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Cover letter

Houda TRIFI

National Center for Nuclear Sciences

and Technology (CNSTN), Sidi Thabet, Tunisia

00216 25 867 494

trifi.houda@gmail.com

Dear Editor,

I am pleased to submit an original research article entitled “Metataxonomics of Tunisian 

phosphogypsum based on five Bioinformatics pipelines: Insights for bioremediation" by Trifi 

H, et al; to be considered for publication in Genomics jonural. I hereby certify that this paper 

gives detailed picture and new information regarding the phylogenetic characterization of 

bacterial communities on phylum, class, order, family, genus and species levels in Tunisian 

phosphogypsum (PG) using Illumina MiSeq sequencing technology and five bioinformatics 

pipelines. We deciphered in this study indigenous bacteria which possess different traits such 

as multi-resistance to heavy metals, resistance to ionizing radiation, plant growth promoting 

capacities and the ability to oxidize or reduce sulfate compounds which provided a basis for 

exhaustive research leading to the development of an efficient tool for PG bioremediation. 

Our manuscript creates a paradigm for future studies of the eventual use of bacterial 

communities of PG in its bioremediation. 

This study has not been duplicated publication or submission elsewhere, and if accepted, it 

will not be published elsewhere, including electronically in the same form, in English or in 

any other language, without the written consent of the copyright-holder. The authors received 

no financial support for the research and/or authorship of this article. The authors declare that 

they have no conflict of interest in the publication of this article, and they have participated in 

the study and concur with the submission and subsequent revisions submitted by the 

corresponding author.

Thank you for your consideration.

Best Regards,

mailto:trifi.houda@gmail.com
https://www.sciencedirect.com/science/journal/09291393


Highlights

 The microbial communities of phosphogypsum (PG) were investigated using Illumina 

MiSeq.

 Five bioinformatics pipelines were used to analyze bacterial diversity of PG.

  The major phyla in Tunisian PG is Proteobacteria.

 The functional capabilities of microbial communities of PG were deciphered.

 Bacteria genera with bioremediation traits were detected in PG dumps.
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Abstract

Phosphogypsum (PG) is an acidic by-product from the phosphate fertilizer industry and it is 

characterized by a low nutrient availability and the presence of radionuclides and heavy 

metals which pose a serious problem in its management. Here, we have applied Illumina 

MiSeq sequencing technology and five bioinformatics pipelines to explore the phylogenetic 

communities in Tunisian PG. Taking One Codex as a reference method, we present the results 

of 16S-rDNA-gene-based metataxonomics abundances with four other alternative 

bioinformatics pipelines (MetaGenome Rapid Annotation using Subsystem Technology (MG-

RAST), mothur, MICrobial Community Analysis (MICCA) and Quantitative Insights into 

Microbial Ecology (QIIME)), when analyzing the Tunisian PG. Importantly, based on 16S 

rDNA datasets, the functional capabilities of microbial communities of PG were deciphered. 

They suggested the presence of PG autochthonous bacteria recoverable into (1) removal of 

radioactive elements and toxic heavy metals (2) promotion of plant growth (3) oxidation and 

(4) reduction of sulfate. 
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25 Abstract

26 Phosphogypsum (PG) is an acidic by-product from the phosphate fertilizer industry and it is 

27 characterized by a low nutrient availability and the presence of radionuclides and heavy 

28 metals which pose a serious problem in its management. Here, we have applied Illumina 

29 MiSeq sequencing technology and five bioinformatics pipelines to explore the phylogenetic 

30 communities in Tunisian PG. Taking One Codex as a reference method, we present the results 

31 of 16S-rDNA-gene-based metataxonomics abundances with four other alternative 
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32 bioinformatics pipelines (MetaGenome Rapid Annotation using Subsystem Technology (MG-

33 RAST), mothur, MICrobial Community Analysis (MICCA) and Quantitative Insights into 

34 Microbial Ecology (QIIME)), when analyzing the Tunisian PG. Importantly, based on 16S 

35 rDNA datasets, the functional capabilities of microbial communities of PG were deciphered. 

36 They suggested the presence of PG autochthonous bacteria recoverable into (1) removal of 

37 radioactive elements and toxic heavy metals (2) promotion of plant growth (3) oxidation and 

38 (4) reduction of sulfate. 

39 Keywords: Bioremediation; Functional prediction; Illumina Miseq sequencing; Microbial 

40 community; Phosphogypsum.

41 1. Introduction

42 During recent decades, the microbial communities in mine tailings have attracted a 

43 considerable interest from many microbiologists [1; 2; 3]. Extreme tailing environments are 

44 ideal targets for the study of microbial diversity and how microbial communities respond to 

45 environmental changes [4]. Unlike the widespread idea about the negative effect of pollution 

46 on biodiversity; microbial communities in mine site can be greater than thought. For instance, 

47 an acidic and heavy metal contaminated mine can harbor rare and extremophile 

48 microorganisms involved in the biogeochemical cycles in this site. In fact, these species may 

49 be used in bioremediation processes of other contaminated soils [5].

50 Phosphogypsum (PG) is composed of over 90% of calcium sulfate and lower percentages of 

51 silica, aluminum, phosphate, and fluoride [6]. Depending on the origin of the phosphate ores, 

52 PG contains variable amounts of some impurities such as naturally occurring radionuclides 

53 and heavy metals [7]. The stack of PG increases during the manufacture of phosphoric acid, 

54 which makes its disposal an environmental concern. 

55 Bioremediation could be used as an innovative PG management strategy. It is based on the 

56 use of living organisms, especially microorganisms, to degrade or detoxify the environmental 
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57 contaminant as a safe and low-cost alternative [8]. However, the optimization of 

58 bioremediation strategies is dependent on knowing and characterizing the in situ microbial 

59 community. Indigenous bacteria able to remain active within the contaminant, can be 

60 identified and potentially targeted for bioremediation [9]. 

61 Recently, the application of next generation sequencing technologies such as Illumina Miseq 

62 has allowed to generate gigabases of high-quality raw data at low cost [10]. Metataxonomics 

63 is a high-throughput process used to identify microorganisms within a complex environment 

64 and create a metataxonomic tree in order to make taxonomic inferences [11]. Metagenomic 

65 analysis of nucleic acids was a powerful approach to capture the entire spectrum of microbial 

66 communities including both cultivable and uncultivable microorganisms as well as some rare 

67 species [12].

68 The microbial diversity of Tunisian PG has been poorly understood. Recently, one paper has 

69 studied the most important phyla of microbial communities in Tunisian PG using QIIME [13], 

70 but there have been no additional reports of these communities. This study, therefore, 

71 represents the first observation of the microbiology of PG using Illumina MiSeq approach and 

72 five bioinformatics pipelines. It provides an evaluation of the potential applications of the 

73 microbial communities of PG in bioremediation processes.

74 2. Materials and methods

75 2.1 Site description and sample collection

76 Sample collections were conducted in March; 2012 from the PG piles in accordance with 

77 Smith et al. [14] sampling guidelines. PG dumps are located near to the fertilizer industry in 

78 Sfax, Southeastern Tunisia. This region is characterized by a semi-arid to arid climate with an 

79 annual precipitation of around 237.8 mm. The Sfax plant (SIAPE factory) stockpiles contain 

80 ≈30 million tons of PG covering more than 48 ha and measuring more than 50 m height [13]. 
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81 The 10 cm of sediment layer was collected with sterile spatulas and spoons, and homogenized 

82 in a pre-sterilized aluminum pan. Multiple aliquots of samples were placed into 50 mL 

83 polypropylene tubes and were stored on ice until analysis prior to microbial analyses, while 

84 others were dried for the determination of soil chemical properties and radionuclides content. 

85 PG pH was determined using a glass combination electrode with a PG: water ratio of 1:2.5. 

86 The physico-chemical characteristics of PG were determined using Analyzer and Inductive 

87 Coupled Plasma Optical Emission Spectrometry (ICP-OES) in National Institute for Research 

88 and Physicochemical Analysis (INRAP) in Tunisia. Gamma spectrometry was used for the 

89 determination of radionuclides containing in the sample. Radioactivity measurements were 

90 done in National Center for Nuclear Sciences and Technology (CNSTN) in Tunisia.

91 2.2 DNA Extraction

92 DNA samples were extracted according to the method of He et al. [15] with some 

93 modification. 10 g of PG was mixed with 13.5 mL of DNA extraction buffer (100 mM Tris–

94 HCl [pH 8.0], 100 mM sodium EDTA [pH 8.0], 100 mM sodium phosphate [pH 8.0], 1.5 M 

95 NaCl, 1% hexadecylmethylammonium bromide) and 10 mL of proteinase K (10 mg mL−1) in 

96 centrifuge tubes by horizontal shaking at 200 rpm for 30 min at 37°C. After the shaking 

97 treatment, 1.5 mL of 20% dodecyl sulfate sodium (SDS) was added, and the samples were 

98 incubated in a 65°C water bath for 2 h with gentle end-over end inversions every 15–20 min. 

99 The supernatants were collected after centrifugation at 6,000 g for 10 min at room 

100 temperature and transferred into 50 mL centrifuge tubes. The soil pellets were extracted two 

101 more times by adding 4.5 mL of the extraction buffer and 0.5 mL of 20% SDS, vortexing for 

102 10 s, incubating at 65°C for 10 min, and centrifuging as before. Supernatants from the three 

103 cycles of extractions were combined and mixed with an equal volume of chloroform–

104 isopentanol (24:1, v/v). The aqueous phase was recovered by centrifugation and precipitated 

105 with 0.6 volume of isopropanol at 4°C for 1 h. The pellet of crude nucleic acids was obtained 
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106 by centrifugation at 16,000 g for 20 min at 4°C, washed with a cold 70% ethanol, and 

107 resuspended in sterile deionized water. DNA concentration and quality were assessed based 

108 on spectral absorbance at 260 nm wavelength and absorbance ratios of 260/280 nm, using a 

109 NanoDrop Spectrophotometer (NanoDrop Technology, USA). DNA samples were preserved 

110 at –80°C until further processing.

111 2.3 Amplification of 16S rRNA Genes

112 DNA samples were subjected to high throughput sequencing (HTS) by Illumina MiSeq 

113 technology, according to Illumina recommendations (16S Meta-genomic Sequencing Library 

114 Preparation, Part #15044223_B) With the V3 chemistry (2 x 300 bp). V3-V4 domain of 16S 

115 rRNA was amplified with tagged primers 16S rRNA Fwd primer [3’-

116 CCTACGGGNGGCWGCAG-5’] and 16S rRNA Rev primer [3’-

117 GACTACHVGGGTATCTAATCC-5’]. The tagged primers structure was 5’-N2-4X6Pn-3’, 

118 with “N2-4” were random bases, “X6” were 6-bases tag and “Pn” was specific primer. The 

119 polymerase chain reaction (PCR) mix contained 1 µg of template DNA, 10 µL of 5X Taq 

120 reaction buffer, 1 µM of each primer, 200 µM dNTPs, and 1.25 units of Taq polymerase in a 

121 50 µL reaction. The amplification procedure was as follows: an initial denaturation step at 

122 95°C for 2 min, and 35 cycles of denaturing at 95°C for 1 min, annealing at 53°C for 1 min, 

123 and extension at 72°C for 1 min, followed by a final extension step at 72°C for 5 min.

124 2.4 Bioinformatics and statistical analysis

125 The raw data generated from Illumina MiSeq technology run was processed and analyzed 

126 with One Codex, using default parameters, and also, for comparison purposes, following the 

127 pipelines of MG-RAST [16], mother [17], MICCA [18] and QIIME [19]. The merged file 

128 contained 16,803 sequences totaling 7,639,017 base pairs with an average length of 455 bps. 

129 The same generated merged FASTQ file was used as input for all five pipelines on or after 
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130 August 2017. Operational Taxonomic Units (OTUs) were calculated at phylum, order, family, 

131 genus and species levels. Taxa with relative abundance higher than 1% were retained for 

132 statistical analysis. 

133 2.4.1 One Codex

134 In this work, first, we used the One Codex data platform [20] for the taxonomic assignment of 

135 datasets because of the following advantages: (1) it exhaustively compares input samples 

136 against a database of thousands of whole microbial genomes, numbering approximately 

137 40,000 bacteria, viruses, protists, archaea and fungi (https://onecodex.com/) in seconds [21] 

138 (2) it has best-in-class detection accuracy providing results with 0.00% false positives [22] 

139 and (3) it has the highest degree of sensitivity and specificity compared to other methods, both 

140 when detecting well-characterized organisms as well as "taxonomically novel" species [20]. 

141 For the metataxonomic analysis of the merged file, One Codex, used an assignment-first 

142 approach. First, for the taxonomic assignment, all reads were compared to One Codex 

143 database by checking for exact k-mer matches. Afterwards, based on those comparisons, the 

144 lowest taxonomy possible to each read was assigned. Then, for taxonomic binning, reads were 

145 gathered into various taxonomic units based on their annotations [20; 21] Metataxonomic 

146 results were obtained as an overview, charts, phylogenies and tables.

147 2.4.2 MG-RAST: MetaGenome Rapid Annotation using Subsystem Technology

148 The merged file was uploaded to MG-RAST [16] for sequence analysis. The analysis 

149 generated by the MG-RAST automated processing pipeline (http://metagenomics.anl.gov) is 

150 as follows: Reads were given a taxonomic classification using the ‘Best Hit Classification’ 

151 option in MG-RAST, a maximum E-value cut-off of 1e−05, a % identity threshold of 60, a 

152 minimum alignment length of 15 bp and a minimum abundance set to 1. Best Hit 

153 Classification reports the highest scoring annotation(s) for each read. MG-RAST uses the 

https://onecodex.com/
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154 BLAT (BLAST-like alignment tool) [23] algorithm for the computation of similarities and to 

155 identify rDNA sequences by searching a reduced rDNA database. The UCLUST algorithm 

156 [24] is then used to cluster identified rDNA sequences. Representative sequences of each 

157 cluster were then used to realize taxonomic assignments using the RDP database [25].

158 2.4.3Mothur

159 Merged FASTQ file was quality-filtered and analyzed using mothur version 1.39.5, following 

160 the MiSeq Standard Operating Process pipeline [26]. Briefly, contigs were screened to 

161 remove sequences that did not align to Silva V4 database [27]. Duplicate sequences were 

162 merged followed by the alignment to a reference database (SILVA 123). Chimeric sequences 

163 were removed by using UCHIME algorithm [24]. Taxonomic classification was done based 

164 on Ribosomal Database Project (RDP) trainset 14 and using the RDP Naïve Bayesian 

165 Classifier [28]. Abundance was expressed as a percentage with respect to the total number of 

166 sequences in the sample.

167 2.4.5 MICCA

168 Processing the analysis of amplicon metagenomic datasets with micca software pipeline 

169 combines the following steps. First, the primers from both ends of merged FASTQ file were 

170 trimmed using trim command in the MICCA software package. Second, the quality of 

171 trimmed sequences was filtered using micca filter according to the maximum allowed 

172 expected error. Third, filtered sequences were classified into OTUs based on the de novo 

173 greedy clustering. Each representative sequence of generated OTUs was classified based on 

174 the RDP classifier [28]. Abundance was expressed as a percentage with respect to the total 

175 number of sequences in the sample. 

176

177



8

178 2.4.6 QIIME

179 The Merged FASTQ file was quality-filtered and analyzed using QIIME v.1.9.0 pipeline [19]. 

180 Sequences with an average Phred quality score < 25 were discarded. Chimeric sequences 

181 were identified using USEARCH [24] implemented in QUIME's pipeline using the reference 

182 mode against the SILVA LTP database (release 119) [29]. OTUs were clustered with QIIME's 

183 de novo OTU-picking pipeline using UCLUST [24] and rdp methods with Naive Bayes 

184 classification [28]. Representative sequences for each OTU were classified taxonomically 

185 using BLAST [30] against SILVA LTP database (release 119). Abundance was expressed as a 

186 percentage with respect to the total number of sequences in the sample. 

187 2.5 Diversity comparisons and statistical analysis

188 Alpha-diversity metrics, corresponding to variables describing diversity within the sample 

189 (Good’s coverage, Shannon diversity and Simpson indexes), was computed at a genus level. 

190 Each pipeline (mothur, MICCA and QIIME) was used to calculate diversity measures.

191 3. Results and Discussion

192 3.1Assignment of metataxonomic datasets, comparison of bioinformatics pipelines and 

193 taxonomic signature 

194 When analyzing 16S rDNA gene sequencing data from complex ecological niches, like PG, 

195 careful consideration of sources of bias affecting each tool is required. The performance of 

196 One Codex was confirmed by Lindgreen et al. [22] as previously indicated in this paper. 

197 Taxonomic binning via One Codex  allowed the  assignment of the prevalent OTUs (≥1% of 

198 the community) to four phyla which are Proteobacteria (46.76%), Actinobacteria (18.45%), 

199 Firmicutes (15.11%) and Bacteroidetes (2.68%). The most frequent detected classes 

200 comprising 36.4% of the proteobacterial phylotypes were, in order of abundance: 
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201 Gammaproteobacteria (15.74%), Alphaproteobacteria (14.07%) and Betaproteobacteria 

202 (6.59%). 

203 The results of One Codex were compared with four bioinformatics pipelines, MG-RAST, 

204 mothur, MICCA and QIIME as well as with previously published data (Figure 1, Table 2, 

205 Supplementary File 1). Among the 16,803 reads of the merged file, 98.19, 97.79, 99.45,  

206 97.73 and 99.34% were classified using the One Codex, MG-RAST, mothur, MICCA and 

207 QIIME tools, respectively (Supplementary File 1). Inspection of rarefaction curves 

208 (Supplementary File 1) showed that they tended to asymptotes, thereby arguing for high 

209 sequence coverage, a conclusion strongly supported by reference to Good’s coverage metric 

210 (Table 1). Indeed, estimation of the coverage provided by our metataxonomic data set showed 

211 that One codex and mothur pipelines gave a good coverage with 99.19 and 99.00%, 

212 respectively. Shannon's diversity and Simpson indices are presented in Table 1.

213 Taking One Codex as a reference method, we also showed that the four other bioinformatics 

214 pipelines did not detect taxonomic units (e.g., species) in similar abundances. Also, 

215 differences were observed at different level (Table 2, Supplementary File 1). Differences at 

216 the class and genus levels are shown in Figure 1. Moreover, in comparison with the reference 

217 method, these four tools (MG-RAST, mothur, MICCA and QIIME) either misidentified many 

218 phyla, classes, orders, families, genera and species that were not truly present (false positives) 

219 or wrongly indicated that they are absent (false negatives)  (Figure 1, Table 2, Supplementary 

220 File). However, it was observed that One Codex and QIIME produced comparable results 

221 (Table 2, Supplementary File 1). 

222 In addition, many parameters can explain the difference between the study of Zouch et al. [13] 

223 and our results (Table 2), including the DNA extraction method, 16S rDNA region targets and 
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224 the spatiotemporal sampling data. Moreover, these differences may be attributed to used 

225 taxonomical classification algorithms and reference databases  [31].

226 3.2 Characteristics of Tunisian PG, functional predictions and insights for 

227 bioremediation

228 Fertilizer manufacturing industries release obvious sources of heavy metal and radionuclides 

229 with severe impact on the environment. In Tunisia, one of the main phosphates producing 

230 countries in the world, the phosphate fertilizer industries produce 10 Mt/year PG [32]. 

231 Tunisian PG is heavily polluted with heavy metals and radionuclides (Table 3). In order to 

232 develop effective bioremediation strategies for these contaminants, the composition of 

233 microbial communities in PG needs to be better understood. Therefore, a legitimate question 

234 is to ask whether the composition of the core microbiome of Tunisian PG accords very closely 

235 with its characteristics.

236 In this study, based on a reference method, One Codex, 193 species were detected  

237 (Supplementary File 1). One Codex result indicated that Tunisian PG does not contain neither 

238 high abundance (> 25% of classified reads) nor medium abundance (5–25% of classified 

239 reads) microorganisms. However, it contains five low abundance (1–5% of classified reads) 

240 bacteria, Staphylococcus aureus, Empedobacter falsenii (1.95%), Geobacillus 

241 thermoleovorans (1.3%), Polaromonas sp. EUR3 1.2.1 (1.27%) and Clostridium bifermentans 

242 (1.02%). 

243 One codex analysis showed that PG was dominated at the phylum level by Proteobacteria 

244 (46.76% of classified reads). In more detail, Proteobacteria-related sequences were composed 

245 of five classes: Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, 

246 Deltaproteobacteria and Epsilonproteobacteria an order from the highest to the lowest 

247 (Supplementary File 1). Proteobacteria are often shown to be predominant in various acidic 
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248 environments such as mine tailings, comprising up to 70% of 16S rRNA gene clone library 

249 sequences [33; 34]. They are well-known to survive in oligotrophic environments, nitrate 

250 reduction and metal resistance and they are able to reduce uranium. These characteristics were 

251 frequently presented in Gammaproteobacteria [9; 35] which were detected as the dominant 

252 class in this study.

253 Actinobacteria were the second most dominant phylum with a representative major order 

254 (Micrococcales) and major family (Micrococcaceae) (Supplementary File 1). Members of this 

255 phylum are ubiquitously distributed in different habitats, including metal-rich, acidic 

256 ecosystems. Their metabolic versatility and resilience to harsh environments have been also 

257 reported in mining-related areas [36]. Indeed, Actinobacteria have a range of mechanisms for 

258 dealing with heavy metal resistance [37]. They have been widely used in bioremediation such 

259 as biotransformation, biodegradation and other purposes [38]. El Baz et al.[39] showed that 

260 Actinobacteria might be a good tool which can be used in a bioreactor configuration to treat 

261 metal contaminated wastes prior to discharge into the environment.

262 Firmicutes was the third dominant phylum (Supplementary File 1). Members of this phylum 

263 occupy a wide range of habitats and can be either beneficial or detrimental in diverse settings 

264 [40] and they have an important role in industrial and clinical aspect [41].

265 Concordantly, Proteobacteria, Actinobacteria and Firmicutes were mainly detected in mine 

266 tailing with low pH, intense weathering and iron precipitations [1; 42]. They are known to be 

267 resistant to heavy metal toxicity and adapted for growth in low nutrient environments [35].

268 Deeper genus-level sequencing revealed that the majority of bacteria in PG can contribute to 

269 the different biotechnological treatment of PG. The dominant bacteria genera were related to 

270 Arthrobacter (13.25%), followed by the genera Paracoccus (12.32%), Pseudomonas (6.7%) 

271 and Staphylococcus (3.63%) (Supplementary File 1). These genera have already been detected 
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272 in various environments contaminated with chemicals and heavy metal such as mine dumps, 

273 sometimes as dominant populations. They have metabolically versatile and diverse 

274 degradative capabilities and potential applications for bioremediation [43; 44; 45; 46].

275 Resolving metataxonomics data at the species level has great potential for deciphering 

276 functional profiles within an ecological niche. These predictions suggested the presence of  

277 PG-native strains valorisable into (1) removal of radioactive elements and toxic heavy metals 

278 (2) promotion of plant growth (3) oxidation and (4) reduction of sulfate (Figure 2). 

279 Many of detected strains in this study (Supplementary File 1) were isolated previously in 

280 uranium (U) mine, and they are well-known for precipitation or reduction of U and other 

281 radionuclides such as Geobacter sp. [3], Idiomarina sp. [47], Clostridium sp. [35]. The ability 

282 of Lactobacillus sp. to remove U from aqueous solution was reported by Tsuruta [48]. The 

283 removal of radioactive elements and toxic heavy metals from contaminated sources is a 

284 worthwhile priority for environmental protection initiatives. Therefore, researchers have 

285 concentrated on accumulation of U by microorganisms that can leach you from ore in mine 

286 soil [49; 50]. These microorganisms from U deposits can be used as adsorbing agents for the 

287 removal of nuclear elements which may be present in mine tailings [48]. The isolation of 

288 these bacteria from a radioactive environment is very encouraging due to the possibility of 

289 their being used in the radionuclide bioremediation process. 

290 Importantly, although PG is a radioactive environment, we detected the presence of ionizing 

291 radiation sensitive bacterial species such as Corynebacterium sp., Acinetobacter baumannii, 

292 Acinetobacter haemolyticus, Bacillus subtilis, Bacillus cereus and Bacillus megaterium 

293 (Figure 2). This can be explained based on previous findings that radioresistant microbial 

294 cells may protect their radiosensitive neighboring species (even from a different phylum) 

295 from high-level ionizing radiation [51]. Moreover, the Comparison of the concentration of 

296 radionuclides found in this study with others carried out worldwide as reported by Ajam et al. 
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297 [32] showed that the radioactivity of 226Ra in the Tunisian PG (200.58 becquerel / kilogramme 

298 (Bq/Kg))) is lower than those in other PG (Morocco, 1420 Bq/kg; Florida, 1120 Bq/kg).

299 Concentrations of metal(loid)s in Tunisian PG (Table 3), particularly Sr, Zn and Cd, are 

300 higher than those indicated in the environmental quality standard for agricultural applications 

301 in Quebec [52]. Cd is one of the most phytotoxic metals especially in acidic soil with low 

302 CEC and can cause agricultural yield reduction, contamination of the food crops [53]. 

303 Different bacterial species detected in Tunisian PG (Supplementary File 1) have been 

304 characterized in extremely acidic areas characterized by low nutrient and high levels of heavy 

305 metals like Ralstonia sp. [35; 54], Corynebacterium sp. [55], Comamonas sp. [56] and 

306 Pseudomonas sp. [43] (Figure 2).

307 PG dumps are subjected to water erosion and wind dispersion representing a source of 

308 contamination for nearby communities [57]. Numerous investigations have focused on the 

309 search for a new way to restore mine areas by the creation of a vegetation cover which assure 

310 long-term metal stabilization. Another method to valorize PG is its use as a fertilizer in 

311 agricultural crops. In this study, different isolates were characterized by their plant growth 

312 promoting traits as well as their resistances to various heavy metals (Figure 2) and may be 

313 excellent candidates of bio-inoculants for enhancing the phytomanagement strategies of PG. 

314 Among these isolates, Bradyrhizobium sp., a plant growth promoting rhizobacterium (PGPR) 

315 used in the phytostabilization of heavy metals and to increase plant yield and nitrogen uptake 

316 [58]. Other species in Tunisian PG (Supplementary File 1) can also resist to the toxicity of 

317 heavy metals and promote plant growth (Figure 2) via various mechanisms such as secretion 

318 of phytohormones (auxins), siderophores, ammonia (NH3), 1-aminocyclopropane-1-

319 carboxylate (ACC) deaminase and solubilization of inorganic phosphate: Delftia sp. [59], 

320 Achromobacter sp. [60], Flavobacterium sp., Shingomonas sp. [61], Psychobacter sp. [62], 

321 Rhizobium sp. [63], Planococcus sp. [64], Mesorhizobium sp. [65], Paenibacillus sp. [66], 
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322 Jeotgalicoccus sp. [67], Acinetobacter sp. [68], Pelomonas sp. [69], Burkholderia sp. [70], 

323 Rhodococcus sp. [71], Chryseobacterium sp.  [72], Bacillus sp. [73], Methylobaterium sp. 

324 [67], Stenotrophomonas sp. [74], Massilia sp. [75], Kribbela sp. [76]. 

325 Another strategy for PG bioremediation is the use of sulfate-oxidizing bacteria (SOB) and 

326 sulfate-reducing bacteria (SRB) which well-known as good candidates for PG 

327 biotransformation [77; 78].  SOB play an important role in detoxifying their environments, 

328 and they can increase the availability of sulphate (SO4
-2) for plant absorption which will 

329 improve plant growth and agricultural production [79]. SOB not only oxidized sulfur, but they 

330 may also oxidize iron (Fe) and glucose as an energy source and considered as mixotrophs. 

331 This sulfur and Fe oxidation ability enables them to use for extraction of metals from low-

332 grade ores where the ferric Fe act as an oxidizing agent [80]. Furthermore, SRB may reduce 

333 sulfate from PG into hydrogen sulfide. Thereafter, H2S may be oxidized into sulfuric acid by 

334 sulfide-oxidizing bacteria to be possibly reused in the fertilizer industry to produce 

335 phosphoric acid. Moreover, H2S produced by SRB may react with different with certain 

336 dissolved metals, such as copper (Cu), Fe and Zn, forming insoluble precipitates [81]. For 

337 instance, Martins et al. [78] showed the ability of SRB to remove Cu, Zn and Fe from the 

338 sample. In this respect, biotechnological process based on SRB and SOB activity may be 

339 considered as environmentally friendly for the treatment of metal-rich PG waste.

340  In accordance with the elevated sulfur concentration in PG, we detected SOB and SRB in this 

341 study (Figure 2). The sulfur-oxidizing Pseudomonas sp., Stenotrophomonas sp.,  

342 Achromobacter sp. Thiokalvibrio sp., Methylophilus sp., Sedimonticola sp., Thiomicropira 

343 sp., Corynebacterium sp., Achrobacter sp. and the sulfur-reducing Geobacter sp., Clostridium 

344 sp. Desulfotomaculum sp. represented approximately 7.15 and 0.02%, respectively, of PG 

345 community, suggesting that the oxidation-reduction of sulfurous compounds may occur in the 

346 harsh conditions of PG.
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347 The knowledge and detection of indigenous bacteria which possess different bioremediation 

348 traits such as multi-resistant heavy metals/radionuclides PGPB with the capacity to oxidize or 

349 reduce sulfate compounds provided a basis for exhaustive research leading to the 

350 development of an efficient tool to detect, stabilize or remove heavy metals and radionuclides 

351 with the ability to improve plant yield in extreme environments like the PG. For example, 

352 Pseudomonas sp. and Stenotrophomonas sp. were SOB isolated from acid mine drainage [80], 

353 they exhibited resistance to high concentrations of metalloids [82; 83]. Besides, they are able 

354 to secrete phytohormones, siderophores and solubilize inorganic phosphate [74; 84].

355 4. Conclusion

356 In conclusion, using the high throughput Illumina sequencing technique and one reference 

357 method (One Codex) with four alternative bioinformatics pipelines (MG-RAST, mothur, 

358 MICCA and QIIME), provided a detailed picture and new information regarding the 

359 phylogenetic characterization of bacterial communities on phylum, class, order, family, genus 

360 and species levels in Tunisian PG. In light of in silico results of PG metataxonomics 

361 generated using these five bioinformatics pipelines, the Tunisian PG is a mesmerizing 

362 repository of metal-tolerant, radioresistant, PGP, SO and SR bacteria. However, clearly, when 

363 analyzing 16S RDNA gene sequencing data from complex ecological niches, like PG, the use 

364 of a reference method and careful consideration of sources of bias affecting each alternative 

365 method are required. This work will improve our knowledge of bacteria suitable to be used in 

366 PG bioremediation, as well as bioprospecting of enzymes and biotechnological compounds 

367 hidden in PG.
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678 Figure captions

679

680 Figure 1: (A) Taxonomic identities at the class level of PG as determined via Illumina MiSeq 
681 16S rDNA gene amplicon sequencing and classification against the One Codex reference tool. 
682 (B) Box-and-whisker plots comparing 16S-rDNA-gene-based metataxonomics abundances 
683 for taxonomic units at the class level when analyzing PG using the One Codex, MG-RAST, 
684 mothur, MICCA and QIIME tools. (C) Taxonomic identities at the genus level of PG as 
685 determined via Illumina MiSeq 16S rDNA gene amplicon sequencing and classification 
686 against the One Codex reference tool. (D) Box-and-whisker plots comparing 16S-rDNA-
687 gene-based metataxonomics abundances for taxonomic units at the genus level when 
688 analyzing PG using the One Codex, MG-RAST, mothur, MICCA and QIIME tools. The 
689 classes and genera shown are those that were >1% of the community.

690 Figure 2: Phylogenetic tree representing PG-native strains valorizable into (1) removal of 
691 radioactive elements and toxic heavy metals (2) promotion of plant growth (3) oxidation and 
692 (4) reduction of sulfate. Histograms indicate reads’ percentage for each species as determined 
693 by the One Codex reference tool. See text for details.

694
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695 Table 1: Observed generic OTUs (0.03 cutoff) and Shannon's diversity indices at the genus 
696 level.
697

Analysis 
method

Good’s library coverage 
(%)

Observed 
OTUs

Shannon's diversity index 
(H)

One Codex 98.19 128 3.90

MG-RAST 98.04 83 ND

mothur 99 135 3.92

MICCA 33 66 4.24

QIIME 76 249 5.77

QIIME [13] ND 224 4.51

698

699

700



25

701 Table 2: Major phyla, classes, orders, families, genera and species of Tunisian PG based on 

702 One Codex, as a reference method, and four other pipelines (MG-RAST, mothur, MICCA and 

703 QIIME). 

One Codex MG-RAST mothur MICCA QIIME QIIME [13]

Phylum Proteobacteria 

(46.76%)

Firmicutes
(24.03%)

Proteobacteria
(50.48%)

Proteobacteria
(48.24%)

Proteobacteria
(41.21%)

Proteobacteria

(70%)

Class Actinobacteria 

(18.27%)

Bacilli
(23.76%)

Gammaproteobacteria
(27.95%)

Gammaproteobacteria
(29.75%)

Actinobacteria
(37.34%)

Gammaproteobacteria 
(≈55%)

Order Micrococcales 

(13.55%)

Bacillales
(23.22%)

Pseudomonadales
(15.85%)

Bacillales
(23.8%)

Bacillales
(17%)

ND

Family Micrococcaceae 

(13.41%)

Micrococcaceae
(11.82%)

Pseudomonadaceae
(13.76%)

Micrococcaceae
(16.24%)

Micrococcaceae
(26.997%)

ND

Genus Arthrobacter 

(13.25%)

Bacillus
(15.61%)

Pseudomonas (4.58%) Arthrobacter
(12.88%)

Arthrobacter
(20.5%)

Desulfobacterium 

(1.74%) 

Species Staphylococcus 

aureus (2.9%)

Bacillus cereus
(10.91%)

Pseudomonas 
fluorescens
(1.068%)

Staphylococcus 

aureus (2.71%)

Acidithiobacillus 

albertensis

(13%)

ND

704 Abundance is expressed in parentheses.

705

706
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707 Table 3: Chemical composition and radioactivity of Tunisian phosphogypsum (PG). 

Composition PG

pH 3.36

Calcium (Ca) 20.73% 

Sulfur (S) 11.193%

Phosphate (P) 0.62%

Iron (Fe) 0.022%

Magnesium (Mg) 0.018%

Strontium (Sr) 646.33 ppm

Zinc (Zn) 113.65 ppm

Cadmium (Cd) 20.19 ppm

Nickel (Ni) 5.20 ppm

Copper (Cu) 4.56 ppm

214Pb 210.86±1.70 Bq/kg

226Ra 200.58±2.46 Bq/kg

214Bi 190.31±1.78 Bq/kg

238U 93.92±15.54 Bq/kg

228Ac 28.49±4.42 Bq/kg

232Th 28.49±4.92 Bq/kg

212Pb 27.50±2.44 Bq/kg

40K 12.94±10.40 Bq/kg

708

709

710

711
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