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Abstract – Within the framework of large R&D studies performed since 2010 for future sodium-
cooled reactors, with a first prototype called ASTRID, in-service inspection and repair (ISI&R) has 
been identified as a major issue to be taken into account in order to improve the reactor’s safety, to 
consolidate its availability and to protect its related investment. 
Development, improvement and qualification of the ISI&R tools and processes for structures 
immersed in sodium at about 200°C have been performed since early pre-conceptual design phase 
of ASTRID  This work is based on a set of consolidated specifications and a qualification process 
involving increasingly more realistic experiments and simulations mainly performed with the Non 
Destructive Examination CIVA code platform. 
ISI&R items (in sodium telemetry and vision, Non Destructive Examination, Laser repair, associated 
Robotics) are being developed and qualified as part of a multi-year program which mainly deals 
with the reactor block structures and primary components, and sodium circuit with the power 
conversion system. 
This program is ensuring the strong ties needed between the reactor designers and inspection 
specialists since the aim is to optimize inspectability and repairability. This has already induced 
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specific rules for design in order to shorten and facilitate ISI&R operations. These new rules have 

been merged into the RCC-MRx rules in its first 2012 edition. 
Current R&D deals with the following ISI&R items:  

• Under-sodium non-destructive examination (NDE) of Stainless Steel thick welded joints: 

specific ultrasonic transducers are developed and used for sodium testing, and associated 

simulations are being performed. 
• NDE of in-sodium welded joints, from outside of the main vessel (through the main vessel wall): 

modeling, water testing and simulation are being performed.. 
• Under-sodium telemetry and vision of immersed structures and components: improved 

techniques of short distance (less than 200mm) and far distance (up to some meters) scanning 

are being studied. Water and sodium testing, and simulations are being performed. 
• Methods for in-situ repair: a single laser technique has been selected for sodium sweeping 

before machining and welding 
• Associated in-sodium robotics: a sodium-proof material and technology is being developed and 

tested. In sodium tight bell is looked at for repair application.    
This paper is an up-dated version of the paper presented in 2015 at the ICAPP international 

conference [1] and provides the main testing and simulation results for telemetry, vision and NDE 

applications. 
R&D for inspection and repair of SFRs faces challenging requirements and is progressing towards 

available technological solutions, associated with demonstrated performance levels: the basic 

inspection techniques are expected to reach level 6 of ‘technological readiness’ by the end of detailed 

design phase: proof of principle with Pilot-scale, similar (prototypical) subsystem validation in 

relevant environment. 
The ‘integrated readiness level’ is also discussed in this paper with respect to access within the 

reactor block, fluids, positioning and maintenance aspects. 
 
 

 
 

I. INTRODUCTION 

Within the framework of the future Generation 

IV reactors, a project of a sodium-cooled fast reactor 

prototype called ASTRID was launched by France. A 

specific large R&D program1 has been defined on In-

Service Inspection and Repair (ISI&R) which has been 

identified as a difficult task to be performed2 (as sodium 

coolant is opaque, hot and highly chemically reactive) 

on the basis of experience feedback (French Phenix and 

Superphenix SFRs, as well as foreign power plants). 

ISI&R is thus considered to be a major issue to be taken 

into account in order to improve the reactor’s safety (as 

inspection gives information on the actual reactor 

structure health), to consolidate its availability and to 

protect its associated investment. 

Since 2009, R&D studies for ISI&R are parted 

into four levels. These levels are related to the specific 

rules for design applicable to SFRs3 (Figure 1.). 

 
Figure 1: French ISI&R organization for SFRs 

A number of general options were chosen at the 

end of the ASTRID pre-conceptual design phase. Now 

we are focusing on improving the ISI&R tool4 for the 

ASTRID reactor block structures immersed in sodium 

at about 200°C (ISI&R operations are performed at 

shut-down conditions). This is being done on the basis 

of consolidated specifications and a pre-qualification 

process involving increasingly more realistic 

experiments using acoustic techniques5 and simulations 

performed with the patented CIVA code. 

ISI&R items (inspection: ultrasonic sensors, 

telemetry, vision and volumetric control, repair, 

associated robotics) are being developed and qualified 

within the scope of a multi-year program6 which mainly 

deals with the reactor block systems, structures and 

components, and the power conversion system. One has 
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to note that repair aspect is considered to be less 

important than inspection one. 

This program is ensuring the strong ties needed 

between the reactor designers and inspection specialists 

since the aim is to optimize inspectability (and 

repairability). This has already induced specific rules 

for design in order to shorten and facilitate the ISI&R 

operations, and these new rules have been merged into 

the RCC-MRx rules (2012 edition). 

Thus, ISI&R will participate to ASTRID 

prototype safety, as it will be able to face the standards 

associated to high level requirements for nuclear plants 

(assessment of nuclear power mastery, thermal balance 

release and respect of the environment).  

In the present design phase R&D activities deal 

with general ISI&R objectives (for example: being able 

to perform NDE under sodium) which will then be 

declined for each case, depending on what is required 

for each component and structure. 

II. R&D FOR ISI&R OF ASTRID 

The design of the ASTRID reactor prototype 

aims at minimizing the inspection needs (e.g. the fewer 

welding joints, the better) and to facilitate access to 

areas which should be inspected due to their safety 

function. The in-service inspection of systems, 

structures and components will depend on their 

contribution to the reactor’s defense and mitigation 

lines. 

The inspection graduation applied to each 

system, structure and component is based on a set of 

parameters, among which are mainly the consequences 

in case of possible structure failure on the reactor safety 

and/or defense and mitigation lines ; but also the 

structure service and mechanical loading (design 

margins), its functions (containment, mechanical 

support…), its exploitation feedback… 

The following sections deal with R&D on the 

improvement and qualification of inspection 

techniques: this is based on simulation and testing, first 

through feasibility assessments and then on the basis of 

increasingly more realistic tests for technological 

bricks and systems, i.e. the ‘technological readiness 

level’ and ‘integrated readiness level’ methodology. 

R&D on repair focuses on a single laser 

technique for all applications while robotics is studied 

through architecture concepts, robot design, 

technological bricks and under-sodium leak tightness. 

II.A. UNDER SODIUM ULTRASONIC SENSORS 

FOR TELEMETRY AND NDE 

Development of in sodium ultrasonic sensors 

forms the basis of most of inspection techniques6. It is 

why both piezoelectric (TUSHT from CEA and TUCSS 

from FRAMATOME INTERCONTROLE) and 

electromagnetic acoustic (EMAT from CEA7) 

technologies are being investigated to provide solutions 

that are adapted to the ASTRID inspection needs. 

Experimental tests performed in liquid sodium 

have already demonstrated the good performance of 

custom mono-element EMAT probes7. Telemetry 

measurements were also performed with good 

accuracy. The integrity of the immersed probes was 

assessed after testing and cleaning. It has thus been 

possible to validate the design of the probe casing based 

on a stainless steel container. 

Developments have been continued to increase 

the performance and the capacity of the probe: an 8-

elements EMAT probe has been designed and 

developed by INNERSPEC Technologies in 

accordance with the CEA specifications for under-

sodium imaging (Figure 2). 

 
Figure 2: Principle and photo of in sodium 8-phased array 

EMAT probe 

As can be seen on Figure 3, under-sodium tests 

have shown the good performance of the probe for 

telemetry measurements with normal incidence. 

Deflection tests proved to be difficult due to the size of 

the focal spot compared with that of the targets. New 

developments are ongoing at the CEA to enhance the 

performance of this EMAT probe: acoustic beam 

deflection capacity and sensor sensitivity. 
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Figure 3: A-SCAN of the EMAT echoes (in sodium at 110°C 

and 180°C) 

The high-temperature ultrasonic transducer 

(TUSHT) developed by the CEA is a lithium-niobate-

based probe: LiNbO3 piezoelectric crystal, enriched 

with 7LiNbO3 for severe neutron irradiation conditions. 

The casing is made of AISI 304L stainless steel, as 

shown on Figure 4, and an efficient acoustic bonding 

between the casing and the crystal is provided via a 

hard-soldering technique. This provides stable high-

frequency transmission (up to 5 MHz at least) in the 

temperature range applicable during both inspection 

(200°C reactor shutdown state) and continuous 

surveillance and monitoring (up to nearly 600°C 

reactor full power state) of SFRs. 

 
Figure 4: Photo of the TUSHT (4540 standard model) 

Figure 5 shows the arrangement of the six 

TUSHT samples which were tested in sodium in a 

pulse-echo mode, shooting on a target located at 230 

mm. The target was a stainless steel plate with a 

thickness of 30 mm. 

 
Figure 5: TUSHT and target setting for sodium test 

As illustrated in the Figure 6, ringing echoes are 

visible, in particular those resulting from internal 

reflections inside the target. The front-wall and back-

wall echoes of the target are detectable, with the echo 

duration being 5 microseconds (width at -20dB). 

 
Figure 6: TUSHT acoustic signal during sodium test 

at 600°C 

The adaptation of the TUSHT technology can 

also be considered to develop array transducers. The 

next in-sodium experiments will consist in testing 

focused transducers (with a curved front face) to verify 

that they can achieve the expected standard focusing 

features (as they do in water conditions). The acoustic 

wetting of transducers machined with mirror-like 

polished front faces will also be tested. 
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FRAMATOME INTERCONTROLE is also 
developing transducers for specific applications 
regarding volumetric NDE under liquid sodium at 
200°C. The objective of the development is to show 
that it is possible to detect a flaw inside a stainless steel 
structure immersed under liquid sodium8. 

The work reported here shows “immersion” 
NDT testing, where the transducer is not in contact with 
the entry face of the inspected part. This allows to 
search for potential flaws with different incident angles 
while keeping the same transducer. 

The test block considered here is represented in 
Figure 7 left. It includes two reflectors R1 and R2 
oriented in the x-direction and y-direction respectively. 
R1 should be detected using an L0° beam when 
scanning from x0 to x2, and R2 should be detected 
when scanning from x1 to x4 using an angled beam 
(tilted transducer). The test block was made of 316L 
stainless steel and the notches R1 and R2 were made by 
spark machining. The notches were 20 mm deep for a 
0.2 mm opening width on the whole height of the block 
(100 mm), which is representative or conservative of 
the potential flaws that would be sought in ASTRID 
reactor structures. 

 
 

Figure 7: Sketch of the test block and scanning range (left) 
and view of the DEFO testing device (right) 

Under-sodium tests were conducted in a glove 
box of CEA-DEN (Cadarache, France) sodium 
facilities. A characterization device, called DEFO (see 
Figure 7 – right), was specifically designed and 
fabricated in order to accurately move the TUCSS in 
front of the test block inside this sodium filled vessel. 
Figure 8 shows a photograph of a TUCSS transducer 
mounted on the DEFO device just before immersion 
under liquid sodium. 

Figure 8: Photograph of a TUCSS transducer (left) and 
photograph of a TUCSS mounted on the DEFO device just 

before immersion under liquid sodium (right) 

Figure 9 (left) shows a B-scan done under 
sodium at 200°C in normal incidence (i.e. with the 
orientation of the TUCSS transducer perpendicular to 
the surface of the test block). Interpretation is as 
follows: 

• The red band from 0 to 10 µs is the saturated dead 
zone of the transducer. 

• The red bands O and O’ (at 18 µs and 36 µs) are 
respectively the block’s entrance echo and its 
repetition (between the transducer and the block). 

• The echo from surface A is visible at 45 µs. 
• The echo from reflector R1 is visible at 40 µs. 
• The echo from surface C is visible at 33 µs. The echo 

from surface C is disrupted when TUCSS passes the 
position of reflector R2. 

 

Figure 9: Detection of R1 using longitudinal waves 
0° (left) and detection of R2 using shear waves 38° (right) – 

under sodium at 200°C 

Figure 9 (right) shows a B-scan done in oblique 
incidence. The axis of the transducer was tilted to an 
incidence angle of 30°, producing pure shear waves 
with a 38° refraction angle (critical angle at 26.3°, 
therefore no longitudinal waves). Interpretation of this 
scan is as follows: 
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• The red band from 0 to 10 µs is the saturated dead 

zone of the transducer. 
• The echo at 70 mm / 60 µs is the echo coming from 

R2. 
• The echo at 15 mm / 73 µs is the echo from the corner 

between R1 and surface B. 
• The echo at 120 mm / 60 µs is coming from the 

chamfered surface D. 

These two scans clearly demonstrate that the 

TUCSS acoustical properties are sufficient to perform 

basic NDT using normal and oblique immersion 

techniques, under sodium at 200°C. 

The B-scan made in oblique incidence looks 

much cleaner than that made in normal incidence. This 

is principally due to the fact that there is no echo from 

the block’s entrance and no repetition echo. It is also 

due to the fact that shear waves are slower than 

longitudinal waves (VL=5 608m/s and VS=3 038m/s in 

316L material at 200°C), delaying arrival time of 

echoes and pushing them further out from the dead 

zone. Inspection using normal incidence technique 

should therefore be done using a greater distance. 

This transducer spent 27 days in total under 

sodium without physical degradation. It was noticed 

that amplitude of echoes gradually decreased with time. 

Nonetheless, its acoustical properties were finally still 

good enough to detect R2 with good signal to noise 

ratio. 

These results demonstrate that basic immersion 

ultrasonic NDT technics can be used in the chemically 

aggressive sodium environment during outages. 

Further work will consist of under-sodium tests with 

mockups including representative welds. 

II.B. UNDER SODIUM NDE OF WELDED 

JOINTS WITHIN THE ASTRID SUPPORTING 

CORE STRUCTURE (SO CALLED 

STRONGBACK) 

Much is being done to improve and to propose 

the most suitable ISI&R strategy for the main ASTRID 

structures and equipment. The ISI&R strategy consists 

in proposing the appropriate mix of continuous 

monitoring, periodic examinations and extra access/ 

repair abilities for each given structure. Various aspects 

have to be studied and taken into account to reach this 

objective. 

These aspects are: i) design of the equipment, ii) 

associated damage modes, iii) behavior of the 

equipment when damaged, iv) probability of failures, 

v) capabilities of the surveillance/examination devices 

(existing or to be developed) and, vi) economic criteria 

(cost of the devices, impact on the plant’s availability).  

First of all, the supporting core structure (see 

Figure10) is undergoing considerable analysis, as it is 

considered very important: a number of hypothetical 

inspection cases are being considered and simulated 

with the patented CIVA code which has been upgraded 

to meet SFR needs10. 

As an example of CIVA simulation capacities 

compared with ASTRID extended accessibility issues, 

Figure 10 shows the hypothetical inspection of the 

welded joint between outlet skirt and upper plate. The 

arrow indicates the positions where the ultrasonic 

TUSHT sensor could be (assuming a simple rigid pole 

through the existing specific ISI&R access in the roof 

slab of the main vessel) and of an example targeted 

welded area where a hypothetical 100mm-long flat 

defect is located. 

 
Figure 10: CIVA code simulation of strongback inspection: 

example of NDE conditions 

The effect of the relative position (internal/ 

external) and depth (5/ 10/ 20 mm) of such a defect is 

studied. Figure 11 shows the simulated echo amplitude 

calculated by the CIVA code: detecting such defects 

should be possible since the signal-to-noise ratio is high 

enough.  
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Figure 11: CIVA code simulation of strongback 

inspection: example of NDE results 

In the frame of NDE studies, this demonstrates 

CIVA abilities to be a useful tool for extended 

accessibility verifications in ASTRID configurations. 

II.C. NDE OF WELDED JOINTS WITHIN THE 

ASTRID STRONGBACK SUPPORT SKIRT, 

FROM OUTSIDE PRIMARY SODIUM 

(THROUGH MAIN VESSEL WALL) 

Another important structure to be controlled is 

the strongback support skirt (see Figure 15 where 

“inspection branch” corresponds to it). Three 

techniques based on inspection from outside the 

primary sodium are being investigated: i) Lamb waves 

which could propagate in sodium from one structure to 

another, ii) guides waves within structures welded to 

the main vessel, and iii) conventional volumetric 

waves. 

Lamb wave propagation in multilayers can be 

considered as they can propagate with low attenuation. 

A simplified mockup of typical SFR vessels and shells 

has been manufactured with parallel steel plates 

immersed in water (20 and 30 mm thick).  

Austenitic stainless steel plates are immersed in 

water and separated by 150 mm of water: Lamb waves 

are produced as a function of the frequency and the 

angle of incidence of the pressure waves produced by 

sensors immersed in water. 

 

 
Figure 12: Modulus of the transmission coefficients 

through a set of two plates, along frequency and incidence 

The re-emission of such waves, from one plate 

to another, has been demonstrated. The behavior of 

waves can be predicted using the transfer matrix 

method together with the general equations for the 

dispersion curves, the normal displacements and the 

tangential displacements in the plate: acoustic modes 

can be determined as shown on Figure 12.  

 
Figure 13: Experimental setup (left: 3D, right: 2D top 

view) 

The acoustic emitter E was tilted to generate the 

expected Lamb mode in the first plate, while the 

receiver R (needle hydrophone) was positioned close to 

the edge of the plate. Thanks to its Y displacement, the 

emitted pressure waves could be recorded along the 

edge of both plates (see Figure 13). 

As shown on Figure 14, A0 and S0 modes were 

observed in the first plate and identified by the 

measurements of celerity and displacements at the 

interface with water. The angles of radiated pressure 

waves were measured to ensure that the incident waves 

on the second plate could generate Lamb waves. Then 

the propagating modes were also observed and 

identified in the ‘hidden’ plate.  
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Figure 14: Pressure amplitudes measured along the 

edge of the second plate. Left: antisymmetric mode. Right: 

symmetric mode 

Experimental validations show good agreement 

with theory and highlight Lamb wave propagation in 

the hidden plate. The A0 mode could be used for the 

non-destructive testing of the hidden plate9. 

Experimental measurements were validated by 

comparison between theory, experimentation and 

finite-element simulations (using COMSOL 

Multiphysics® software) in the case of one immersed 

plate in water. These signal processing techniques 

proved to be efficient in the case of multi-modal 

propagation. They were applied to two immersed plates 

to identify the leaky Lamb mode generated in the 

second plate. When plates have the same thickness, 

leaky Lamb modes propagate from the first to the 

second plate without any mode change, with the 

apparent attenuation being weaker in the second plate. 

Considering that the second plate is continuously 

supplied in energy by the first one, an energy-based 

model (EBM) is proposed herein to estimate the 

apparent attenuation in the second plate. Despite our 

extremely simplifying assumption, this model proved 

to be in good agreement with both finite-element 

modelling (FEM) and experimentation. 

Guided waves can also be used, as the 

strongback support skirt is welded to the main vessel: 

this configuration implies a continuous stainless steel 

guide, from outside the main vessel up to the 

strongback10. 

Guided wave modeling has been developed with 

a hybrid finite-element modal method for arbitrary 

waveguides. The method couples high-order finite 

elements that allow the interaction of guided waves 

with arbitrary defects with a modal expansion that 

permits semi-analytical propagation along waveguide 

principal axes. Between the different modal 

decompositions, scattering matrix formalism is applied 

to easily chain complex geometries to each other with 

emission and scattering phenomena. 

A case study featuring a branched steel structure 

representative of strongback supporting skirt welded on 

the main vessel was simulated to determine the effect 

of cracks on the pulse-echo inspected region. This is 

shown in Figure 15. 

 

 
Figure 15: Case study for guided wave inspection (top) and 

inspection configurations used (bottom) 

A parametric study was conducted for each 

emission configuration to determine the optimal 

location of the probe, its size and frequency of 

operation, depending on the modes generated in the 

control branch. After choosing the optimal set-up, 

pulse-echo ultrasonic guided wave simulation was 

carried out with cracks C1 to C9 present one at a time. 

These studies revealed the fact that modal contributions 

are strongly dependent on the emission configuration 

used. In the case of cracks C7, C8 and C9, which are 

located in a geometrically inaccessible region, a 

variation of 6 dB between the best and the worst 

inspection configuration can be observed.  

Further work on this topic will include 

experimental validation of the simulation results 

relating to this type of complex branch-like structural 

inspection. 

Volumetric waves seem less likely to be 

successful, as the distance to the reactor vessel and the 

amplitude decrease in successive echoes from a surface 

perpendicular to the incident ray direction limits the 

detectability of internals. 
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Nevertheless, simulation was performed to 

check the efficiency of different sensors for the upper 

part of the strongback supporting skirt inspection 

configuration: a non-destructive examination of two 

cracks inside the skirt was simulated, as illustrated on 

Figure 16. 

 

 
Figure 16: Configuration of T45 volumetric inspection 

of strongback supporting skirt with two cracks, from behind 

the main vessel 

A 45° shear wave inspection (T45) was 

simulated with CIVA code, assuming a phased array 

probe positioned outside of the main vessel. The 

resulting B-scan has been projected onto the geometry 

of the reactor in Figure 17. 

 
Figure 17: NDE simulation of volumetric T45 

inspection of strongback supporting skirt with two cracks, 

from behind the main vessel 

In the case of this inspection, the crack echoes 

show not only the specular corner reflection of the T45 

beam, but also the tip diffraction echoes that make it 

possible to size the cracks. A validation case with steel 

plate mockup immersed in water will be set up to 

estimate whether this inspection technique is also 

adapted in practice.  

Another configuration is being studied for the 

inspection of vertical welded joins of the core 

supporting skirt: using out-of-sodium sensors, 

ultrasonic volumetric waves are likely to cross the main 

vessel wall and then propagate across the skirt where 

they have to cross a horizontal welded join.  

 
Figure 18: Core supporting skirt mock ‘up, during 

water tests 

A first mock-up was designed and manufactured 

to check the detection of artificial cracks in its 40mm-

deep welded joins, with the mock-up immersed in water 

as shown on Figure 18 (representing the surrounding 

sodium of the current ASTRID conditions) and using a 

single 128 phased-array 5 MHz sensor. 

 
Figure 19: Under water test configuration for vertical 

welded joint inspection with one 128 elements sensor (plane 

wave case) 
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The NDE measurements corresponded to the 

time-of-flight diffraction (TOFD) on artificial slit 

edges: 64 elements of the phased-array sensor emitted 

plane waves or focused waves, thanks to the former 

CIVA code calculation of the corresponding time delay 

laws. The other 64 elements acted as receivers (see 

Figure 19). 

 
Figure 20: NDE of core supporting skirt mockup (water 

test results at room temperature with linear 128 element 

sensor) 

The NDE of this mock-up was performed first 

without and then with some artificial slits which were 

machined in the welded joints or in their heat-affected 

zone. 

The echoes of the slits to be detected could not 

be found: there was no specific response associated 

with the slits (see Figure 20). This is why these tests 

will be repeated with not one but two 64 element 

transducers, with each transducer being able to move 

along the length of the mock-up, so that incidence of 

acoustic beam on the slit to be detected will be larger 

(see Figure 21). 

 
Figure 21: Under water test configuration for vertical 

welded joint inspection with two 64 element sensors 

(focused wave case) 

Of course, CIVA code simulation will also be 

used to predict the echoes from the slit edges in order 

to use the best configurations for NDE. 

II.D. UNDER SODIUM TELEMETRY AND 

VISION OF IMMERSED STRUCTURES AND 

COMPONENTS  

Complementary acoustic techniques such as in 

sodium imaging are also considered, even if they are 

less important than NDE ones. As sodium is opaque, 

visualizing components and structures immersed in 

sodium could provide interesting information for some 

applications: accurate local vision for structure surface 

metrology, global vision of the primary circuit, 

detection of opened cracks, location and identification 

of loose parts, robotic navigation positioning, and 

identification of coding systems for fuel sub-

assemblies. The study has been divided into several 

parts: 

o Acoustic behavior of such systems, using the 

CIVA code simulation 
o Development of associated transducers (phased-

array systems) 
o Signal treatment for 2D and 3D image 

reconstruction (advanced signal processing)  
o Qualification by in-water then in-sodium tests 

using dedicated targets for each application.  
This study is being carried out with the help of 

French and international partners. 

In a preliminary phase, telemetry tests were 

performed in 2010 on a mock-up called 

MULTIREFLECTEUR in order to study ultrasonic 

diffractions and reflections in liquid sodium. It included 

a rotating TUSHT, a fixed target, rotating targets and 

thermocouples (see Figure 22). In order to reach the 

metrological objective, all the components were 

initially calibrated in air at room temperature, which 

resulted in a global uncertainty of ± 0.02 mm (20µm) 

for their location and ± 0.02° for their angular position. 

 
Figure 22: MULTIREFLECTEUR mockup for 

telemetry sodium tests 
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After under-water commissioning tests, the 

mock-up was dried and used in a 1m-diameter pot in 

isothermal 200°C static sodium conditions: the test 

parameters were the TUSHT frequency and 6 target 

positions. The global uncertainty on the ultrasonic 

distance measurement was checked and proved to be 

better than 100 µm. The test results helped qualify the 

CIVA code. 

In late 2013, PhD work was launched at the CEA 

to find the best techniques for visualizing opened 

cracks and for optimizing the related acoustic systems, 

based on numerical simulation and combined with 

experimental qualification. 

Surface-breaking cracks and deep cracks were 

sought in the weld area as welds are more subject to 

defect initiation.  

Traditional methods enabled us to detect 

emerging cracks of sub-millimeter size with the 

sodium-compatible high-temperature TUSHT 

transducer (water tests). The PhD work relied on 

making use of prior knowledge of the environment by 

implementing differential imaging and time-reversal 

techniques. This approach makes it possible to detect 

change by comparison with a reference measurement 

and by focusing back to any change in the environment. 

It provides a means of analysis and understanding of 

the physical phenomena, thus making it possible to 

design more effective inspection strategies. The 

differences in the measured signals revealed that the 

acoustic field was scattered by a perturbation (a crack 

for instance), which may have occurred between 

periodical measurements. 

The imaging method relies on the adequate 

combination of two computed ultrasonic fields, one 

forward and one adjoint11. The adjoint field, which 

carries the information about the defects, is analogous 

to a time-reversal operation. One of the advantages of 

this method is that the time-reversal operation is not 

done experimentally but numerically. Numerical 

simulations have been carried out to validate the 

practical relevance of this approach. 

However, they still reveal a number of important 

limitations. Artifacts observed on the conventional 

topological energy image result from wave interactions 

with the boundaries of the inspected medium. A method 

was developed for addressing these artifacts, which 

involves forward and adjoint fields specified in terms 

of the boundary conditions. Modified topological 

energies were then defined according to the type of 

analyzed flaw (open slit or inclusion). Comparison of 

the numerical results with the experimental data 

confirms the relevance of the approach (see Figure 23). 

 
Figure 23: Imaging results of the scattering topological 

energy of a 1-mm diameter hole delimited by the black 

hollow circle in a steel block. The medium was insonified 

(a) by one element and (b) by 64 elements on the upper 

surface of the block; 64 receivers were used. The resulting 

images are expressed in decibels and normalized. 

The water tests were performed in simplified 

conditions, with conventional sensors which were 

accurately moved with 5D systems (see Figure 24).  

 
Figure 24: VISIO water facility (2 m long, 1 m large, 1 

m height) devoted to ultrasonic visualization study 

With these test conditions, it was possible to 

detect machined slits (simulating opened cracks) whose 

width is only 800 µm (ASME specification for visual 
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inspection) and letters whose size is more than 6 mm as 

shown on Figure 25). 

 
Figure 25. Acoustic imaging of a plate with slits. Left: 

time of flight. Right: amplitude (under water test at room 

temperature). 

The main components of a 3D mock-up – a 

specially designed specimen that simulates various 

structure shapes found inside the ASTRID reactor 

block (pipe, elbow, reducer, plate and sphere) – have 

been identified through US scanning, but all its details 

are not always visible. For example, when the 

immersed objet is not flat, only the specular echoes are 

useful for imaging, explaining why it is important to 

choose the right strategy for sensor positioning and 

displacement along the targets to be imaged. 

In addition to water testing, CIVA simulation 

was also carried out to obtain 3D images of the 

simulated specimen that were generated by XY raster 

and Z-theta approaches as shown on Figure 26. 

 
Figure 26: XY raster and Z-theta approaches for CIVA code 

calculation of 3D mockup. Z-theta CIVA results 

The simulation studies indicate that both XY 

raster (illustrated on Figure 27) and Z-theta scan can be 

used for deciphering the shapes. 

 
Figure 27: In water 3D mockup ultrasonic imaging with 

sensor XY displacement in a vertical plan (echoes 

amplitude) 

After the water-tests, in sodium-tests must be 

performed to validate the water/sodium transposition. 

For this purpose, a 3D scanning system (see Figure 28) 

has been used for under-sodium imaging of objects in a 

CEA test vessel. Two TUSHT transducers were moved 

with four degrees of freedom in a 1.5 m3 sodium 

vessel12.  

 
Figure 28: Specific positioning device for US 

sensors, and strongback mockup for future sodium close-

range NDE tests12 

In the meantime, the first raw imaging of 200°C 

sodium-immersed objects (bolt, hammer and pliers) 

was performed in 2013, as shown on Figure 29. 
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Figure 29: First in sodium acoustic imaging at 200°C: first 

plier raw reconstruction. Left: time of flight. Right: 

amplitude 

Further under-sodium viewing tests were 

performed with the specific positioning device for US 

sensors (see Figure 28) and aimed at introducing C-

scan images acquired thanks to this four degrees of 

freedom robot arm able to carry and precisely position 

high temperature ultrasonic transducers (TUSHT) 

under 200°C sodium. In the sodium pot, several mock-

ups are positioned with different objectives: Imaging, 

NDT in ASTRID representative structures, sub-

assembly identification and telemetry through screens. 

Regarding under-sodium imaging, the VISION 

mock-up contains engraved letters and grooves, 

simulating open fissures, a small triangle with sharp 

edges and a portion of piping. It is initially a set of 

images obtained by targeting this mock-up that is 

reconstituted and compared with those obtained in 

water. 

The ability to visualize objects in sodium under 

operational conditions was demonstrated13 by scanning 

objects using this robot with four degrees of freedom 

and high-temperature ultrasonic transducers (TUSHT). 

This was done by reconstructing a 3D image on the 

basis of ultrasonic sodium tests, as well as providing a 

representation of the letters and grooves simulating 

open cracks. 

The grooves, including the thinnest which was 

only 500 µm wide, were detected by the Ø40mm 

TUSHT with a focusing lens (Figure 30). 

The letters and engraved slits can be seen in 

these images (also see Figure 30). The letters “CEA”, 

“SCK” and “IGCAR” can be read. 

The engraved slits are also well represented. It 

is important to remember that the thinnest slit measured 

only 500 µm, while the focal diameter was only 2 mm. 

These images were obtained with a scanning 

step of 0.5 mm, which gave us the image resolution. 

By comparing the mockup’s metrology model with the 
measurements on the images, the following is obtained: 

• The depth of the engravings is 2 mm. 
• The slot width is obtained at less than 0.5 mm, which 

corresponds to the resolution of our images. 
 

 

 

Figure 30: In sodium imaging of a plate with slits and 

letters (VENUS tests with TUSHT transducers). Optical 

image (top left), rough acoustic echoes (top right, in blue) 

and enhanced signal treatment (bottom, orange zones). 
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II.E CONTROL OF SODIUM-GAS COMPACT 
HEAT EXCHANGERS  

A non-destructive testing method has been 
tested for the inspection of innovative compact heat 
exchanger. One of its main innovations, compared to 
past sodium fast reactor heat exchangers, is to eliminate 
the risk of a sodium-water reaction by using high 
pressure nitrogen as a cooling fluid. 

This innovation comes at the cost of new 
constraints on the thermomechanical and 
thermohydraulic design of this component and its non-
destructive testing. The heat exchanger assembly 
procedure currently proposed involves high 
temperature and high pressure diffusion welding of 
grooved stainless steel plates, with the goal of reaching 
high compactness levels. 

The aim of the non-destructive method 
presented herein is to characterize the quality of the 
welds obtained through this assembly process14. 
Following preliminary work on this topic, a 
quantitative method has been selected that can be 
applied to pulse-echo normal incidence ultrasonic scans 
of bonded specimens. This method should be extended 
to higher ultrasonic frequencies. This will allow to 
reach a higher resolution in some welded location as 
well as a more precise characterization of the diffusion 
bond and hence the material state. Experimental results 
obtained on sample specimens are promissing. This 
quantitative evaluation method should give special 
attention to the analysis of the narrow grooved regions 
and the precision attained in their ultrasonic image.  

II.F METHODS FOR IN-SITU REPAIR  

In the frame of ASTRID project, R&D effort for 
repair was lower than for inspection and mainly done 
during pre-conceptual and conceptual design phases 
(2010-2015). 

 The laser process was assessed as a possible 
repair tool15 because it has the advantage of being 
suitable for the steps to be performed (1. removal of 
sodium traces, 2. machining or gouging, and 3. welding 
of the stainless steel structural material), without 
generating any stress on the tool. Conventional tools 
(brush or gas blower for sodium removal, milling 
machine for machining, and TIG for welding) are only 
considered as back-up solutions. 

The laser technology covers a wide range of 
applications: heat treatment (in solid phase), welding 
(in liquid phase), cutting, engraving, machining, 

drilling, laser shock peening (LSP) and cold work 
without contact (with vapor phase). Three main 
parameters define the field of application for the laser 
beam: wave length (which determines the depth of 
photon penetration), power density (which controls the 
surface temperature) and the interaction time (which 
determines the power: from several kilowatts for 
continuous waves up to several megawatts for a 
‘nanosecond’ pulse).  

Three types of requirements have been 
identified for applications using lasers to perform 
repairs: 

o Stripping requirements: This involves 
removing the layer of sodium before an 
inspection or welding operation (particularly 
necessary for TIG welding due to the 
interaction of sodium vapors with the direct 
current plasma and ignition difficulties). 

o Machining requirements: This usually 
involves gouging around a crack. 

o Fusion welding requirements, with or without 
filler metal, fusion for the relief of internal 
stresses, closure of cracks, and refilling 
gouges or welding patches, etc. 

For the removal of sodium traces (before other 
repair steps), a preliminary design phase assessed the 
capacity to evaporate the sodium deposited on stainless 
steel structures by heating, using the laser. However, for 
practical purposes, sodium was replaced with zinc since 
its evaporation temperature at 907°C is similar to that 
of sodium at 883°C. The BALTHAZAR test facility 
was designed for this reason: it is equipped with two 
induction heating systems as shown on Figure 31. The 
first was used to generate a molten pool of zinc in a 
refractory crucible. The second was used to control the 
temperature of the test sample. 
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Figure 31: BALTHAZAR laser test facility 

The crucible and the test sample were housed in 

a vessel which ensures inert argon gas atmosphere of 

the surrounding environment. The thickness of the zinc 

deposition was around 100µm, as demonstrated by the 

metallographic cross-section in Figure 32. 

 

Figure 32: Metallographic cross-section – zinc deposition on 

316L steel 

Figure 33 shows the macrographic cross-

sections corresponding to three tests performed with a 

laser head translation rate of 3 mm/s, in order to remove 

zinc traces. 

 

Figure 33: Metallographic cross-sections - zinc evaporation 

Test A carried out at a power of 1000 W made it 

possible to strip the zinc, without forming a molten area 

of 316L. With the same parameters, however, test B led 

to a different result as stripping was only partial. This 

difference is attributed to a difference in the initial 

thickness of the zinc deposition. For test C carried out 

at a higher power (1500 W), the removal of the zinc was 

combined with the formation of a molten area of 316 L 

steel. It is therefore possible to evaporate the zinc 

deposition before melting the 316L steel and thus create 

a melt run without filler metal on a stripped surface. 

The same should apply with filler metal: this will be 

demonstrated later. 

Where prior visual examination of the steel 

surface under the deposition is necessary, controlling 

the energy source so the right amount is applied to 

evaporate the zinc deposition without melting its 

substrate proves to be a difficult operation. This would 

require the use of an adapted servo-system. 

For the machining or gouging of damaged 

material, the evaporation of 316 L steel can be 

performed using a laser beam with sufficient power 

density. A test campaign of isolated laser shots – with 

the pulses repeated in a line and then with 2D scanning 

– made it possible to determine the impact of different 

process parameters in order to conduct the first 

excavation run: impact diameter, power, pulse duration, 

cycle time, overlap factor and type of surrounding gas. 

The displacement of a focused beam over a diameter of 

about 0.5 mm with a peak power of 4 kW made it 

possible to excavate out the first cavity with a depth of 

2 mm at a rate of some cm3/hour. 

The research must be continued in order to 

increase the excavation depth by means of successive 

runs. The metallurgical quality of the final results must 

also be checked to see whether it is possible to fill this 

cavity with a new supply of material. 
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The optical aspects must also be better 

controlled in terms of protection against the pollution 

generated by the process (high production of vapors 

and metal particles against the laser head window). 

For the welding of damaged zones, it is 

considered that the laser process is now available 

through many industrial applications (technological 

materials: laser heads, optical fibers, simulation). The 

welding parameters will have to be optimized with 

respect to the related performance levels assessed 

before being qualified for realistic ASTRID structural 

repair conditions (geometry, material, position, etc.). 

Two scenarios are envisaged: welding of a local plug 

(on plate with a hole) or sleeve (in leaking tube), and 

welding after gouging. Re-qualification after repair will 

also have to be considered. 

 These repair techniques are not applicable in a 

bulk sodium medium. This is why, except for the 

removable components, they will be performed in a gas 

environment: either in the upper dry zones of the 

reactor cover-gas plenum, or in a gas-tight volume, if 

the faulty zone is located under the sodium free level: 

such sodium-immersed bells will be positioned on the 

structure in order to perform local repairs. This system 

will have to contain the inspection and repair tools and 

protect them from the surrounding liquid sodium. 

The design and water qualification of such a 

gas-tight system16 (using seals) was performed: a rigid 

bell, in contact with the structure to be repaired and 

having a seal formed by two flexible lips (see Figure 

34), was investigated. 

 
Figure 34: Profile of silicone sealing join 

A first prototype bell is now being tested in a 

water tank which will be used for the later qualification 

of the entire repair kinematics (repair tools in the bell, 

sealing of the bell, associated fluids): its shutter 

kinematics is illustrated on Figure 35. 

 
Figure 35: Kinematic of the bell shutter: [A] Shutter closed, 

tight  thanks to pressurized membrane [B] Depressurization 

of membrane and opening of the shutter [C] Removal of the 

shutter [D] Shutter completely removed 

A silicone material (C85MTHT/60) was chosen 

for the seals after some test campaigns which were 

conducted to characterize this type of material. In terms 

of leaktightness, the tests showed that the irradiation 

campaigns had little influence on the performance of 

seals in the field in question (irradiation ageing with a 

cobalt γ source: 1.17 - 1.33MeV, inducing 600 - 6000 

Gy cumulated dose). As far as ageing in sodium is 

concerned, the results are more controversial. In fact, 

the surface of aged samples was damaged by the 

sodium: cracks seriously affected the degree of 

leaktightness. Although improvement by a factor of 10 

can be observed with grade C85MTHT/60, the degree 

of leaktightness is still lower by a factor of 100 

compared with the leaktight performance for the non-

aged material. 

R&D effort for repair techniques is now lower 

during conceptual design phase. 

II.G IN-SODIUM ROBOTICS 

As mentioned before for repair activity, R&D 

effort for robotics is also lower than for inspection 

during pre-conceptual and conceptual design phases. 

One of the ASTRID project goals is to 

demonstrate the feasibility of under sodium robotic 

inspection and repair. Indeed, under sodium operations 

would be preferred to sodium draining operation when 

possible (considering the potential caustic corrosion 

risk). 

Running R&D is now focused on dedicated 

actions for specific applications within ASTRID reactor 

(see hereafter); the most important technical aspects to 

be resolved (in sodium tightness, irradiation and 

thermal effects…) were studied during pre-conceptual 

phase. Associated R&D effort for robotics is also lower 

during conceptual design phase. 
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Several work topics have been identified and 

distributed between the CEA, EDF and FRAMATOME 

teams: 

o Generic studies on robotics for ASTRID (in 

sodium or not); 
o Associated means for testing; 
o Application 1: robotics within the gap between 

main and safety vessels (out of sodium);  
o Application 2: inspection system for steam 

generator tubes; 
o Application 3: pushed chain type robot; this has 

been specifically studied for the case of the 

bottom part of the strongback structure17. 
o Application 4: pole and cable type robot; 
o Application 5: on-wheels robot for large in-gaz 

equipments; 
o Application 6: robot for repair tools; 
o Repair techniques. 

 
At a preliminary phase, three main 

configurations have been considered, depending on the 

adopted solution for robot component seclusion16: 

o Leaktight surrounding shell cooled by an argon 

gas flow: the constraints are irradiation and 70°C 

temperature, 
o Leaktight surrounding shell (not cooled) where 

the constraints are irradiation and 180°C-200°C 

temperature, 
o No leaktight surrounding shell with the following 

higher constraints: irradiation and 180°C-200°C 

temperature and immersion within liquid sodium. 
It appears that some technical solutions do exist 

for future in-sodium carriers, using available trade 

components, but not for all required materials. This is 

why development and qualification will be needed to 

confirm some specific components (such as polymers, 

greases, sensors, reducers, motors, bearings). 

As an example, for electrical motor dedicated to 

200°C operation, R&D work is leading to a first 

prototype with already available components, as shown 

on Figure 36. 

 

 
Figure 36: Prototypic brushless motor working at 200°C 

Validation tests on simplified geometries  (see 

Figure 37), as well as on realistic robot articulations, 

are currently being conducted to confirm the feasibility 

of using factory-produced or custom-made robots, 

insulated and cooled at 200°C, for repairing ASTRID. 

 
Figure 37: Specific tight robot mockup with 2 degrees of 

freedom 

Taking advantage of generic and technological 

studies for ASTRID robotics, specific ISI&R tool 

carriers are considered during conceptual and basic 

design phases. Development and qualification still 

remain for reaching demonstration level. 

III. CONCLUSION 

On the basis of available feedback and the high 

level safety requirements of nuclear plants, the ISI&R 

for SFRs has been identified as a major task: indeed, it 

gives actual information of structure plant health, in 

accordance with design rules. 

The French R&D program for ISI&R 

improvement is developed along several aspects (with 

different R&D priorities): i) ensuring close 

collaboration between the reactor designers and 

inspection specialists (high priority), ii) developing 

inspection tools and techniques applicable in a sodium 

environment: US transducers, NDE, telemetry and 

imaging techniques (high priority), iii) developing 

repair laser tools applicable in a sodium environment 

(low priority), iiii) developing in-sodium robotics: 

generic studies for associated materials and specific 

applications for ASTRID (medium priority). The 

inspection of compact sodium-gas heat exchangers is 

also looked at. 

The key milestones of this ambitious R&D 

program are: 

o Validation of ultrasonic transducers for under 

sodium conditions, 
o Development and qualification of ultrasonic 

inspection techniques (Non Destructive 
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Examination, telemetry, and imaging) under 
200°C sodium conditions, 

o Definition and solutions for inspecting 
compact sodium-gas heat exchangers, 

o Definition of key components of the robotic 
equipment for operation in sodium, 

o Preliminary validation of repair processes and 
techniques (cleaning, machining and 
welding), 

o Development of specific repair and robotic 
solutions for specific applications, during 
basic design phase. 
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Nomenclature 

EMAT: Electro Magnetic Acoustic Transducer 

ISI&R: In Service Inspection and Repair 

NDE: Non Destructive Examination 

R&D: Research and Development 

SFR: Sodium Fast Reactor 

TUCSS: Ultrasonic Transducer for under sodium NDE 

TUSHT: High Temperature Ultrasonic Transducer 

US: Ultrasonic, UltraSound 
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