

Modelling of krypton-xenon separation by dynamic fixed-bed adsorption on zeolite

M. Bertrand, P. Pochon, N. Cedat, O. Baudouin, R. Sardeing

► To cite this version:

M. Bertrand, P. Pochon, N. Cedat, O. Baudouin, R. Sardeing. Modelling of krypton-xenon separation by dynamic fixed-bed adsorption on zeolite. 30th ESAT 2018 - European symposium on applied thermodynamics, Oct 2018, Prague, Czech Republic. cea-02338741

HAL Id: cea-02338741 https://cea.hal.science/cea-02338741

Submitted on 25 Feb 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. DE LA RECHERCHE À L'INDUSTRIE

Modelling of krypton-xenon separation by dynamic fixed-bed adsorption on zeolite

Murielle Bertrand¹, Patrick Pochon¹, Nadège Cédat¹, Olivier Baudouin², Rodolphe Sardeing²

1- CEA, Nuclear Energy Division, Research Department on Mining and Fuel Recycling Processes BP 17171 F-30207 Bagnols-sur-Cèze, France

2- ProSim SA Immeuble Stratège A, 51, rue Ampère F-31670 Labège, France

Introduction

- Currently noble gases separated by cryogenic distillation ⇒ expensive process with safety constraints due to the cryogenic temperatures used
- Adsorptive separation (temperature/pressure swing adsorption) ⇒ an energy, safety and cost effective alternative method
- Different selective materials used from inorganic adsorbents based on physical adsorption to new metal-organic frameworks (MOFs) based on size and chemistry

OBJECTIVES

- ✓ Development of a Kr/Xe separation process by selective adsorption on a chabazite zeolite in a fixed bed column
- Experimental study of the Kr and Xe adsorption dynamics at different temperatures and under different operating conditions
- ✓ Modelling of the Kr/Xe adsorption separation from a gas mixture

Experimental set-up: fixed-bed adsorption column

Experimental study

Choice of the adsorbent

- A dozen of zeolites experimentally tested
- ⇒ selection of a synthetic chabazite AW500 of general formulae M_x[(AlO₂)_x(SiO₂)_y],zH₂O) due to its capture performances

Properties of the ada	sorbent	
Particule diameter µm	250 – 500	
Surface area (m²/g)	327	
Porosity volume (cm ³ /g)	0,32	
Particle density (kg/m ³)	1400	
Pore diameter (nm)	11	

Mass spectrometer

Fixed-bed adsorption

- Continuous acquisition of Kr/N₂ and Xe/N₂ breakthrough curves in a fixed-bed column
- Adiabatic system
- Temperatures: from -20°C to +20°C
- Initial feed concentrations:
 between 0 and 1%
- Gas concentrations followed by mass spectrometry
- Solid adsorbent thermally pretreated at 300°C under nitrogen

Example of breakthrough curves of Kr and Xe in N_2 at -20°C

Thermodynamic models

Isotherms of Xe and Xr in N₂ at different temperatures

Comparison of the behaviour of Xe alone in N_2 and in Kr/NO/NO₂/N₂ mixtures

Modelling using ProSim

Dynamic simulation software ProSim DAC

- Based on the mass, energy and momentum balances
- Propagation of the gas flow described by the axially dispersed plug flow
- Mass transfer described by the Linear Driving Force
 Model (LDF)

Comparison sin	nulation/experiments		
Xe and Kr concentra T°=0°C - AW500 - Xe inlet =	tion at the column outlet 0,1% mol and Kr inlet = 0,9% mol		 Good agreement for both Kr and Xe
0,7 ×	× Xe adsorption	\neg \neg	

- Radial concentration gradients negligible
- Gas mixtures supposed to behave as an ideal gas

Application for a sensitivity analysis:

Adsorbent characteristics ⇒ no impact on the adsorption and separation performances

■ Process parameters: temperature, feed flow or initial concentration ⇒ high impacts

Conclusion

- Zeolite AW500 suitable for Xe/Kr separation process from a gas mixture flow as their breakthrough times are significantly different
- Development of an adsorption modelling using software ProSim DAC
- The model developed can be applied to design PSA/TSA cycles to separate Kr and Xe

Acknowledgment

The authors greatly acknowledge orano for sponsoring this study