

Simulation of RIA transients on MOX fuel rods with ALCYONE fuel performance code

I. Guenot-Delahaie, Jérôme Sercombe, Antoine Bouloré, Eric Federici, Rodrigue Largenton, Christian Bernaudat, Hervé Mayot

► To cite this version:

I. Guenot-Delahaie, Jérôme Sercombe, Antoine Bouloré, Eric Federici, Rodrigue Largenton, et al.. Simulation of RIA transients on MOX fuel rods with ALCYONE fuel performance code. TopFuel2018 - Light Water Reactor (LWR) Fuel Performance Meeting, Sep 2018, Prague, Czech Republic. cea-02338540

HAL Id: cea-02338540 https://cea.hal.science/cea-02338540v1

Submitted on 24 Feb 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

FROM RESEARCH TO INDUSTRY www.cea.fr

SIMULATION OF RIA TRANSIENTS ON MOX FUEL RODS WITH ALCYONE

FUEL PERFORMANCE CODE

I. Guénot-Delahaie, J. Sercombe, A. Bouloré, É. Fédérici (CEA) R. Largenton, C. Bernaudat (EDF), H. Mayot (Framatome) isabelle.guenot-delahaie@cea.fr

CODE framatome

TOPFUEL 2018 | SEPTEMBER 30 – OCTOBER 4, 2018 | PRAGUE (CZECH REPUBLIC)

OUTLINE OF THE PRESENTATION

ALCYONE V1.4 RIA-related features: from UO₂ fuel to MOX fuel

- Main modelling assumptions and capabilities
- Recent developments
- Simulations of (sodium-loop) CABRI integral tests on MOX fuel rodlets
 - ► Tests main characteristics and posttest results
 - Some simulation results and discussion vs measurements/examinations
- Conclusion and prospects

ALCYONE V1.4-RIA 1.5D SCHEME FOR MOX FUELS MAIN MODELLING ASSUMPTIONS AND CAPABILITIES RECENT DEVELOPMENTS 1/2

- Continuous and automatic calculation sequencing between base and pulse-irradiation periods
- Non steady heat and mass transport
- Irradiated cladding material constitutive laws suitable
 - for RIA loading conditions
 - ► High strain rates and temperatures

COP framatome

CARACAS fission gas model (creation and evolution at the grain scale)

- ▶ Relevant for fuels with complex microstructures (cf. Bouloré et al., Proc. of WRFPM 2017, paper 157)
 - MOX MIMAS AUC or ADU (wet route); MOX MIMAS dry route
- 3-phase description of MOX MIMAS AUC microstructure (UO₂ matrix and two Pu-cluster phases) for use with MOX fuels tested so far in CABRI
- > Access to gas creation, gas release and development of High Burnup Structure during base-irradiation period
- Access to intra- and intergranular gas inventory and location (dissolved, in bubbles, in porosity) before pulse
- **Gas populations evaluated at each time step and for each modelled MOX phase**
- **Continuous sequencing between base and pulse-irradiation periods**
- So far, CARACAS parameters calibrated on base irradiation and power ramps only

ALCYONE V1.4-RIA 1.5D SCHEME FOR MOX FUELS MAIN MODELLING ASSUMPTIONS AND CAPABILITIES 2/2

RECENT DEVELOPMENTS

- UO₂ fuel constitutive law suitable for RIA loading conditions
- ▶ Model proposed by SALVO based on compression tests performed on fresh UO₂ fuel :
 - high temperatures [1100°C-1700°C] | high strain rates [10⁻⁴ s⁻¹ 10⁻¹ s⁻¹]
 - tensile stress state (PELLET CRACKING) + CREEP
 - GRAIN BOUNDARY CRACKING (plastic flow) generated by excessive (biaxial) compressive stresses | related induced pore volume increase (PLASTIC POROSITY)
- GB cracking used by CARACAS as the main criterion for intergranular FGR + additional temperature criterion for intergranular and intragranular FGR from any HBS zone
 - ▶ cf. I. Guénot-Delahaie et al., Nucl. Eng. Technol., 50, 268 (2018) for ALCYONE V1.4 RIA 1.5D scheme validation on UO₂ fuels
- **Extension to MOX fuel Modelling first approach**
 - ▶ Same constitutive law as for UO₂ fuel, with modified parameters for creep
 - Mechanical homogeneous framework
 - No distinction in the model between the UO₂ matrix phase and the Pu-cluster phases in the calculation of the stresses and thus of the GB cracking
 - ▶ Same FGR approach however with a restriction to the sole UO₂ matrix phase
 - ▶ Use of a similar behaviour law for UO₂ and MOX fuels justified by post pulse test observations:
 - MOX pellets creep at least of the same order than UO₂ pellets one
 - MOX pellets radial macroscopic cracking similar to UO₂ pellets one
 - UO₂ phase grain boundary cracking leads to FGR that contributes in a major way to the total FGR

CODE framatome

M. SALVO et al., J. Nucl. Mater., 456, 54 (2015)

M. SALVO et al., J. Nucl. Mater., 460, 184 (2015)

OUTLINE OF THE PRESENTATION - HERE WE ARE

ALCYONE V1.4 RIA-related features: from UO₂ fuel to MOX fuel

- Main modeling assumptions and capabilities
- Recent developments

Simulations of (sodium-loop) CABRI integral tests on MOX fuel rodlets

- ► Tests main characteristics and posttest results
- Some simulation results and discussion vs measurements/examinations
- Conclusion and prospects

SIMULATIONS OF CABRI INTEGRAL TESTS ON MOX FUEL RODLETS

TESTS MAIN CHARACTERISTICS AND POSTTEST RESULTS

Test ID.	REPNa-9	REPNa-6	REPNa-12
Performed in	CABRI reactor equipped with former sodium-loop		
	flowing Na 280°C 0.1 to 0.3 MPa		
Mother rod:			
Cladding alloy Pellet	Zy4 MOX MIMAS AUC		
Initial enrichment Pu/(U+Pu), wt%	6.559	5.925	5.89
Corrosion thickness, µm	10 (max)	35 (max)	59-72 (max)
RIA test on rodlet:			
Local burnup, GWd/tM MEDIUM to VER	PY HIGH 28	47	65
Pellet stack length, mm	561.2	553.5	559.6
Rod filling gas pressure, MPa	0.3	0.3	0.3
Pulse width, ms	33	32	62.5
Energy injected**, cal/g MEDIUM to VE	RY HIGH 233	156	106
Peak fuel enthalpy, cal/g	197*	133*	103*
Failure diagnosis	NO	<u>NO</u>	<u>NO</u>
Max. clad residual hoop strain, %	7.2	2.6	1.1
	-	Oxide transient spalling	Oxide transient spalling
Fission Gas Release FGR, %	33.4	21.6	20.5
Posttest examinations	 No fuel melting sign Grain boundary decohesion detected in all cases GB decohesion from the very external pellet rim to an inward extension of 82% (REPNa-6) and 75% (REPNa-9, 12) GB decohesion also present (less important; none REPNa-12) towards the internal part of the pellet 		
* SCANAIR calculation; ** at 1.2 s after TOP. at PPL	TopEuel 2018 Sentember 30-October 4 2018 PAGE 7		

SIMULATIONS OF CABRI INTEGRAL TESTS ON MOX FUEL RODLETS

SOME SIMULATION RESULTS

TopFuel 2018 | September 30-October 4, 2018 | PAGE 8

Zoom on puls

1/4

TopFuel 2018 | September 30-October 4, 2018 | PAGE 9

2/4

TopFuel 2018 | September 30-October 4, 2018 | PAGE 10

> Another illustration of INTRA gas diffusion mechanism contribution in REPNa-9 case and not in REPNa-6 case

4/4

With our simple approach:

- ► Reasonable agreement with experimental results
- ▶ Better prediction of the clad residual hoop strain when taking account of the fission gas swelling
- ▶ REPNa-9: noticeable underestimation of FGR and clad residual hoop strain

OUTLINE OF THE PRESENTATION - HERE WE ARE

ALCYONE V1.4 RIA-related features: from UO₂ fuel to MOX fuel

- Main modeling assumptions and capabilities
- Recent developments
- Simulations of (sodium-loop) CABRI integral tests on MOX fuel rodlets
 - Tests main characteristics and posttest results
 - Some simulation results and discussion *vs* measurements/examinations

Conclusion and prospects

CONCLUSION

- **1.5D ALCYONE simulations:**
 - ▶ of RIA transients performed on MOX fuel rods in flowing sodium coolant conditions
 - **b** compared to the relevant experimental results gained from REPNa-6, REPNa-9 and REPNa-12 (CABRI)

Modelling:

- Use of CARACAS fission gas model (3-phase description of MOX microstructure) not yet suitable for RIA (CARACAS parameters calibrated on base irradiation and power ramps only)
- (similar to UO₂ fuel) Extension to RIA via implementation of a grain boundary cracking criterion and an additional temperature criterion for HBS zones
- Mechanical homogeneous framework
- Despite this simple approach, the discrepancies among the CABRI pulses (various BUs, various injected energies) are satisfactorily reproduced in terms of Na temperatures, FGR and clad hoop strains.
- Non-negligible underestimation of clad strains and FGR in case of high-energy tests on medium burnup fuel rods
 - ▶ Temperatures reached far above those considered in the calibration of CARACAS
 - Potential other explanations under investigation

- Some further work to complement and/or improve the results:
 - > Development of more advanced behaviour laws (stress states calculated per phase and not on average)
 - Experimental work/data as regards grain boundary cracking during RIA (MOX phase-dependent)
 - ► Modelling of helium release during RIA.
- More local description/heterogeneous modelling useful to understand, via numerical simulations, what happens at meso- and microscopic scales during RIAs

Thank you for your attention

CedF

FROM RESEARCH TO INDUSTRY

French Alternative Energies and Atomic Energy Commission CEA/DEN Cadarache, F - 13108 Saint-Paul-lez-Durance Cedex P. +33 (0)4.42.25.23.66 | F. +33 (0)4.42.25.47.47

Fuel Study Department (DEC)

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019