

Des neutrons pour faire des images dans le RJH E. Simon

▶ To cite this version:

E. Simon. Des neutrons pour faire des images dans le RJH. 1ères Journées Scientifiques du Neutron, Sep 2018, Cadarache, France. cea-02338706

HAL Id: cea-02338706 https://cea.hal.science/cea-02338706

Submitted on 24 Feb 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DE LA RECHERCHE À L'INDUSTRIE

Cea den

DES NEUTRONS POUR FAIRE DES IMAGES DANS LE RJH

ERIC SIMON DEN/CAD/DTN/SMTA/ LABORATOIRE DE MESURES NUCLÉAIRES

JOURNÉES SCIENTIFIQUES DU NEUTRON 25 SEPTEMBRE 2018

L'imagerie neutronique

La neutronographie d'objets irradiants : méthode par transfert

Le SIN du RJH

Imageur

L'imagerie neutronique

La neutronographie d'objets irradiants : méthode par transfert

Le SIN du RJH

Imageur

Comme avec les rayons X, l'atténuation des neutrons en fonction de la nature et de l'épaisseur des matériaux traversés permet de produire des images en transmission

Paul Scherrer Institute (Suisse)

neutrons

NRAD (INL, USA)

L'IMAGERIE NEUTRONIQUE

froids

Atténuation différentielle

Ceaden

Discrimination des matériaux accentuée en fonction de l'énergie

thermiques

épithermiques

rapides

Imagerie d'éléments hydrogénés situés à l'intérieur de contenants denses ou à haut Z

- Inclusion d'eau,
- Hydrurations,
- · Défauts géométriques,
- Discrimination isotopique,
- ...

Complémentaire des rayons X

Neutronographie										
19%	6%	5%	3,5%	3%	2,5%	2%	1,5%	1%	0,7%	

Variations d'enrichissement ²³⁵U de 0,7% à 19% (simulation)

Détecter les neutrons pour faire des images

Nécessite une conversion des neutrons

neutrons particules ionisantes

(n,α), (n,γ), (n,t), ...

A RECHERCHE À L'INDUSTRI

+ Imageur 2D de faible épaisseur, sensible aux particules ionisantes produites

Réactions exploitables

- $^{6}\text{Li} + n \rightarrow {}^{3}\text{H} + {}^{4}\text{He} + 4,79 \text{ MeV}$
- $^{3}\text{He} + n \rightarrow ^{3}\text{H} + p + 0,77 \text{ MeV}$
- ^{10}B + n \rightarrow (7%) ^{7}Li + ^{4}He + 2,78 MeV
- $^{10}\text{B} + n \quad \rightarrow (93\%) \ ^7\text{Li}^* + {}^4\text{He} + 2{,}30 \ \text{MeV} + \gamma \ (0{,}48 \ \text{MeV})$
- ^{155}Gd + n \rightarrow ^{156}Gd + γ + électrons de conversion
- ^{157}Gd + n \rightarrow ^{158}Gd + γ + électrons de conversion
- ^{113}Cd + n $\,\rightarrow\,^{114}Cd$ + γ + électrons de conversion

¹⁶⁴Dy + n \rightarrow ¹⁶⁵Dy + β ⁻ (activation)

¹¹⁵In + n \rightarrow ¹¹⁶In + β^- + γ (activation)

Processus de production d'images

- Production de micro-traces (track etch)
- Opacification de film argentique par ionisation (Ag+Br-)
- Production de lumière de scintillation
- Excitation d'états métastables photostimulables (PSL BaFBr:Eu²⁺)
- · Ionisation dans un semi-conducteur

Systèmes d'imagerie neutronique

- Feuille cellulosique (track etch) + ⁶LiF ou ¹⁰B + traitement chimique
- Feuille Dy ou In + film argentique après transfert + développement
- Scintillateur (ZnS(Ag)-⁶LiF ou Gadox Gd₂O₂S) + CCD
- Imaging Plate dopée au Gd + numérisation
- Feuille Dy ou In + Imaging Plate après transfert + numérisation
- Scintillateur (ZnS(Ag)-⁶LiF ou Gadox Gd₂O₂S) + Flat panel aSi

Détecter les neutrons pour faire des images

Nécessite une conversion des neutrons

neutrons particules ionisantes

(n,α), (n,γ), (n,t), ...

IA RECHERCHE À L'INDUSTRI

+ Imageur 2D de faible épaisseur, sensible aux particules ionisantes produites

Réactions exploitables

- $^{6}\text{Li} + n \rightarrow {}^{3}\text{H} + {}^{4}\text{He} + 4,79 \text{ MeV}$
- $^{3}\text{He} + n \rightarrow ^{3}\text{H} + p + 0,77 \text{ MeV}$
- ^{10}B + n \rightarrow (7%) ^{7}Li + ^{4}He + 2,78 MeV
- $^{10}\text{B} + n \quad \rightarrow (93\%) \ ^7\text{Li}^* + {}^4\text{He} + 2{,}30 \ \text{MeV} + \gamma \ (0{,}48 \ \text{MeV})$
- ^{155}Gd + n \rightarrow ^{156}Gd + γ + électrons de conversion
- ^{157}Gd + n \rightarrow ^{158}Gd + γ + électrons de conversion
- ^{113}Cd + n $\,\rightarrow\,^{114}Cd$ + γ + électrons de conversion

 164 Dy + n \rightarrow 165 Dy + β^{-} (activation)

¹¹⁵In + n \rightarrow ¹¹⁶In + β^- + γ (activation)

Processus de production d'images

- Production de micro-traces (track etch)
- Opacification de film argentique par ionisation (Ag+Br-)
- Production de lumière de scintillation
- Excitation d'états métastables photostimulables (PSL BaFBr:Eu²⁺⁾
- · Ionisation dans un semi-conducteur

Systèmes d'imagerie neutronique

- Feuille nitrate de cellulose (track etch) + ⁶LiF ou ¹⁰B + traitement
- Feuille Dy ou In + film argentique après transfert + développement
- Scintillateur (ZnS(Ag)-⁶LiF ou Gadox Gd₂O₂S) + CCD
- Imaging Plate dopée au Gd + numérisation
- Feuille Dy ou In + Imaging Plate après transfert + numérisation
- Scintillateur ZnS(Ag)-⁶LiF ou Gadox Gd₂O₂S + Flat panel aSi

Image numérique directe

JSN 25 Septembre 2018 | PAGE 7

Détecter les neutrons pour faire des images

Nécessite une conversion des neutrons

neutrons particules ionisantes

(n,α), (n,γ), (n,t), ...

IA RECHERCHE À L'INDUSTRI

+ Imageur 2D de faible épaisseur, sensible aux particules ionisantes produites

Réactions exploitables

 $^{6}\text{Li} + n \rightarrow {}^{3}\text{H} + {}^{4}\text{He} + 4,79 \text{ MeV}$

 $^{3}\text{He} + n \rightarrow ^{3}\text{H} + p + 0,77 \text{ MeV}$

 $^{10}B + n \rightarrow (7\%) ^{7}Li + ^{4}He + 2,78 \text{ MeV}$

- ^{10}B + n \rightarrow (93%) $^{7}\text{Li}^{*}$ + ^{4}He + 2,30 MeV + γ (0,48 MeV)
- ^{155}Gd + n \rightarrow ^{156}Gd + γ + électrons de conversion
- ^{157}Gd + n \rightarrow ^{158}Gd + γ + électrons de conversion
- ^{113}Cd + n $\,\rightarrow\,^{114}Cd$ + γ + électrons de conversion

 ^{164}Dy + n \rightarrow ^{165}Dy + $\beta^{\text{-}}$ (activation)

 ^{115}In + n \rightarrow ^{116}In + β^- + γ (activation)

Processus de production d'images

- Production de micro-traces (track etch)
- Opacification de film argentique par ionisation (Ag+Br-)
- Production de lumière de scintillation
- Excitation d'états métastables photostimulables (PSL BaFBr:Eu²⁺⁾
- Ionisation dans un semi-conducteur

Systèmes d'imagerie neutronique

- Feuille nitrate de cellulose (track etch) + ⁶LiF ou ¹⁰B + traitement
- Feuille Dy ou In + film argentique après transfert + développement
- Scintillateur (ZnS(Ag)-⁶LiF ou Gadox Gd₂O₂S) + CCD
- Imaging Plate dopée au Gd + numérisation
- Feuille Dy ou In + Imaging Plate après transfert + numérisation
- Scintillateur ZnS(Ag)-⁶LiF ou Gadox Gd₂O₂S + Flat panel aSi

Image insensible au flux gamma

JSN 25 Septembre 2018 | PAGE 8

Détecter les neutrons pour faire des images

Nécessite une conversion des neutrons

neutrons particules ionisantes

(n,α), (n,γ), (n,t), ...

LA RECHERCHE À L'INDUSTRI

+ Imageur 2D de faible épaisseur, sensible aux particules ionisantes produites

Réactions exploitables

- $^{6}\text{Li} + n \rightarrow {}^{3}\text{H} + {}^{4}\text{He} + 4,79 \text{ MeV}$
- $^{3}\text{He} + n \rightarrow ^{3}\text{H} + p + 0,77 \text{ MeV}$
- ^{10}B + n \rightarrow (7%) ^{7}Li + ^{4}He + 2,78 MeV
- $^{10}\text{B} + n \quad \rightarrow (93\%) \ ^7\text{Li}^* + {}^4\text{He} + 2{,}30 \ \text{MeV} + \gamma \ (0{,}48 \ \text{MeV})$
- ^{155}Gd + n \rightarrow ^{156}Gd + γ + électrons de conversion
- ^{157}Gd + n \rightarrow ^{158}Gd + γ + électrons de conversion
- ^{113}Cd + n $\,\rightarrow\,^{114}Cd$ + γ + électrons de conversion

¹⁶⁴Dy + n \rightarrow ¹⁶⁵Dy + β ⁻ (activation)

¹¹⁵In + n \rightarrow ¹¹⁶In + β^- + γ (activation)

Processus de production d'images

- Production de micro-traces (track etch)
- Opacification de film argentique par ionisation (Ag+Br-)
- Production de lumière de scintillation
- Excitation d'états métastables photostimulables (PSL BaFBr:Eu²⁺⁾
- Ionisation dans un semi-conducteur

Systèmes d'imagerie neutronique

- Feuille nitrate de cellulose (track etch) + ⁶LiF ou ¹⁰B + traitement
- Feuille Dy ou In + film argentique après transfert + développement
- Scintillateur (ZnS(Ag)-⁶LiF ou Gadox Gd₂O₂S) + CCD
- Imaging Plate dopée au Gd + numérisation
- Feuille Dy ou In + Imaging Plate après transfert + numérisation
- Scintillateur ZnS(Ag)-⁶LiF ou Gadox Gd₂O₂S + Flat panel aSi

Pas d'image numérique directe sur des objets fortement irradiants

- 1932 J.Chadwick Possible Existence of a Neutron. Nature 129 (27 février 1932).
- 1935 Imagerie possible par conversion $(n,\gamma \text{ ou } n,\alpha)$

LA RECHERCHE À L'INDUSTRIE

Jan. 9, 1940. H. KALLMANN ET AL 2,186,757 FINTOGRAPHIC DETECTION OF SLOWLY MOVING NEUTRONS Filed March 24, 1938 Fig. 7 4 Lithium Foil 3 Aluminium Foil 2 Emulsion 1 Support

• 1946 Neutronographie avec accélérateur

Peter (Allemagne)

- 1955 Première Neutronographie avec réacteur 10⁹ n.cm⁻².s⁻¹ Thewlis, Derbyshire @BEPO (Harwell, UK)
- 1962 Neutronographie sur combustible irradié (méthode par transfert) Berger (US) et Barton (UK)
- 1963 Premières installations : US, France, Canada, Allemagne, Japon
- 1970 40 installations de neutronographie dans le monde (réacteurs)
- 1973 Première Conférence 'Radiography with neutrons', Université de Birmingham
- 1980 Applications industrielles, hors nucléaire (aérospatial, ...)
- 2000 100 installations de neutronographie (réacteurs), surtout sur objets non irradiants
- 2018 78 installations de neutronographie opérationnelles (réacteurs), surtout sur objets non irradiants JSN 25 Septembre 2018 | PAGE 10

Hartmut Kallmann & Ernst Kuhn (Allemagne)

2018 : 78 installations de neutronographie opérationnelles dans 40 pays (hors sources de spallation)

En 2017, seules 7 installations dans le monde proposaient une radiographie neutronique <u>sur objets irradiants</u>, toutes avec un faisceau sorti associé à une casemate blindée, convertisseur Dy ou In + film radiographique ou Imaging Plates :

- 1) China Mianyang Research Reactor (CMRR), Mianyang, Chine
- 2) China Advanced Research Reactor (CARR), Beijing, Chine
- 3) Neutron Radiography Reactor (NRAD), Idaho National Laboratory, USA 7) CIRUS reactor, Bhabha Atomic Research Centre, Inde
- 4) SINQ (Paul-Scherrer Institute) (source de spallation), Suisse

5) High Flux Advanced Neutron Application Reactor (HANARO), Corée Sud 6) Kalpakkam Mini reactor (KAMINI), IGCAR, Inde

L'imagerie neutronique en France

Faisceau sorti (thermiques / froids)

- Mélusine (Grenoble, 1958-1988)
- Triton (Fontenay aux Roses, 1959-1979) ٠
- Isis (Saclay) •
- Orphée (Saclay, 1980)
- ILL (Grenoble, 1972) •

Banc immergé (thermiques)

- Siloé (Grenoble, 1963 1997) : 120 x 400 mm, L/D = 380
- Osiris (Saclay, 1966 2015) : 100 x 650 mm, L/D = 150 ٠
- RJH (Cadarache, 2023) : 70 x 650 mm, L/D = 260 ٠

Mini-réacteurs (épithermiques / thermiques)

- LDAC (Rapsodie, Cadarache, 1967 1983) : source pulsée (solution fissile ~20 L nitrate d'uranyle) ٠
- MIRENE (Valduc, 1977) : source pulsée (solution fissile) ٠
- Phenix (Marcoule, 1970 2009) : source pulsée (solution fissile)

Orphée en 2013 (hall des guides

La fluence minimale nécessaire pour permettre la production d'une image neutronographique est de l'ordre de : 10⁸ n_{th}.cm⁻² sur le plan détecteur dans une méthode directe **10¹⁰ n_{th}.cm⁻²** dans la méthode par transfert⁽¹⁾

Fluence et flou géométrique sont liés via le paramètre géométrique L/D

(1) Non Destructive and Analytical Techniques using Neutrons, Report of a Consultancy Meeting IAEA, Vienna, Austria, 26 – 28 Nov 2008
 Neutron Radiography, J.P Barton, Proceedings of the firs world Conference, Reidel Publishing, 1981 JSN 25 Septembre 2018 | PAGE 13

Fluence et flou géométrique sont liés via le paramètre géométrique L/D

A RECHERCHE À L'INDUSTRI

L'imagerie neutronique

La neutronographie d'objets irradiants : méthode par transfert

Le SIN du RJH

Imageur

LA NEUTRONOGRAPHIE D'OBJETS IRRADIANTS : MÉTHODE PAR TRANSFERT

La neutronographie d'objets irradiants : méthode par transfert

Méthode développée à partir de 1962 par H. Berger

Harold Berger and W.N. Beck, Neutron Radiographic Inspection of Radioactive Irradiated Reactor Fuel Specimens Nuclear science and engineering: 15, 411-414 (1963)

LA NEUTRONOGRAPHIE D'OBJETS IRRADIANTS : MÉTHODE PAR TRANSFERT

La neutronographie d'objets irradiants : méthode par transfert

En 1962 ou en 2018, le convertisseur idéal est toujours le même...

Conversion par activation

- Grande section efficace de capture neutronique
- Période de quelques heures
- \succ émetteur β
- Peu dosant

Parent	T _{1/2}	Mode de décroissance	fils
^{165m} Dy (73%)	1,26 min	γ	¹⁶⁵ Dy
^{165m} Dy (73%)	1,26 min	β-γ	¹⁶⁵ Ho
¹⁶⁵ Dy (37%)	2,33 h	β ⁻ 100 %	¹⁶⁵ Ho

isotope	Abondance (%)	Radioisotope produit	Décroissance (E keV)	Demi-vie	Section efficace de capture à 25 meV
¹⁶⁴ Dy	28,18	¹⁶⁵ Dy	β (1286) 83% β (1192) 15% β (291) 1.7%	2,33 h	1000 barns

La neutronographie d'objets irradiants : méthode par transfert

L'imagerie neutronique

La neutronographie d'objets irradiants : méthode par transfert

Le SIN du RJH

Imageur

Réacteur Jules Horowitz

Multiples examens non destructifs sur combustibles irradiés, 3 zones dédiées

Objectifs de l'examen neutronographique dans le RJH

Des contrôles et diagnostics sur crayons combustibles

Objectifs de l'examen neutronographique dans le RJH

Des contrôles et diagnostics sur crayons combustibles

JSN 25 Septembre 2018 | PAGE 22

Objectifs de l'examen neutronographique dans le RJH

Des mesures de paramètres physiques sur crayons combustibles

Mesure de longueur de colonne fissile

Visualisation et quantification d'interpastilles, dishings, fissures, éclats...

Quantification d'isotopes d'un élément particulier

Mesure du niveau de liquide (eau, NaK) dans la partie en pile du dispositif ou dans un réservoir associé

> Quantification de la teneur moyenne en hydrures d'un alliage métallique. Quantification de profils axiaux et radiaux de concentration

Mesure de la concentration moyenne ou locale d'un élément neutrophage dans divers matériaux fissiles ou autres : combustible, gaine, autres céramiques, pièces d'extrémité etc...

Mesure de la cinétique de consommation d'un élément neutrophage

Quantification d'échanges d'eau (jeu combustible-gaine, volumes libres...)

Mesure de la déformation globale d'une colonne fissile après test

Résolution < 200 µm Image numérique disponible en quelques heures

JSN 25 Septembre 2018 | PAGE 23

Objectifs de l'examen neutronographique dans le RJH

Des mesures de paramètres physiques sur crayons combustibles

Formation d'un trou central dans une pastille

Mesure du *dishing filling ratio* après une transitoire de puissance

Mesures d'évolutions géométriques

Tests des limites technologiques sur échantillons de combustible

Le design du système s'est focalisé sur l'optimisation des performances et la maintenance :

• Convoyeur pour le transfert de la feuille de dysprosium dans sa cassette. Réduction significative de la durée du processus et optimisation du flou géométrique.

• Design de la chambre arrière abritant la cassette d'irradiation et le dispositif expérimental en examen incluant un système d'étanchéité de la chambre (en air) durant l'examen.

• Système de positionnement des dispositifs en azimuth et en altitude assurant une course verticale de 100 cm et une rotation sur 360° pour les différents types de dispositifs expérimentaux envisagés.

• Technologie de détection (formation de l'image à partir du convertisseur). La technologie de référence au démarrage du SIN sera la même que celle utilisée précédemment sur OSIRIS (films radiographiques à couche simple) mais leur pérennité incertaine et leurs inconvénients (faible sensibilité, non-linéarité, processus chimique) amènent à rechercher une alternative du type Imaging Plate, dont des premiers tests ont été menés en 2016-2017.

L'imagerie neutronique

La neutronographie d'objets irradiants : méthode par transfert

Le SIN du RJH

Imageur

Ceaden

La performance d'un imageur dépend :

- De la géométrie de l'examenDes systèmes utilisés
 - source (énergie, fluence)
 - collimateur (qualité du faisceau)
 - détecteur imageur
 - qualité du transfert

- dynamique de signal, contraste
- → contraste
 - résolution spatiale, sensibilité
 - résolution spatiale, contraste

JSN 25 Septembre 2018 | PAGE 29

<u>Ceaden imageur</u>

Mise en contact convertisseur - imageur

Dy Imageur mis en contact e

Contact à effectuer sous vide (dépressurisation)

Solution de référence au démarrage du SIN :

Feuille Dysprosium métallique + film radiographique monocouche (Agfa D3sc ou Fuji IX20)

Référence par rapport aux examens neutronographiques antérieurs effectués à Osiris

Solution alternative (remplacement des films radiographiques en obsolescence) : Feuille Dysprosium métallique + imaging plate haute résolution (type Fuji BAS-TR)

Film radiographique	 Retour d'expérience sur films très important Permet un gain de résolution spatiale important par la variation du diaphragme du collimateur 	 Modèle à simple couche peu utilisé Réponse non-linéaire Dynamique faible (2 décades) Dimensions non adéquates Image numérique du convertisseur en 3 étapes Traitement chimique, Processus long, Mal adapté pour la numérisation Résolution spatiale movenne
Imaging Plate	 Utilisation courante, de nouveaux modèles sortent fréquemment Grande sensibilité Réponse linéaire Grande dynamique du signal (5 décades) Dimensions adaptées au convertisseur Imagerie numérique en 2 étapes Processus plus rapide, image numérique, Réutilisable 	 Existence de phénomène de fading (désexcitation spontanée, perte de signal) Fragilité Faible gain de résolution spatiale par la variation du diaphragme du collimateur

Film radio monocouche vs. Imaging plate haute résolution

Deux imageurs très différents pour l'autoradiographie bêta du dysprosium

- Dynamique
- Réponse
- Sensibilité

Parfois difficile pour un industriel de changer de technologie (perte de références engrangées sur des dizaines d'années...)

2 modèles de film radiographiques monocouches sur le marché après l'arrêt du Kodak SR-45 :

IMAGEUR

- Agfa D3sc
- Fuji IX 20

	KODAK SR-45	AGFA D3sc	FUJI IX 20
Couche de protection (um)	6	5	1
Emulsion (µm)	12,5	12,5	12,5
Support (µm)	175	175	175

Résolution spatiale intrinsèque excellente (40 $\mu m)$ grâce à la faible épaisseur de l'émulsion argentique

Dépendance forte de la couche de protection en surface séparant l'émulsion de la surface du convertisseur dysprosium

Fuji BAS TR, Fuji UR1

Carestream Flex XL Blue

Nombreux modèles d'imaging plates sur le marché de l'imagerie RX en remplacement des films :

	Fuji BAS-TR	Fuji UR1	Flex XL Blue
Couche de protection (µm)	0	6	6
Couche phosphore (µm)	50	130	120
Support (µm)	250	188	190

Création de niveaux excités sur des centres de luminescence

Désexcitation induite par laser

Tests d'IP effectués à Orphée avec neutrons froids en 2016 et 2017

Résolution spatiale

ΙΡ ΤΥΡΕ	10% MTF (lp/mm)	Spatial resolution (µm)
Fuji BAS-TR	5.2	100
Fuji-UR1	3.7	135
Carestream XL Blue	3.7	135
Prototype Dy-doped	3.8	130
Fuji BAS-ND	5.8	85

Fading

Perte de signal entre deux lectures successives par le processus de lecture

Aucune perte de signal mesurée durant plusieurs heures à l'obscurité

Performances de résolution sur l'image comparées Film – IP

DETECTEUR	Résolution spatiale intrinsèque (µm)	Résolution spatiale intrinsèque après numérisation (µm)	Résolution spatiale finale (avec flou géométrique) L/D = 260	Résolution spatiale finale (avec flou géométrique) L/D = 350
Film Agfa D3sc	40	50	206	
IP Fuji BAS-TR	80	100	224	178

Avec IP : Perte de résolution globale sur l'image d'environ 20 μ m à L/D=260 : de 206 μ m avec Film, à 224 μ m avec IP

Les IP sont beaucoup plus sensibles que les films, mais leur résolution intrinsèque moins bonne.

Au final, avec **IP**: latitude *a priori* pour réduire la fluence neutronique sur Dy par un facteur ~4 <u>à</u> <u>durée d'examen égale à celle du film radio</u>, et donc multiplier L/D par ~2, réduire le flou géométrique par le même facteur et ainsi atteindre une résolution finale sensiblement inférieure à 200 μ m.

Par exemple avec une réduction modérée de la fluence neutronique sur Dy, contrebalancée par la meilleure sensibilité des IP par rapport au film radio (fluence divisée par 1,9 avec D=5,1 mm, L/D = 350) on parviendrait à une résolution finale de 178 µm avec IP BAS-TR.

Merci de votre attention

Banc neutronographie OSIRIS

Commissariat à l'énergie atomique et aux énergies alternatives	DEN
Centre de Cadarache 13108 St-Paul Lez Durance	Cadarache
Eric.Simon@cea.fr	DTN
	SMTA
Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019	LMN