition of
the weights.

Being able to use AMS for the estimation of the adjoint
flux is crucial. Indeed, as mentioned above, AMS is more
robust than the ET against variations of the importance map.
An overly eager variance-reduction technique such as ET
will intentionally suppress exploration of supposedly unin-
teresting regions of phase space. Therefore, there is some
tension between the need to improve the importance map
of the present calculation and the wish to maximise the
figure of merit for the sought response. If the initial im-
portance map is inadequate, it is entirely possible that the
variance-reduction technique may make it impossible to im-
prove it. For this reason, we mostly centre our discussion of
the adjoint-flux score around the use of AMS, which guaran-
tees a better balance between exploration and exploitation.

On the other hand, the ET can yield much larger figures
of merit with a suitable importance map. This suggests cal-
culation schemes where AMS is used to score the impor-
tance map, and the ET is used to accelerate the convergence
of the calculation. One possible scheme consists in starting

water concrete

de
te

ct
or

3m 1m 20cm

source

Figure 1. Geometry for the strong-attenuation problem. A
mono-directional neutron source with a Watt spectrum is
placed in a 3 m-long tank of water. The detector is a 20 cm-
wide part of a 120 cm-long concrete wall. Reflection bound-
ary conditions are applied to all surfaces except for the outer
surface of the detector, from which neutrons can leak out.

the calculation as an AMS calculation with a rough impor-
tance map; the adjoint flux is scored until sufficient statistics
is cumulated, at which point the ET takes over and uses the
scored adjoint flux as an importance map. More sophisti-
cated schemes are possible, in which AMS keeps updating
the importance map until the ET becomes efficient.

IV.C. Similar work

Similar approaches for scoring the importance map have
already been proposed in the literature10–12, sometimes
in conjunction with non-parametric interpolation tech-
niques13. Since our estimator is collision-based, it can be
straightforwardly incorporated in an interpolation frame-
work. A smoothed importance map may make variance-
reduction methods more efficient, but the cost of the inter-
polation framework needs to be accounted for in the esti-
mation of the figure of merit. We leave exploration of this
subject for future work.

V. RESULTS

We now illustrate the TRIPOLI-4 developments de-
scribed in the previous sections with some calculation re-
sults.

V.A. Strong-attenuation problem

We start with the simple problem depicted in Fig. 1,
which concerns the transport of neutrons in a geometry
made of a 3 m-thick water slab followed by a 1.2 m-thick
concrete slab. The detector is placed at the bottom of the
concrete slab and scores the integral neutron flux. The
geometry is infinite in the transverse direction (reflection
boundary conditions are applied). A Watt neutron source
is placed at the top of the water slab and emits mono-
directional neutrons towards the detector.

The problem can be essentially characterized by the
strong attenuation factor incurred by neutrons. The attenua-
tion is so strong that it is not possible to produce a reference
result by means of analogue calculations in any reasonable
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time. We have no choice but to resort to variance reduction.
In order to evaluate the sensitivity of variance reduction

to the importance map, we present results obtained with the
following maps, roughly sorted from least to most sophisti-
cated:

INIPOND: this 6-group importance map was produced
by INIPOND, TRIPOLI-4’s native deterministic
module14, with manually adjusted Placzek coeffi-
cients. The default Placzek coefficients produced by
INIPOND (in “automatic mode”) are unable to push
any particle towards the detector within a reasonable
time. Note that the number of groups was limited to 6
because manual parameter adjustment rapidly becomes
unwieldy as the number of groups increases.

IDT: this 57-group importance map was produced by IDT,
as invoked by TRIPOLI-4 within the framework of the
coupling described above. As explained above, cross
sections were condensed by TRIPOLI-4 and assumed
to be isotropic.

IDT+AP3: this importance map uses the same group struc-
ture as the previous one, but the multi-group cross sec-
tions were produced by an external condensation cal-
culation performed with the APOLLO3 R© code. The
resulting cross sections used an anisotropy order of 5.

SCORED: this importance map is the adjoint flux scored
by TRIPOLI-4 during a first, direct calculation pass us-
ing AMS. The result of the score is then injected in a
second calculation pass using the ET method. The map
also uses IDT’s 57-group structure.

All importance maps used the same one-dimensional mesh
for space discretization (42 10 cm-wide cells) except for the
IDT+AP3, which consists in 100 4.2 cm-wide cells.

Table I shows the results of calculations performed with
both variance-reduction methods, namely AMS and the ET,
for each of the importance maps. For each combination we
present the average detector response, its standard error, the
calculation time and the figure of merit. Calculations were
stopped when the standard error dropped below 10 %. Com-
puting times do not include the time needed for the genera-
tion of the importance map.

The first remark is that all AMS calculations yield sim-
ilar results. The average detector responses are mutually
compatible within their errors, and the figures of merit are
within a factor of 2 of each other. More refined importance
maps do yield larger figures of merit, but overall AMS is
seen to be relatively robust. This property of AMS is proba-
bly exacerbated in this example problem, which uses a very
simple, one-dimensional geometry, but it holds in a rather
general setting15.

The exponential transform, on the other hand, is much
more sensitive to the importance map. We draw the atten-
tion of the reader to the fact that the ET/IDT result for the

INIPOND IDT IDT+AP3 SCORED
Adaptive Multilevel Splitting

average 2.58 2.61 2.78 2.66(a.u.)
error 9.90 9.83 7.11 9.88(%)
time 167 120 159 108(ks)
FOM 9 12 16 14(10−5)

Exponential transform
average 2.55 2.04 2.81 2.77(a.u.)

error 6.51 6.60 0.82 0.52(%)
time 94.1 239 3.27 4.33(ks)
FOM 38 22 57 561 109 602(10−5)

Table I. Results for the strong attenuation problem. We
present the integrated average response in the detectors and
the standard error after a certain simulation time. Val-
ues are given for both AMS and the ET method with
four importance maps: INIPOND, IDT (cross sections
from TRIPOLI-4), IDT+AP3 (external cross sections from
APOLLO3 R©, with anisotropy order 5) and SCORED (ad-
joint score); see text for further details.
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Figure 2. Comparison of the energy dependence of the neu-
tron flux in the detector for the strong-attenuation problem.
The plot shows the results for AMS/IDT (blue), ET/IDT
(red) and ET/SCORED (green) calculations, relative to the
reference ET/IDT-AP3 calculation, as a function of the neu-
tron energy. The shaded regions represent the combined 3σ
confidence interval.

average is significantly smaller than the others: the second
smallest result, ET/INIPOND, is more than two combined
standard deviations away. The statistical evidence is not
very strong, but it should be sufficient to raise some sus-
picion about the ET/IDT calculation. The figure of merit of
the ET/IDT-AP3 calculation, on the other hand, is more than
three orders of magnitude larger than any other. This sug-
gests that ET/IDT-AP3 is probably very close to the actual
adjoint flux.

The suspicion about ET/IDT is reinforced by inspection
of the energy spectrum of the neutron flux in the detec-
tor. We take ET/IDT-AP3 as a reference, which seems war-
ranted given its small standard error, and we plot the ratio
between ET/IDT and ET/IDT-AP3 in Figure 2. For compar-
ison, we also plot the ratio of AMS/IDT and ET/IDT-AP3,
which does not exhibit any bias. Combined 3σ error bars are
shown as shaded regions. It is clear that the ET/IDT calcula-
tion underestimates the reference below 0.1 eV, suggesting
that this importance map hinders neutron thermalization.

V.A.1. Using the scored adjoint flux as an importance map

Finally, we wish to illustrate TRIPOLI-4’s new capability
to score the adjoint flux. We performed a two-pass calcula-
tion:

1. The first pass is an AMS calculation using the
IDT+AP3 importance map. During this pass,
TRIPOLI-4 scores the adjoint flux using the estimator
described in Sec. IV.

2. During the second pass, the adjoint flux is used as an

importance map for an ET calculation. The results of
this calculation are referred to as ET/SCORED.

Table I shows that the integrated neutron flux calcu-
lated by ET/SCORED is in statistical agreement with the
ET/IDT+AP3 result. Fig. 2 shows that the energy spectrum
of the neutron flux is also coherent with ET/IDT+AP3. The
figure of merit, on the other hand, is slightly larger, about a
factor of 2.

This encouraging result suggests that the new score for
the adjoint flux is a promising tool to accelerate the conver-
gence of difficult shielding calculations. Of course the com-
putational cost for the production of the importance map
should be accounted for in the estimation of the figure of
merit, which is not the case for the values shown in Tab. I.
As a general indication, the CPU time required for the pro-
duction of the IDT+AP3 importance map is of the order of
one hour, while the time required for the first calculation
pass of ET/SCORED is of the order of a few hundred hours.

Still, we have not investigated the dependence of the fig-
ure of merit of the second pass on the length of the first
calculation pass. In the ET/SCORED calculation shown in
Tab. I and Fig. 2, the adjoint flux from the first pass has
very small uncertainties on most parts of phase space. It is
legitimate to ask whether a shorter calculation would have
sufficed. We plan to investigate this and similar issues in the
near future.

V.B. Neutron-photon coupled calculation

As an additional illustration of TRIPOLI-4’s new capabil-
ity to score the adjoint flux, we present the result of a cou-
pled neutron-photon calculation. A neutron source is placed
at the left end of the geometry depicted in Figure 3; a photon
detector is placed on the other side of a stack of plastic ma-
terial and iron slabs. The goal is to estimate the response of
the photon detector. The reference calculation is an analog
one.

This particular example is interesting because, in gen-
eral, neutron-photon problems are difficult to solve using
INIPOND, TRIPOLI-4’s native module for the generation
of importance maps. Using our new adjoint-flux score, we
can compute the importance map during a first calculation
with AMS; the resulting adjoint flux can then be injected as
an importance map into a new calculation with the ET and
hopefully yield large figures of merit.

The first AMS calculation used simple, energy-
independent, purely geometric importance maps (the impor-
tance for any particle is taken to be equal to the inverse of
the distance from the photon detector). During the direct
simulation, we scored the adjoint flux for both neutrons and
photons. Figure 3 shows the score result after a few hundred
CPU hours.

A clear feature of the resulting importance maps is that
very little information could be collected in the low-density
regions of the geometry: since the material for the world
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Figure 3. Neutron and photon adjoint flux scored by
TRIPOLI-4 for a coupled neutron-photon shielding prob-
lem. The plots highlight the lack of information in low-
density regions (air, grey).

volume is air, only few collisions can contribute to the esti-
mation of the adjoint flux.

If the scored adjoint flux is to be reused as an impor-
tance map for variance reduction, this may or may not be
an issue. On the one hand, sparsely filled importance map
are problematic for many variance-reduction methods; for
instance, the ET uses the gradient of the importance map,
which vanishes between empty cells. A precise estimate
of the adjoint flux in these regions is possible but requires
very long runs, which are detrimental to the overall figure
of merit; one should keep in mind that the estimation of the
adjoint flux is only an intermediate step towards the solution
of the shielding problem. Ideally, the adjoint-flux calcula-
tion should be as long as necessary for the second step to
converge, but no longer.

On the other hand, some regions of the scored adjoint
flux are sparsely populated exactly because the variance-
reduction method did not consider necessity to push parti-
cles towards those regions and force collisions there. There-
fore, one may argue that the presence of sparsely-populated
regions of the adjoint score should not necessarily hamper
variance reduction. It clearly appears that quantitative tests
are indispensable to assess this.

VI. CONCLUSIONS

We have presented two recent developments of the
TRIPOLI-4 R© code aiming to provide an implementation of
the CADIS methodology, and generally to help users solve
complicated radiation-protection problems. To this end,
TRIPOLI-4 was coupled with IDT, a deterministic solver
for the adjoint Boltzmann equation, to generate efficient im-
portance maps with minimal user intervention. Moreover,
we implemented an estimator for the adjoint flux during
direct calculations. The rationale behind these choices is
that using the adjoint flux as an importance map in a wide
range of variance-reduction methods is expected to yield
large speed-ups.

We have shown that importance maps calculated with
IDT can yield very large speed-up factors in a simple one-
dimensional strong-attenuation problem, provided that the
solver is fed with accurate multi-group cross sections. We
have also proved that the scored adjoint flux, when used as
an importance map, can yield even larger figures of merit.
The computational cost for the direct determination of the
adjoint flux is of course larger than for a deterministic cal-
culation, and this must be taken into account in the eval-
uation of the calculation efficiency. Nevertheless, the ad-
joint flux probably need not be calculated very precisely in
the first calculation pass; a short calculation may be suf-
ficient to bootstrap the importance map. We believe that
this method may represent a promising complement to the
CADIS methodology.

Finally, we have shown that the new adjoint-flux score
may help with the calculation of importance maps for cou-
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pled neutron-photon problems, which are usually among the
hardest ones for TRIPOLI-4 users.

The developments described in the present work should
be considered as a stepping stone towards the implementa-
tion of an intelligent, semi-automatic and dynamic method
for the generation of the importance map for variance reduc-
tion. The general idea of the scheme is to use the result of
a deterministic calculation, a scored adjoint flux, or both, to
update the importance map at the beginning and during the
calculation, possibly alternating between different variance-
reduction methods. To this end, a few questions must be
addressed. For instance, how long should we keep scoring
the adjoint flux before recycling it as an importance map?
Should the code update the importance map only once, or
several times? At which point should we switch from AMS
(which is robust against poor importance maps) to the ET
(which yields very large figures of merit if the importance
map is very good)? Finally, is it possible to combine a de-
terministic importance map produced by IDT with a scored
adjoint flux calculated by TRIPOLI-4? If so, how? Answer-
ing these questions is left as the subject of future work.
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