

Correlation between Quenching rate, mechanical properties and microstructure in an Al-Mg-Si aluminum alloy

V. Garric, P. Donnadieu, G. Renou, B. Kapusta

▶ To cite this version:

V. Garric, P. Donnadieu, G. Renou, B. Kapusta. Correlation between Quenching rate, mechanical properties and microstructure in an Al-Mg-Si aluminum alloy. ICAA16 - International Conference on Aluminium Alloys, Jun 2018, Montreal, Canada. cea-02338546

HAL Id: cea-02338546 https://cea.hal.science/cea-02338546

Submitted on 24 Feb 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. DE LA RECHERCHE À L'INDUSTRIE

CORRELATION BETWEEN QUENCHING RATE, MECHANICAL PROPERTIES AND MICROSTRUCTURE IN AN AL-MG-SI ALUMINUM ALLOY

ICAA 16 - McGill University | CEA Saclay - DEN/DANS/DMN/SEMI/LM2E

Victor GARRIC^a, Patricia DONNADIEU^b, Gilles RENOU^b, Bénédicte KAPUSTA^a

^aDEN-Service d'Etudes des Matériaux Irradiés, CEA Université Paris-Saclay, F-91191, Gif-sur-Yvette, France ^bUniv. Grenoble Alpes, CNRS, Grenoble INP, SIMaP F-38000 Grenoble, France

www.cea.fr

20 JUNE 2018

DE LA RECHERCHE À L'INDUSTRI

A BRIEF REMINDER ON 6XXX ALUMINUM ALLOYS

- Widely studied and used in many industries
- Specific thermal treatment : precipitation hardening
- Quenching is important while poorly documented on thick plates
- Effects on microstructures and macro properties ?
- Critical cooling rate : V_{crit}=10°C.s⁻¹
- Local effects on properties ?

Quenching rate for thick plate ? Influence above V_{crit} ? Which impact on microstructures ?

MONITORING THE QUENCHING RATE

DE LA RECHERCHE À L'INDUSTRIE

MONITORING THE QUENCHING RATE

\rightarrow Complex quench

- \rightarrow Numerical simulation
- \rightarrow 40°C.s⁻¹<V<25°C.s⁻¹<V_{crit}

Oil Quench

→ Same temperature curves for all positions

→ Homogeneous quench Rate across the plate

→ 8,6.10⁻²°C.s⁻¹<V_{crit}

QUENCH SIMULATION : WATER QUENCH

T=f(t) : Experimental vs Simulation

Quench rate along depth

- \rightarrow Simulation needed to asses the local quench rate
- \rightarrow CAST3M, finite elements code \rightarrow Conduction-convection model
- \rightarrow Position sensibility

Water	Oil	Air	
30 to 40 °C.s ⁻¹	?	<0,1°C.s ⁻¹	

ea mic

MICROSTRUCTURAL CHANGES : NANOMETRIC SCALE

Global overview

Quench rate

Density of hardening phases

ICAA16 | 20 JUNE 2018 | PAGE 7

MICROSTRUCTURAL CHANGES : NANOMETRIC SCALE

The case of Air Temper

- \rightarrow Dark field images on <100> spot position
 - \rightarrow No trace of nanoscale precipitation in grain
 - \rightarrow Succession of nanoprecipitates
 - EDX maps \rightarrow Local Mg and Si enrichment
 - \rightarrow Consistent with AI-Mg-Si heterogeneous
 - \rightarrow Precipitation on dislocations

Mg

MICROSTRUCTURAL CHANGES : SUBMICRONIC SCALE

Global overview

Quench rate

Density of submicronic particles

DE LA RECHERCHE À L'INDUSTR

MICROSTRUCTURAL CHANGES : SUBMICRONIC SCALE

Water temper

EDX quantitative maps

No Fe/ Cr segregation

 100 nm BF(frame1)
 100 nm
 BF
 100 nm
 0 K
 100 nm
 FK

 100 nm
 Mg K
 100 nm
 Al K
 100 nm
 Si K
 100 nm
 Cr K

 100 nm
 Mg K
 100 nm
 Al K
 100 nm
 Si K
 100 nm
 Cr K

with Fe/ Cr segregation

- → αAIMnFeCrSi phase particles as usual in 6061-T6, chemical Fe/Cr segregation occasionally observed
- \rightarrow Low density of particles at the surface (i.e. high quenching rate)
- → High density of particles at mid thickness (i.e. lower quenching rate)
- \rightarrow Quench rate \rightarrow Gradient of microstructure

DE LA RECHERCHE À L'INDUSTR

MICROSTRUCTURAL CHANGES : SUBMICRONIC SCALE

Oil temper

EDX quantitative maps

- → αAIMnFeCrSi phase particles as usual in 6061-T6
- \rightarrow Homogeneously dispersed in the material
- Particles chemically heterogeneous : MgSi oxides growing on α particles
- \rightarrow Silicon present in all particles

DE LA RECHERCHE À L'INDUSTRI

MICROSTRUCTURAL CHANGES : SUBMICRONIC SCALE

Air temper

EDX quantitative maps

0.5 μm

Mg K

Mn K

⊐ 0.5 µm

⊐ 0.5 µm

Si K

Fe K 🗖

10.5 µm

Cr K

- → Numerous long and thick plate shape particles
- → Heterogeneous precipitation : growth of Mg-Al oxide and Mg-Si-Cu plate on α phase particles
- \rightarrow Silicon present in all particles

OXIDES ON AIR TEMPER : ASTAR

- \rightarrow Complex indexation
- \rightarrow Heterogeneous precipitation

- → Water and Oil temper : close mechanical response. Usual hardening 6XXX T6 alloy behavior (V≥V_{crit})
- → Air temper : low mechanical behavior
- → Influence of the microstructure differences ?
- \rightarrow More local properties ?

ON THE MECHANICAL BEHAVIOR : μ-HARDNESS MAPS

Standard deviation maps

DE LA RECHERCHE À L'INDUSTR

ON THE MECHANICAL BEHAVIOR : µ-HARDNESS MAPS

Standard deviation maps

CONCLUSIONS

Microstructure

- → Submicronic scale
 - Water temper : dispersion of αphase particles
 - → Oil temper : more submicronic particles and segregation
 - → Air temper : emphasized on oxide particles
- \rightarrow Nanometric scale
 - → Usual T6 hardening precipitation in oil and water temper

Mechanical behavior

- → Macro scale
 - → Usual T6 hardening behavior for water and oil temper
 - → Air temper : low mechanical properties
- \rightarrow Local scale
 - → Oil temper : homogeneous response
 - → Water temper : "hard zones" corresponding to the skin effect

Nanometric precipitation → influence on macro scale properties Submicronic precipitation → influence on micro scale properties Going above 10°C.s⁻¹ improves the local mechanical behavior

Acknowledgements

P. Donnadieu, G. Renou, B. Kapusta, K. Colas, The JANNuS Team, S. Urvoy

QUESTIONS?

Commissariat à l'énergie atomique et aux énergies alternatives Direction of Nuclear Energy Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 68 16 Etablissement public à caractère industriel et commercial R.C.S Paris B 775 685 019

Department for Researches on Irradiated Materials Section for Researches on Irradiated Materials

 \rightarrow Homogeneous quench for the air

 \rightarrow Complex quench for water \rightarrow Necessity of simulating to understand the local quench rate

CAST3M Code \rightarrow Conduction-convection model

Conduction \rightarrow material dependant Convection \rightarrow time, material and shape dependant

DE LA RECHERCHE À L'INDUSTRIE

DENSITY ANALYSIS

	E05	(standard deviation)	E34	(standard deviation)	НХ
Medium surface (mm ²)	22.61	2.29	22.25	1.14	14.47
Surface ration (%)	11.64	1.93	9.21	0.58	7.33
precipitates/picture	365.1	37	295	12	361

ICAA16 | 20 JUNE 2018 | PAGE 20