
HAL Id: cea-02321547
https://cea.hal.science/cea-02321547

Submitted on 21 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Reconfigurable Lattice Agreement and Applications
Petr Kuznetsov, Thibault Rieutord, Sara Tucci-Piergiovanni

To cite this version:
Petr Kuznetsov, Thibault Rieutord, Sara Tucci-Piergiovanni. Reconfigurable Lattice Agreement and
Applications. [Research Report] Institut Polytechnique Paris; CEA List. 2019. �cea-02321547�

https://cea.hal.science/cea-02321547
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Reconfigurable Lattice Agreement and1

Applications2

Petr Kuznetsov3

LTCI, Télécom Paris, Institut Polytechnique Paris4

petr.kuznetsov@telecom-paris.fr5

Thibault Rieutord6

CEA LIST, PC 174, Gif-sur-Yvette, 91191, France7

thibault.rieutord@cea.fr8

Sara Tucci-Piergiovanni9

CEA LIST, PC 174, Gif-sur-Yvette, 91191, France10

sara.tucci@cea.fr11

Abstract12

Reconfiguration is one of the central mechanisms in distributed systems. Due to failures and13

connectivity disruptions, the very set of service replicas (or servers) and their roles in the com-14

putation may have to be reconfigured over time. To provide the desired level of consistency and15

availability to applications running on top of these servers, the clients of the service should be able16

to reach some form of agreement on the system configuration. We observe that this agreement is17

naturally captured via a lattice partial order on the system states. We propose an asynchronous18

implementation of reconfigurable lattice agreement that implies elegant reconfigurable versions of19

a large class of lattice abstract data types, such as max-registers and conflict detectors, as well20

as popular distributed programming abstractions, such as atomic snapshot and commit-adopt.21

2012 ACM Subject Classification Theory of computation Ñ Design and analysis of algorithms22

Ñ Distributed algorithms23

Keywords and phrases Reconfigurable services, lattice agreement24

Digital Object Identifier 10.4230/LIPIcs...25

1 Introduction26

A decentralized service [6, 14, 24, 27] runs on a set of fault-prone servers that store replicas27

of the system state and run a synchronization protocol to ensure consistency of concurrent28

data accesses. In the context of a storage system exporting read and write operations,29

several proposals [2,3,18,20,23,30] came out with a reconfiguration interface that allows the30

servers to join and leave, while ensuring consistency of the stored data. Early proposals [20]31

were based on using consensus [16, 21] to ensure that replicas agree on the evolution of32

the system membership. Consensus, however, is expensive and difficult to implement, and33

recent solutions [2, 3, 18, 23, 30] replace consensus with weaker abstractions capturing the34

minimal coordination required to safely change the servers configuration. These solutions,35

however, lack of a uniform way of deriving reconfigurable versions of static objects.36

Reconfiguration lattices. In this paper, we propose a universal construction for a large37

class of objects. Unlike a consensus-based reconfiguration proposed earlier for generic state-38

machine replication [25], our construction is asynchronous, at the expense of assuming a39

restricted object behavior. More precisely, we assume that the set L of the object’s states40

can be represented as a (join semi-) lattice pL,Ďq, where L is partially ordered by the binary41

relation Ď such that for all elements of x, y P L, there exists the least upper bound in L,42

© Author: Please provide a copyright holder;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:petr.kuznetsov@telecom-paris.fr
mailto:thibault.rieutord@cea.fr
mailto:sara.tucci@cea.fr
http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Reconfigurable Lattice Agreement and Applications

denoted x\ y, where \ is an associative, commutative, and idempotent binary operator on43

L. Many important data types, such as atomic snapshots, sets and counters, as well as useful44

concurrent abstractions, such as commit-adopt [17], can be expressed this way. Intuitively,45

x\ y can be seen as a merge of two alternatively proposed updated states x and y. As long46

as an implementation of the object ensures that all “observable” states are ordered by Ď, it47

cannot be distinguished from an atomic object.48

Consider, for example, the max-register [4] data type which exports two operations:49

writeMax that writes values and readMax that returns the largest value written so far. Its50

state space can be represented as a lattice pĎ,\q of its values, where Ď“ď and x \ y “51

maxpx, yq. Intuitively, a linearizable concurrent implementation of max-register must ensure52

that every read value is a join of previously proposed values, and all read values are totally53

ordered (with respect to Ď).54

Reconfigurable lattice agreement. The observation above inspires an elegant approach55

to build reconfigurable objects. In this paper, we introduce reconfigurable lattice agree-56

ment [8, 15]. It is natural to treat the system configuration, i.e., the set of servers available57

for data replication, as an element in a lattice. A lattice-defined merge of configurations,58

possibly concurrently proposed by different processes, results in a new configuration. The59

lattice-agreement protocol ensures that configurations evaluated by concurrent processes are60

ordered. Despite processes possibly disagreeing about the precise configuration they belong61

to, they can use these diverging configurations to safely implement lattice agreement.62

We assume that a configuration is a set of servers provided with a quorum system [19], i.e.,63

a set system ensuring the intersection property1 and, possibly, other configuration parame-64

ters. For example, elements of a reconfiguration lattice can be defined as sets of configuration65

updates: each such update either adds a server to the configuration or removes a server from66

it. The members of a configuration are the set of all servers that were added but not yet re-67

moved. A join of two configurations defined this way is simply a union of their updates (this68

approach is implicitly used in earlier asynchronous reconfigurable constructions [2, 18,30]).69

Reconfigurable L-ADT and applications. We show that our reconfigurable lattice70

agreement, defined on a product of a configuration lattice and an object lattice, immediately71

implies reconfigurable versions of many sequential types, such as max-register and conflict72

detector. More generally, any state-based commutative abstract data (called L-ADT, for73

lattice abstract data type, in this paper) has a reconfigurable interval-linearizable [12] imple-74

mentation. Intuitively, interval-linearizability [12], a generalization of the classical lineariz-75

ability [22], allows to specify the behavior of an object when multiple concurrent operations76

“influence” each other. Their effects are then merged using a join operator, which turns out77

to be natural in the context of reconfigurable objects.78

Our transformations are straightforward. To get an (interval-linearizable) reconfigurable79

implementation of an L-ADT, we simply use its state lattice, as a parameter, in our recon-80

figurable lattice agreement. The resulting implementations are naturally composable: we81

get a reconfigurable composition of two L-ADTs by using a product of the their lattices.82

When operations on the object can be partitioned into updates (modifying the object state83

without providing informative responses) and queries (not modifying the object state), as84

in the case of max-registers, the reconfigurable implementation is also linearizable2.85

1 The most commonly used quorum system is majority-based: quorums are all majorities of servers. We
can, however, use any other quorum system, as suggested in [20,23].

2 This class of “update-query” L-ADTs is known as state-based convergent replicated data types
(CvRDT) [28]. These types include max-register, set and abort flag (a new type introduced in this

P. Kuznetsov, T. Rieutord and S. Tucci XX:3

We then use our reconfigurable implementations of max-register, conflict detector, set86

and abort-flag to devise reconfigurable versions of atomic snapshot [1], commit-adopt [17]87

and safe agreement [10]. Figure 1 shows how are constructions are related.88

Interval-linearizable

RLA

Max-registerSet Conflict detector

Atomic snapshot Commit-adoptSafe agreement

AF

Linearizable

Figure 1 Our reconfigurable implementations: reconfigurable lattice agreement (RLA) is used
to construct linearizable implementations of a set, a max-register, an abort flag, and an interval-
linearizable implementation of a conflict detector. On top of max-registers we construct an atomic
snapshot, on top of max-registers and conflict detector, we construct a commit-adopt abstraction,
and on top of set and abort flag, we implement safe agreement.

Summary. Our reconfigurable construction is the first to be, at the same time:89

Asynchronous, unlike consensus-based solutions [13,20,25], and not assuming an external90

lattice agreement service [23];91

Uniformly applicable to a large class of objects, unlike existing reconfigurable systems92

that either focus on read-write storage [2, 18, 20, 23] or require data type-specific imple-93

mentations of exported reconfiguration interfaces [30];94

Allowing for a straightforward composition of reconfigurable objects;95

Maintaining configurations with abstract quorum systems [19], not restricted tomajority-96

based quorums [2, 18];97

Exhibiting optimal time complexity and message complexity comparable with the best98

known implementations [2, 23,30];99

Logically separating clients (external entities that use the implemented service) from100

servers (entities that maintain the service and can be reconfigured).101

We also believe our reconfigurable construction to be the simplest on the market, using102

only twenty two lines of pseudocode and provided with a concise proof.103

Roadmap. The rest of the paper is organized as follows. We give basic model definitions104

in Section 2. In Section 3, we define our type of reconfigurable objects, followed by the105

related notion of reconfigurable lattice agreement in Section 4. In Section 5, we describe106

our implementation of reconfigurable lattice agreement, and, in Section 6, we show how to107

use it to implement a reconfigurable L-ADT object. In Section 7 we describe some possible108

applications. Then, we conclude in Section 8 with an overview of the related work.109

2 Definitions110

Replicas and clients. Let Π be a (possibly infinite) set of potentially participating pro-111

cesses. A subset of the processes, called replicas, are used to maintain the implemented112

paper).

XX:4 Reconfigurable Lattice Agreement and Applications

object. A process can also act as a client, proposing operations on the implemented object113

and system reconfigurations. Replicas and clients are subject to crash faults: a process fails114

when it prematurely stops taking steps of its algorithm. A process is correct if it never fails.115

Abstract data types. An abstract data type (ADT) is defined as a tuple T “116

pA,B,Z, z0, τ, δq. Here A and B are countable sets called the inputs and outputs. Z is117

a countable set of abstract object states, z0 P Z being the initial state of the object. The118

map τ : ZˆAÑ Z is the transition function, specifying the effect of an input on the object119

state and the map δ : Z ˆAÑ B is the output function, specifying the output returned for120

a given input and object local state. The input represents an operation with its parameters,121

where (i) the operation can have a side-effect that changes the abstract state according to122

transition function τ and (ii) the operation can return values taken in the output B, which123

depends on the state in which it is called and the output function δ (for simplicity, we only124

consider deterministic types here, check, e.g., [26], for more details.)125

Interval linearizability. We now briefly recall the notion of interval-linearizability [12], a126

recent generalization of linearizability [22].127

Let us consider an abstract data type T “ pA,B,Z, z0, τ, δq. A history of T is a sequence128

of inputs (elements of A) and outputs (elements of B), each labeled with a process identifier129

and an operation identifier. An interval-sequential history is a sequence:130

z0, I1, R1, z1, I2, R2, z2 . . . , Im, Rm, zm,131

where each zi P Z is a state, Ii Ď A is a set of inputs, and Ri Ď B is a set of outputs. An132

interval-sequential specification is a set of interval-sequential histories.133

We only consider well-formed histories. Informally, in a well-formed history, a process134

only invokes an operation once its previous operation has returned and every response r is135

preceded by a “matching” operation i.136

A history H is interval-linearizable respectively to an interval-sequential specification S137

if it can be completed (by adding matching responses to incomplete operations) so that the138

resulting history H̄ can be associated with an interval-sequential history S such that: (1) H̄139

and S are equivalent, i.e., @p P Π, H̄|p “ S|p, (2) S P S, and (3) ÑHĎÑS , i.e., S preserves140

the real-time precedence relation of H. (Check [12] for more details on the definition.)141

Lattice agreement. An abstract (join semi-)lattice is a tuple pL,Ďq, where L is a set142

partially ordered by the binary relation Ď such that for all elements of x, y P L, there143

exists the least upper bound for the set tx, yu. The least upper bound is an associative,144

commutative, and idempotent binary operation on L, denoted by \ and called the join145

operator on L. We write x Ă y whenever x Ď y and x ‰ y. With a slight abuse of notation,146

for a set L Ď L, we also write
Ů

L for
Ů

xPL x, i.e.,
Ů

L is the join of the elements of L.147

Notice that two lattices pL1,Ď1q and pL2,Ď2q naturally imply a product lattice pL1 ˆ148

L2,Ď1 ˆ Ď2q with a product join operator \ “ \1 ˆ \2. Here for all px1, x2q, py1, y2q P149

L1 ˆ L2, px1, x2qpĎ1 ˆ Ď2qpy1, y2q if and only if x1 Ď1 y1 and x2 Ď2 y2.150

The (generalized) lattice agreement concurrent abstraction, defined on a lattice pL,Ďq,151

exports a single operation propose that takes an element of L as an argument and returns an152

element of L as a response. When the operation proposepxq is invoked by process p we say153

that p proposes v, and when the operation returns v1 we say that p learns v1. Assuming that154

no process invokes a new operation before its previous operation returns, the abstraction155

satisfies the following properties:156

Validity. If a proposepvq operation returns a value v1 then v1 is a join of some proposed157

values including v and all values learnt before the invocation of the operation.158

P. Kuznetsov, T. Rieutord and S. Tucci XX:5

Consistency. The learnt values are totally ordered by Ď.159

Liveness. Every propose operation invoked by a correct process eventually returns.160

A historical remark. The original definition of long-lived lattice agreement [15] separates161

“receive” events and “learn” events. Here we suggest a simpler definition that represents the162

two events as the invocation and the response of a propose operation. This also allows us163

to slightly strengthen the validity condition so that it accounts for the precedence relation164

between propose operations. As a result, we can directly relate lattice agreement to lineariz-165

able [22] and interval-linearizable [12] implementations, without introducing artificial “nop”166

operations [15].167

3 Lattice Abstract Data Type168

In this section, we introduce a class of types that we call lattice abstract data types or169

L-ADT. In an L-ADT, the set of states forms a join semi-lattice with a partial order ĎZ .170

A lattice object is therefore defined as a tuple L “ pA,B, pZ,ĎZ ,\Zq, z0, τ, δq.3 Moreover,171

the transition function δ must comply with the partial order ĎZ , that is @z, a P Z ˆ A :172

z ĎZ τpz, aq, and the composition of transitions must comply with the join operator, that173

is @z P Z,@a, a1 P A : τpτpz, aq, a1q “ τpz, aq \Z τpz, a1q “ τpτpz, a1q, aq. Hence, we can say174

that the transition function is “commutative”.175

Update-query L-ADT.We say an L-ADT L “ pA,B, pZ,ĎZ ,\Zq, z0, τ, δq is update-query176

if A can be partitioned in updates U and queries Q such that:177

there exists a special “dummy” response K (z0 may also be used) such that @u P U, z P Z,178

δpu, zq “ K, i.e., updates do not return informative responses;179

@q P Q, z P Z, τpu, zq “ z, i.e., queries do not modify the states.180

This class of types is also known as a state-based convergent replicated data types181

(CvRDT) [28]. Typical examples of update-query L-ADTs are max-register [4] (see Sec-182

tion 1) or sets. Note that any (L-)ADT can be transformed into an update-query (L-)ADT183

by “splitting its operations” into an update and a query (see [26]).184

Composition of L-ADTs. The composition of two ADTs T “ pA,B,Z, z0, τ, δq and T 1 “185

pA1, B1, Z 1, z10, τ
1, δ1q is denoted T ˆT 1 and is equal to pA`A1, BYB1, ZˆZ 1, pz0, z

1
0q, τ

2, δ2q;186

where A`A1 denotes the disjoint union and where τ2 and δ2 apply, according to the domain187

A or A1 of the input, either τ and δ or τ 1 and δ1 on their respecting half of the state (see [26]).188

Since the cartesian product of two lattices remains a lattice, the composition of L-ADTs189

is naturally defined and produces an L-ADT. The composition is also closed to update-query190

ADT, and thus to update-query L-ADT. Moreover, the composition is an associative and191

commutative operator, and hence, can easily be used to construct elaborate L-ADT.192

Configurations as L-ADTs. The reconfiguration service can similarly defined as follows.193

Let us define a configuration L-ADT as a tuple pAC , BC , pC,ĎC ,\Cq, C0, τ
C , δCq. For each194

element C of the configuration lattice C, the input set A includes the operation memberspq,195

such that δCpC,memberspqq Ď Π, and the operation quorumspq such that δCpC, quorumspqq196

is Ď 2δC
pC,memberspqq, a quorum system, where every two subsets in δCpC, quorumspqq have197

a non-empty intersection. In the following we will denote these two operations, with a198

slight abuse of notation, as memberspCq and quorumspCq. Here C0 is called the initial199

configuration.200

3 For convenience, we explicitly specify the join operator \
Z here, i.e., the least upper bound of Ď

Z .

XX:6 Reconfigurable Lattice Agreement and Applications

For example, C can be the set of tuples pIn,Outq, where In Ď Π is a set activated201

processes, and Out Ď Π is a set of removed processes. Then ĎC can be defined as the202

piecewise set inclusion on pIn,Outq. The set of members of pIn,Outq will simply be In´Out203

and the set of quorums (pairwise-intersecting subsets of In ´ Out), e.g., all majorities of204

In´Out. Operations in AC can be addpsq, s P Π, that adds s to the set of activated processes205

and removepsq, s P Π, that adds s to the set of removed processes of a configuration. One206

can easily see that updates “commute” and that the type is indeed an L-ADT. Let us note207

that L-ADTs allow for more expressive reconfiguration operations than simple adds and208

removes, e.g., maintaining a minimal number of members in a configuration or adapting the209

quorum system dynamically, as studied in detail by Jehl et al. in [23].210

Interval-sequential specifications of L-ADTs. Let L “ pA,B, pZ,ĎZ ,\Zq, z0, τ, δq be211

an L-ADT. As τ “commutes”, the state reached after a sequence of transitions is order-212

independent. Hence, we can define a natural interval-sequential specification of L, SL, as213

the set of interval-sequential histories z0, I1, R1, z1, I2, R2, z2, . . . , Im, Rm, zm such that:214

@i “ 1, . . . ,m, zi “
ŮZ
aPIi´1

τpa, zi´1q, i.e., every state zi is a join of operations in Ii´1215

applied to zi´1.216

@i “ 1, . . . ,m, @r P Ri, r “ δpa, ziq, where a is the matching invocation operation for217

r, i.e., every response in Ri is based on the result of the corresponding input applied to218

state zi.219

4 Reconfigurable lattice agreement: definition220

We define a reconfigurable object as a composition of two L-ADTs, an object L-221

ADT pAO, BO, pO,ĎO,\Oq, O0, τ
O, δOq and a configuration L-ADT pAC , BC , pC,ĎC

222

,\Cq, C0, τ
C , δCq (see Section 3). Our main tool is the reconfigurable lattice agreement,223

a generalization of lattice agreement operating on the product pL,Ďq “ pO ˆ C,ĎO ˆ ĂCq224

with the product join operator \ “ \Oˆ\C . We say that L is the set of states. For a state225

u “ pO,Cq P L, we use notations u.O “ O and u.C “ C.226

When a process p invokes proposeppO,Cqq, we say p proposes object state O and config-227

uration tCu P C.228

We say that p learns an object state O1 and a configuration C 1 if its propose invocation229

returns pO1, C 1q.230

The idea is to maintain replicas of a reconfigurable object on active members of installed231

but not yet superseded configurations. Formally, we say that a proposed configuration C232

is installed as soon as some process learns p˚, C 1q such that C ĎC C 1. A configuration C233

is available if some set in quorumspCq contains only correct processes. A configuration is234

superseded as soon some process learns a state p˚, C 1q such that C ĎC C 1 and C ‰ C 1.235

In a constantly reconfigured system, we may not be able to ensure liveness to all opera-236

tions. A slow client can be always behind the installed and not superseded configuration: the237

set of servers it believes to be currently active can always be found to constitute a superseded238

configuration. Therefore, for liveness, we assume that only finitely many reconfigurations239

occur.240

Moreover, we require that any join of proposed configurations that is never superseded241

must be available:242

Configuration availability. Let C1, . . . , Ck be proposed configurations such that C “243
ŮC
i“1,...,k Ci is never superseded. Then C is available.244

P. Kuznetsov, T. Rieutord and S. Tucci XX:7

Therefore, any configuration constructed as a join of proposed configurations245

and“superseded” by a strictly larger (w.r.t. ĎC) configuration does not have to be available,246

so it can safely remove some servers for maintenance. In the rest of the paper, we implicitly247

assume configuration availability in arguing liveness.248

As a client may not be aware of the current installed and not superseded configuration,249

we can only guarantee liveness to slow clients assuming that, eventually, every correct system250

participant (client or replica) is informed of the currently active configuration. Here we need251

to amend the notion of a correct process, having a reconfigurable system in mind.252

We say a replica joins the system when the first configuration it belongs to is proposed,253

and leaves the system when the first configuration it does not belong to is learnt. Now a254

replica is called correct if it joined the system and never failed or left. A client is correct if255

it does not fail while executing its propose operation.256

We assume that a reliable broadcast primitive [11] is available, ensuring that (i) if a257

correct process broadcasts a message, then it eventually delivers it and (ii) every message258

delivered by a correct process is eventually delivered by every correct process.259

To get a reconfigurable object, we therefore replace the liveness property of lattice agree-260

ment with the following one:261

Reconfigurable Liveness. In executions with finitely many distinct proposed config-262

urations, every propose operation invoked by a correct client eventually returns.263

Note that the desired liveness guarantees are ensured as long as only finitely many distinct264

configurations are proposed. However, the clients are free to perform infinitely many object265

updates without making any correct process starve.266

Formally, reconfigurable lattice agreement defined on pL,Ďq “ pO ˆ C,ĎO ˆ ĂCq sat-267

isfies the Validity and Consistency properties of lattice agreement (see Section 2) and the268

Reconfigurable Liveness property above.269

5 Reconfigurable lattice agreement: implementation270

We now present our main technical result, a reconfigurable implementation of generalized271

lattice agreement. This algorithm will then be used to implement reconfigurable objects.272

Overview. The algorithm is specified by the pseudocode of Figure 2. Note that we as-273

sume that all procedures (including sub-calls to the updateState procedure) are executed274

sequentially until they terminate or get interrupted by the wait condition in line 9.275

In the algorithm, every process (client or server) p maintains a state variable vp P L276

storing its local estimate of the greatest committed object (vp.O) and configuration (vp.C)277

states, initialized to the initial element of the lattice pO0, C0q. We say that a state is278

committed if a process broadcasted it in line 13. Note that all learnt states are committed279

(possibly indirectly by another process), but a process may fail before learning its committed280

value. Every process p also maintains Tp, the set of active input configuration states, i.e.,281

input configuration states that are not superseded by the committed state estimate vp. For282

the object lattice, processes stores in objp the join of all known proposed objects states.283

To propose prop, client p update its local variables using the updateState procedure using284

its input object and configuration states, prop.O and prop.C (line 1). Clients then enter a285

while loop where they send requests associated with their current sequence number seqp286

and containing the triplet pvp, objp, Tpq, to all replicas from every possible join of active287

base configurations and wait until either (1) they get interrupted by discovering a greater288

committed configuration through the underlying reliable broadcast, or (2) for each possible289

XX:8 Reconfigurable Lattice Agreement and Applications

join of active base configurations, a quorum of its replicas responded with messages of the290

type xpresp, seqpq, pv, sO, SCqy, where pv, sO, SCq correspond to the replica updated values of291

its triplet pvp, objp, Tpq (lines 8–9).292

Whenever a process (client or replica) p receives a new request, response or broadcast293

of the type xmsgType, pv, sO, SCqy, it updates its commit estimate and object candidate by294

joining its current values with the one received in the message. It also merge its set of input295

configurations Tp with the received input configurations, but the values superseded by the296

updated commit estimate are trimmed off Tp (lines 18–20). For replicas, they also send a297

response containing the updated triplet pvp, objp, Tpq to the sender of the request (line 17).298

If responses from quorums of all queried configurations are received and no response299

contained a new, not yet known, input configuration or a greater object state, then the couple300

formed by objp and the join the commit estimate configuration with all input configurations301
ŮC
ptv.CuYTpq is broacasted and returned as the new learnt state (lines 12-14). Otherwise,302

clients proceed to a new round.303

To ensure wait-freedom, we integrate a helping mechanism simply consisting in having304

clients adopt their committed state estimate (line 15). But, to know when a committed state305

is great enough to be returned, clients must first complete a communication round without306

interference from reconfigurations (line 11). After such a round, the join of all known states,307

stored in learnLB, can safely be used as lower bound to return a committed value.308

Correctness. Let us first show that elements of the type pv, sO, SCq P LˆOˆ 2C in which20

we have that @u P SC , u ĘC v.C admits a partial order Ď˚ defined as follows:21

pv, sO, SCq Ď˚ pv1, s1O, S
1
Cq ô v Ď v1 ^ sO ĎO s1O ^ tu P SC |u ĘC v1.Cu Ď S1C .22

Note that, since Ď and ĎO are partial orders, the reflexivity and transitivity properties23

are verified if they are verified by the relation tu P SC |u ĘC v1.Cu Ď S1C . Hence, the24

symmetry property is trivially verified as for any property P, we have tu P SC |Ppuqu Ď SC .25

For transitivity, pv, sO, SCq Ď˚ pv1, s1O, S
1
Cq and pv1, s1O, S1Cq Ď˚ pv2, s2O, S

2
Cq implies that:26

tu P SC |u ĘC v2.Cu Ď tu P tw P SC |w ĘC v1.Cu|u ĘC v2.Cu Ď tu P S1C |u ĘC v2.Cu Ď S2C .27

Hence that pv, sO, SCq Ď˚ pv2, s2O, S
2
Cq. For antisymmetry, given pv, sO, SCq Ď˚ pv1, s1O, S

1
Cq28

and pv1, s1O, S1Cq Ď˚ pv, sO, SCq, the relations Ď and ĎC implies that v “ v1 and sO “ s1O. But29

as by assumption @u P SC , u ĘC v.C, we have SC “ tu P SC |u ĘC v.Cu. But since v “ v130

then SC “ tu P SC |u ĘC v1.Cu, we obtain that SC Ď S1C . Likewise, we have S1C Ď SC , and31

thus, we obtain that SC “ S1C , completing the verification of the antisymmetry property.32

Intuitively, the set of elements pv, sO, SCq P L ˆ O ˆ 2C , in which we have that @u P33

SC , u ĘC v.C, equipped with the partial order Ď˚ is a join semi-lattice in which the procedure34

updateState replaces the triple pvp, objp, Tpq with a join of itself and the procedure argument.35

But, we will only prove that the procedure updateState replace pvp, objp, Tpq with an upper36

bound of itself and the procedure argument pv, sO, SCq:37

§ Lemma 1. Let pvold
p , objold

p , T old
p q and pvnew

p , objnew
p , Tnew

p q be the value of pvp, objp, Tpq38

respectively before and after an execution of the updateState procedure with argument39

pv, sO, SCq, then, we have:40

pvold
p , objold

p , T old
p q Ď˚ pvnew

p , objnew
p , Tnew

p q ^ pv, sO, SCq Ď˚ pvnew
p , objnew

p , Tnew
p q.41

Proof. Let us first note that we can rewrite the operation as follows:42

Line 18: vnew
p “ vold

p \ v43

P. Kuznetsov, T. Rieutord and S. Tucci XX:9

Local variables:
seqp, initially 0 { The number of issued requests }
vp, initially pO0, C0q { The last learnt state }
Tp, initially H { The set of proposed configuration states }
objp, initially O0 { The candidate object state }

operation proposeppropq { Propose a new state prop }
1 updateStatepvp, prop.O, tprop.Cuq
2 learnLB :“ K
3 while true do
4 seqp :“ seqp ` 1
5 oldCommit :“ vp { Archive commit estimate }
6 oldCandidates :“ pobjp, Tpq { Archive candidate states }
7 V :“ t

ŮC
ptvp.Cu Y Sq | S Ď Tpu { Queried configurations }

8 send xpREQ, seqpq, pvp, objp, Tpqy to
Ť

uPV memberspuq
9 wait until oldCommit.C ‰ vp.C or @u P V , received responses of the type

xpRESP, seqpq,_y from some Q P quorumspuq
10 if oldCommit.C “ vp.C ^ oldCandidates “ p_, Tpq then { Stable configurations }
11 if learnLB “ K then learnLB “ pobjp,

ŮC
ptvp.Cu Y Tpq

12 if oldCandidates “ pobjp,_q then { No greater object received }
13 broadcast xCOMMIT, ppobjp,

ŮC
ptvp.Cu Y Tpq, objp,Hqy

14 return pobjp,
ŮC
ptvp.Cu Y Tpqq

15 if learnLB ‰ K^ learnLB Ď vp then return vp { Adopt learnt state }

upon receive xmsgType,msgContenty from process q
16 updateStatepmsgContentq { Update tracked states }
17 if msgType “ pREQ, seqq then send xpRESP, seqq, pvp, objp, Tpqy to q

procedure updateStatepv, sO, SCq { Merge tracked states }
18 vp :“ vp \ v { Update the commit estimate }
19 objp :“ objp \

O sO { Update the object candidate }
20 Tp :“ tu P pTp Y SCq | u Ę

C vp.Cu { Update and trim input candidates }

Figure 2 Reconfigurable universal construction: code for process p.

Line 19: objnew
p “ objold

p \ sO44

Line 20: Tnew
p “ tu P pT old

p Y SCq|u ĘC pvold
p \C vq.Cu45

Hence, the use of pvold
p , objold

p , T old
p q and pv, sO, SCq are symmetrical. Moreover, it is trivial46

to check that, w.l.o.g., pv, sO, SCq Ď˚ pvnew
p , objnew

p , Tnew
p q. Indeed, v Ď vold

p \ v, sO ĎO
47

objold
p \O sO and tu P SC |u ĘC vnew

p .Cu Ď tu P pT old
p YSCq|u ĘC pvold

p \C vq.Cu “ Tnew
p . đ48

Note that it is also trivial to check that initially we have @u P Tp, u ĘC vp.C as Tp “ H49

and that it remains true after a complete execution of the updateState procedure as Tp is50

taken as the set of elements of pT old
p Y SCq satisfying this condition.51

Let us now check that Ď˚ is a refinement of the order Ď for the projection decidepq52

defined such that decidepv, sO, SCq “ psO,
ŮC
ptv.Cu Y SCqq. Formally:53

§ Lemma 2. pv, sO, SCq Ď˚ pv1, s1O, S
1
Cq ùñ decidepv, sO, SCq Ď decidepv1, s1O, S1Cq.54

Proof. This result follows directly from the definition of Ď˚. Indeed, as pv, sO, SCq Ď˚55

pv1, s1O, S
1
Cq, we have sO ĎO s1O. Moreover, we have tu P SC |u ĆC v1.Cu Ď S1C . Hence we56

XX:10 Reconfigurable Lattice Agreement and Applications

have
ŮC
ptv1.Cu Y SCq ĎC ŮC

ptv1.Cu Y S1Cq. But, as moreover we have v Ď v1, we obtain57

that
ŮC
ptv.Cu Y SCq ĎC ŮC

ptv1.Cu Y S1Cq. đ58

We are now going to show the main technical result required for the proof of correctness59

of Algorithm 2. Consider any run of the algorithm in Figure 2. Let s be any state committed60

in the considered run. Let ppsq denote the first client that committed s in line 13. Let V psq,61

vpsq, objpsq and T psq denote the value of respectively the variables V , vppsq, objppsq and62

Tppsq at the moment when ppsq commited s in line 13. Note that, as ppsq passed the tests63

in lines 10 and 12, vppsq.C, objppsq and Tppsq must have remained unchanged and equal to64

respectively vpsq.C, objpsq and T psq since the last computation of V in line 7. In particular,65

we have V psq “ t
ŮC
ptvpsq.Cu Y Sq | S Ď T psqu.66

Let G be the graph whose vertices are all committed states plus s0 “ pO0, C0q and whose67

edges are defined as follows:68

sÑ s1 ô s Ĺ s1 ^ s.C P V ps1q.69

Let us now show that G is connected, i.e., there exists a path between any couple of vertices70

in G:71

§ Lemma 3. The graph G is connected.72

Proof. As Ď is a partial order, G is acyclic. Let s be any committed state, we have vpsq.C P73

V psq as vpsq.C is the value of vppsq.C used in the computation of V psq in line 7. Hence,74

as vpsq Ď s since s “
ŮC
ptvpsqu Y T psqq and as vpsq ‰ s since ppsq is the first process to75

commit s, any committed state admits a predecessor in G. Thus, the only source of G is s0.76

Let us show that G is connected by contradiction. Hence, let us assume that we can77

select s and s1, a minimal (w.r.t. Ď) pair of vertices of G that are not connected via a path,78

i.e., for all couple of vertices pt, t1q ‰ ps, s1q such that t Ď s and t1 Ď s1, there is path from t79

to t1 or from t1 to t in G.80

Let us first show that s and s1 share the same set of ancestors in G. Indeed, consider an81

ancestor u of s in G. As u Ĺ s and as ps, s1q is chosen minimal, there exists a path from u82

to s1 or from s1 to u. There is no path from s1 to u as it would imply a path from s1 to s.83

Hence, u is an ancestor of s1. By symmetry between s and s1, we get that s and s1 share the84

same set of ancestors in G. Let s̄ be a locally maximal (w.r.t. Ď) ancestor of s and s1. As85

there are no ancestors of s and s1 greater than s̄, the paths from s̄ to s and s1 are edges, i.e.:86

s̄.C P V psq ^ s̄.C P V ps1q ùñ s̄.C P V psq X V ps1q,87

s̄ Ĺ s ^ s̄ Ĺ s1.88

Let us now look back at the algorithm to show that a path must exists from s to s1 or89

from s1 to s. By the algorithm, as s̄.C P V psq X V ps1q, in the last round of requests before90

committing s (resp. s1), ppsq (resp. pps1q) sent a request to all processes in s̄.C. As,91

in their last round, ppsq and pps1q passed the test of line 10, they received responses from92

replicas of s̄.C forming quorums in s̄.C, hence, as quorums intersect, from a common process93

r P s̄.C. Let us assume, w.l.o.g, that, for their last round of requests, r responded to ppsq94

before responding to pps1q.95

Recall that, as ppsq passed the tests in lines 10 and 12, the values of vp.C, objp and Tp96

did not change in the last round. Hence the content of the request sent to r by ppsq is equal97

to ppvO, vpsq.Cq, objpsq, T psqq, with vO some arbitrary value. By Lemma 1, after r responsed98

to ppsq, pvr, objr, Trq must become and remain greater or equal to (w.r.t. Ď˚) the message99

content ppvO, vpsq.Cq, objpsq, T psqq. Hence, the latter response to ppsq by r must contain a100

greater or equal content, and pvpps1q, objpps1q, Tpps1qq becomes are remains greater or equal101

to ppvO, vpsq.Cq, objpsq, T psqq, thus ppvO, vpsq.Cq, objpsq, T psqq Ď˚ pvps1q, objps1q, T ps1qq.102

P. Kuznetsov, T. Rieutord and S. Tucci XX:11

By Lemma 2, s “ decideppvO, vpsq.Cq, objpsq, T psqq Ď decidepvps1q, objps1q, T ps1qq “ s1.103

As vps1q is an ancestor of s1, it is an ancestor of s, so vpsq.C ĎC vps1q.C ĎC s.C. Thus:104

s.C “
C
ğ

ptvpsq.Cu Y T psqq ĎC
C
ğ

ptvps1q.Cu Y T psqq ĎC
C
ğ

pts.Cu Y T psqq “ s.C.105

So s.C “
ŮC
ptvps1q.CuYT psqq, and hence, s.C “

ŮC
ptvps1q.CuYtu P T psq, u ĘC vps1q.Cuq.106

From ppvO, vpsq.Cq, objpsq, T psqq Ď˚ pvps1q, objps1q, T ps1qq, we get that tu P T psq, u ĘC
107

vps1q.Cu Ď T ps1q, and therefore, we obtain that:108

s.C “
C
ğ

ptvps1q.CuYtu P T psq, u ĘC vps1q.Cuq P t
C
ğ

ptvps1q.CuYSq | S Ď T ps1qu “ V ps1q.109

We have shown that s Ď s1 and that s.C P V ps1q and therefore that there is an edge, hence110

a path, from s to s1 in G — A contradiction. đ111

We now have all the main ingredients to show the correctness of Algorithm 2.112

§ Theorem 4. The algorithm in Figure 2 implements reconfigurable lattice agreement.113

Proof. For the Consistency property, Lemma 3 says that G is connected, and hence that114

all committed values are totally ordered, thus, that all learnt states are totally ordered.115

From Lemma 3, we can also infer that @s, s1 P G, if s Ñ s1, then the first propose116

procedure returning s cannot preceed the first procedure returning s1. Indeed, In their117

last round of requests ppsq ans pps1q both queried s1.C, as s1.C P V psq ans s1.C P V ps1q,118

and received responses from intersecting quorums, hence from a common process r. As119

shown in the proof of Lemma 3, this implies that the value committed by the first client120

r responded to is smaller than the other. Hence the procedure associated with s cannot121

preceed the procedure associated with s1. The same argument also holds for any other122

propose procedure committing s. hence, a client returning in line 14, return a state greater123

than all previously committed states, hence all previously learnt states.124

For a process returning in line 15, to show that learnt states are greater than any preceed-125

ing learnt states, it is sufficient to check that LearnLB is greater than all. The selecte state126

LearnLB is not a committed state as the value of objp may have changed during the round127

of requests. But we can say that it is semi-committed as configurations did not change. This128

part is the most important as it is the property used in Lemma 3 to show that the client129

communicating latter with the common process r get a greater decidepq state than the one130

committed by the first. Intuitively, this is sufficient to add semi-committed to the graph131

and show that there are path from semi-committed states to all smaller committed states,132

and hence that it is large enough to be greater than all previously committed, and hence,133

learnt states.134

For the Validity property, we have shown that clients return states greater than all135

previously learnt states. By a trivial induction, as a committed state is a join of input states136

and committed states, it is easy to check that committed states, and hence learnt states,137

are joins of the initial state and input states. Moreover, as triples pvp, objp, Tpq becomes and138

remains greater after the execution of line 1, then clients commit and set LearnLB to states139

greater than the procedure proposal. Hence returned states are greater than the procedure140

proposal. Therefore the Validity property is satisfied.141

To prove the Reconfigurable-Liveness property, consider a run in which only finitely142

many distinct configurations are proposed. Hence, there exists a greatest learnt configuration143

state Cf . By the properties of the reliable-broadcast mechanism (line 13), eventually all144

XX:12 Reconfigurable Lattice Agreement and Applications

correct processes will receive a commit message including Cf . Hence, eventually, all correct145

processes will have vp.C “ Cf .146

Assuming configuration availability, we have that every join of proposed configura-147

tions that are not yet superseded must have an available quorum. Thus, eventually, every148

configuration u.C queried by correct processes are available. Therefore, correct processes149

cannot be blocked forever waiting in line 9 and, thus, has to perform infinitely many iter-150

ations of the while loop. Moreover, since configurations eventually no new configuration is151

discovered, all correct processes will eventually always pass the test in line 10 and therefore152

set a state for learnLB. In a round of requests after setting learnLB based on the triple153

pvl, obj l, Tlq, the triple pvr, objr, Trq in all replicas from a quorum of Cf must become and154

remain greater (w.r.t Ď˚) than pvl, obj l, Tlq.155

Now, let us assume that a correct process p never terminates, thus, it must observe greater156

object candidate at each round. This implies that infinitely many propose procedures are157

initiated, hence that a process commits infinitely may states. A committed state must be158

computed based on a triple pvp, objp, Tpq greater than thoses in all received messages, in159

particular thoses from a quorum in Cf which must eventually be greater than pvl, obj l, Tlq.160

Hence, eventally a committed state greater than learnLB is broadcasted, and this value is161

adopted and returned by p after receiving it — A contradiction. đ162

6 Reconfigurable objects163

In this section, we use our reconfigurable lattice agreement (RLA) abstraction to construct164

an interval-linearizable reconfigurable implementation of any L-ADT L.165

6.1 Defining and implementing reconfigurable L-ADTs166

Let us consider two L-ADTs, an object L-ADT LO “ pAO, BO, pO,ĎO,\Oq, O0, τ
O, δOq167

and a configuration L-ADT LC “ pAC , BC , pC,ĎC ,\Cq, C0, τ
C , δCq (Section 2).168

The corresponding reconfigurable L-ADT implementation, defined on the composition169

L “ LO ˆLC , exports operations in AO ˆAC . It must be interval-linearizable (respectively170

to SL) and ensure Reconfigurable Liveness (under the configuration availability assumption,171

Section 4).172

In the reconfigurable implementation of L presented in Figure 3, whenever a process173

invokes an operation a P AO, it proposes a state, τpa,Opq—the result from applying a to174

the last learnt state (initially, C0)—to RLA, updates Op and returns the response δpa,Opq175

corresponding to the new learnt state. Similarly, to update the configuration, the process176

applies its operation to the last learnt configuration and proposes the resulting state to RLA.177

§ Theorem 5. The algorithm in Figure 3 is a reconfigurable implementation of an L-ADT.4

Proof. Consider any execution of the algorithm in Figure 3.5

By the Validity and Consistency properties of the underlying RLA abstraction, we can6

represent the states and operations of the execution as a sequence z0, I1, z1, . . . , Im, zm,7

where tz1, . . . , zmu is the set of learnt values, and each Ii, i “ 1, . . . ,m, is a set of operations8

invoked in this execution, such that zi “
Ů

aPIi
τpa, zi´1q.9

A construction of the corresponding interval-sequential history is immediate. Consider an10

operation a that returned a value in the execution based on a learnt state zi (line 2). Validity11

of RLA implies that a P Ij for some j ď i. Thus, we can simply add a to set Ri. By repeating12

this procedure for every complete operation, we get a history z0, I1, R1, z1, . . . , Im, Rm, zm13

P. Kuznetsov, T. Rieutord and S. Tucci XX:13

Shared: RLA, reconfigurable lattice agreement
Local:

Op, initially O0 { The last learnt object state }
Cp, initially C0 { The last learnt configuration }

upon invocation of a P AO { Object operation }
1 pOp, Cpq :“ RLA.proposeppτO

pa,Opq, Cpqq

2 return δA
pa,Opq

upon invocation of a P AC { Reconfiguration }
3 pOp, Cpq :“ RLA.proposeppτC

pa,Cpq, Opqq

4 return δC
pa,Cpq

Figure 3 Interval-linearizable implementation of L-ADT L “ LO
ˆ LC : code for process p.

complying with SL. By construction, the history also preserves the precedence relation of14

the original history.15

Reconfigurable liveness of the implementation is implied by the properties of RLA (as-16

suming reconfiguration availability). đ17

In the special case, when the L-ADT is update-query, the construction above produces a18

linearizable implementation:19

§ Theorem 6. The algorithm in Figure 3 is a reconfigurable linearizable implementation of20

an update-query L-ADT.21

Proof. Consider any execution of the algorithm in Figure 3 and assume that L is update-22

query.23

By Theorem 5, there exists a history z0, I1, R1, z1, . . . , Im, Rm, zm that complies with SL,24

the interval-sequential specification of L. We now construct a sequential history satisfying25

the sequential specification of L as follows:26

For every update u in the history, we match it with immediately succeeding matching27

response K (remove the other response of u if any);28

For every response of a query q in the history we match it with an immediately preceding29

matching invocation of q (remove the other invocation of q if any);30

As the updates of an L-ADT are commutative, the order in which we place them in the31

constructed sequential history S does not matter, and it is immediate that every response32

in S complies with τ and δ in a sequential history of L. đ33

6.2 L-ADT examples34

We give three examples of L-ADTs that allow for interval-linearizable (Theorem 5) and35

linearizable (Theorem 6) reconfigurable implementations.36

Max-register. The max-register sequential object defined on a totally ordered set V pro-37

vides operations writeMaxpvq, v P V , returning a default value K, and readMaxpq returning38

the largest value written so far (or K if there are no preceding writes). We can define the39

type as an update-query L-ADT as follows:40

MRV “ pwriteMaxpvqvPV Y treadMaxu, V Y tKu, pV Y tKu,ďV ,maxV q,K, τMRV
, δMRV

q.41

where ďV is extended to K with @v P V : K ďV v, δMRV
pz, aq “ z if a “ readMax and K42

otherwise, and τMRV
pz, aq “ maxV pz, vq if a “ writeMaxpvq and z otherwise.43

XX:14 Reconfigurable Lattice Agreement and Applications

It is easy to see that pV Y tKu,ďV ,maxV q is a join semi-lattice and the L-ADT MRV44

satisfies the sequential max-register specification.45

Set. The (add-only) set sequential object defined using a countable set V provides opera-46

tions addSetpvq, v P V , returning a default value K, and readSetpq returning the set of all47

values added so far (or H if there are no preceding add operation). We can define the type48

as an update-query L-ADT as follows:49

SetV “ paddSetpvqvPV Y treadSetu, 2V Y tKu, p2V ,Ď,Yq,H, τSetV
, δSetV

q.50

where Ď and Y are the usual operators on sets, δSetV
pz, aq “ z if a “ readSet and K51

otherwise, and τSetV
pz, aq “ z Y tvu if a “ addSetpvq and z otherwise.52

It is easy to see that p2V ,Ď,Yq is a join semi-lattice and the L-ADT SetV satisfies the53

sequential (add-only) set specification.54

Abort flag. An abort-flag object stores a boolean flag that can only be raised from K to55

J. Formally, the LADT AF is defined as follows:56

AF “
`

tabort, checku, tK,Ju, ptK,Ju,ĎAF,\AFq,K, τAF, δAF
˘

57

where K ĎAF J, @z P tK,Ju : J\AFz “ J, K\AFK “ K τAFpz, abortq “ δAFpz, abortq “ J,58

and where τAFpz, checkq “ δAFpz, checkq “ z.59

Conflict detector. The conflict-detector abstraction [5] exports operation checkpvq, v P V60

that may return true (“conflict”), or false (“no conflict”). The abstraction respects the61

following properties:62

If no two check operations have different inputs, then no operation can return true.63

If two check operations have different inputs, then they cannot both return false.64

A conflict detector can be specified as an L-ADT defined as follows:65

CD “
`

V, ttrue, falseu, pV ˆ tJ,Ku,ĎCD,\CDq,K, τCD, δCD
˘

66

where67

K ĎCD J; @v P V , K ĎCD v and v ĎCD J; @v, v1 P V , v ‰ v1 ñ v ĘCD v1;68

τCDpz, vq “ v if z “ K or z “ v, and τCDpz, vq “ J otherwise;69

δCDpz, vq “ true if z “ J and false otherwise.70

Also, we can see that v \Z v1 “ v1 if v “ v1 or v “ K, and J otherwise.71

§ Theorem 7. Any interval-linearizable implementation of CD is a conflict detector.72

Proof. Consider any execution of an interval-linearizable implementation of CD. Let S be73

the corresponding interval-sequential history.74

For any two checkpvq and checkpv1q, v ‰ v1, in S, the response to one of these operations75

must appear after the invocations of both of them. Hence, one of the outputs must be76

computed on a value greater than the join of the two proposals, equal to J. Therefore, if77

both operations return, at least one of the them must return true.78

The state used to compute the output must be a join of some invoked operations, hence79

operations can only return true if not all check operations share the same input. đ80

7 Applications81

Many ADTs do not have commutative operations and, thus, do not belong to L-ADT.82

Moreover, many distributed programming abstractions do not have a sequential specification83

at all and, thus, cannot be defined as ADTs, needless to say as L-ADTs.84

P. Kuznetsov, T. Rieutord and S. Tucci XX:15

We show, however, that certain such objects can be implemented from L-ADT objects.85

As L-ADTs are naturally composable, the resulting implementations can be seen as using a86

single (composed) L-ADT object. By using a reconfigurable version of this L-ADT object,87

we obtain a reconfigurable version of the implemented type. In our implementations we88

omit talking about reconfigurations explicitly: to perform an operation on the configuration89

component of the system state, a process simply proposes it to the underlying RLA (see,90

e.g., Figure 3).91

Our examples are atomic snapshots [1] and commit-adopt [17].92

Atomic snapshots93

An m-sized atomic-snapshot memory maintains an array of m positions and exports two94

operations, updatepi, vq, where i P t1, . . . ,mu is a location in the array and v P V—the value95

to be written, that returns a predefined value ok and snapshotpq that returns an m-vector96

of elements in V . Its sequential specification stipulates that every snapshotpq operation97

returns a vector that contains, in each index i P t1, . . . ,mu, the value of the last preceding98

update operation on the ith position (or a predefined initial value, if there is no such update99

operation).100

Registers using MRNˆV . We first consider the special case of a single register (1-sized101

atomic snapshot). We describe its implementation from a max-register, assuming that the102

set of values V is totally-ordered with relation ďV . Let ďreg be a total order on N ˆ V103

(defined lexicographically, first on ď and then, in case of equality, on ďV). Let MR be a104

max-register defined on ďreg.105

The idea is to associate each written value val with a sequence number seq and to store106

them in MR as a tuple pseq, valq. To execute an operation updatepvq, the process first reads107

MR to get the “maximal” sequence number s written toMR so far. Then it writes ps`1, vq108

back to MR. Notice that multiple processes may concurrently use s ` 1 in their update109

operations. Ties are then broken by choosing the maximal value in the second component in110

the tuple. However, it is guaranteed that s`1 will be larger than the sequence number used111

by any preceding update operation. A snapshot operation simply reads MR and returns the112

value in the tuple.113

Using any reconfigurable linearizable implementation of MR (Theorem 6), we obtain114

a reconfigurable implementation of an atomic (linearizable) register. Intuitively, all values115

returned by snapshot (read) operations on MR can be totally ordered based on the corre-116

sponding sequence numbers (ties broken using ďV), which gives the order of reads in the117

corresponding sequential history S.118

Let updatepvq be an operation such that (1) it writes tuple ps, vq to MR and (2) some119

read operation returned v after reading ps, vq in MR. We then insert this update operation120

in the sequential history S just before the first such read operation (if there are multiple121

such update operations, they can be inserted in a batch). Each remaining complete update122

operation is inserted either just before the first update in the history with a greater couple123

of sequence number and value or (if no such update exists) at the end of the history.124

By construction, S is legal: every read returns the value of the last preceding write.125

Moreover, as only concurrent updates can use the same sequence number and the snapshot126

operations are ordered respecting the sequence numbers, S complies with the real-time127

precedence of the original history. We delegate the complete proof to the more general case128

of an m-sized snapshot.129

Atomic snapshots. Our implementation of an m-sized atomic snapshot (described in130

XX:16 Reconfigurable Lattice Agreement and Applications

operation updatepi, vq { update register i with v }
1 ps,´q :“ MRsetris.readMax
2 MRsetris.writeMaxpps` 1, vqq

operation snapshotpq
3 r :“ MRset.readAll
4 return snap with @i P t1, . . . ,mu, rris “ p´, snaprisq

Figure 4 Simulation of an m-component atomic snapshot using an L-ADT.

Figure 4) is a straightforward generalization of the register implementation above. Consider131

the L-ADT defined as the product of m max-register L-ADTs. In particular, the partial132

order of the L-ADT is the product of m (total) orders ďsnap: ďreg1 ˆ ¨ ¨ ¨ˆ ďregm .133

We also enrich the interface of the type with a new query operation readAll that returns134

the vector of m values found in the m max-register components. Notice that the resulting135

type is still an update-query L-ADT, as its (per-component) updates are commutative.136

By Theorem 6, we can use a reconfigurable linearizable implementation of this type, let137

us denote it by MRset.138

Now to execute updatepv, iq on the implemented atomic snapshot, a process performs a139

read on the ith component of MRset to get sequence number s of the returned tuple and140

perfroms writeMaxpps ` 1, vqq on the ith component. To execute a snapshot, the process141

performs readAll on MR and returns the array of the second elements in the tuples of the142

returned array.143

Similarly to the case of a single register, the results of all snapshot operations can be144

totally ordered using the ďsnap order on the vectors returned by the corresponding readAll145

calls. Placing the matching update operation accordingly, we get an equivalent sequential146

that respects the specification of atomic snapshot.147

§ Theorem 8. Algorithm in Figure 4 implements an m-component MWMR atomic snapshot4

object.5

The Commit-Adopt Abstraction6

Let us take a more elaborated example, the commit-adopt abstraction [17]. It is defined7

through a single operation proposepvq, where v belongs to some input domain V . The8

operation returns a couple pflag, vq with v P V and flag P tcommit, adoptu, so that the9

following conditions are satisfied:10

Validity: If a process returns p_, vq, then v is the input of some process.11

Convergence: If all inputs are v, then all outputs are pcommit, vq.12

Agreement: If a process returns pcommit, vq, then all outputs must be of type p_, vq.13

We assume here that V , the set of values that can be proposed to the commit-adopt14

abstraction, is totally ordered. The assumption can be relaxed at the cost of a slighly more15

complicated algorithm.16

Our implementation of (reconfigurable) commit-adopt uses a conflict-detector object17

CD (used to detect distinct proposals), a max-register MRV (used to write non-conflicting18

proposals), and an abort flag object AF.19

Our commit-adopt implementation is presented in Figure 5. In its propose operation,20

a process first accesses the conflict-detector object CD (line 1). Intuitively, the conflict21

detector makes sure that committing processes share a common proposal.22

P. Kuznetsov, T. Rieutord and S. Tucci XX:17

operation proposepvq
1 if CD.checkpvq “ false then { check conflicts }
2 MRV .writeMaxpvq
3 if AF.check “ J then return padopt, vq { adopt the input }
4 else return pcommit, vq { commit proposal }
5 else { Try to abort in case of conflict }
6 AF.abort { raise abort flag }
7 val :“ MRV .readMax
8 if val “ K then return padopt, vq { adopt the input }
9 else return padopt, valq { adopt the possibly committed value }

Figure 5 Commit-adopt implementation using L-ADTs.

If the object returns false (no conflict detected), the process writes its proposal in the23

max-register MRV (line 2) and then checks the abort flag AF. If the check operation returns24

K, then the proposed value is returned with the commit flag (line 4). Otherwise, the smae25

value is returned with the adopt flag (line 3).26

If a conflict is detected (CD returns true), then the process executes the abort operation27

on AF (line 6). Then the process reads the max-register. If a non-K value is read (some28

value has been previously written to MR), the process adopts that value (line 9). Otherwise,29

the process adopts its own proposed value (line 8).30

§ Theorem 9. Algorithm in Figure 5 implements commit-abort.9

Proof. The Validity property is trivially satisfied as processes return either their own pro-10

posal or the proposal of another process found in the max-register MRV .11

To prove Convergence, consider an execution in which all processes share the same input12

v. The conflict detector must return false to processes since it is accessed with a unique13

input. As no conflict is observed, no process could have called an abort operation on AF,14

and hence, the check operations on AF can only return K. Therefore all processes return15

with pcommit, vq.16

To prove Agreement, suppose, by contradiction, that the algorithm has an execution in17

which process p commits value v (line 4) and process q adopts or commits value v1 ‰ v (in18

lines 4, 8 or 9).19

We observe first that q cannot return in line 4, as otherwise the conflict detector would20

return false to p or q. For the same reason no value other than v could have been written to21

MTV in this execution. Also, q must have completed line 6 before p checked AF in line 3,22

as otherwise p would not be able to commit v in line 4. Thus, q reads MRV (line 7) after23

p has written v in it (line 2). Hence, q must have adopted the value read in MRV (line 9),24

and this value must have been v—a contradiction. đ25

The Safe-Agreement Abstraction26

Another popular shared-memory abstraction is safe agreement [10]. It is defined through27

a single operation proposepvq, v P V (we assume that V is totally ordered). The operation28

returns a value v P V or a special value K R V , so that the following conditions are satisfied:29

Validity: Every non-K output has been previously proposed.30

Agreement: All non-K outputs are identical.31

Non-triviality: If all participating processes return, then at least one returns a non-K32

value.33

XX:18 Reconfigurable Lattice Agreement and Applications

operation proposepvq
1 In.addSetpidq { enter the doorway }
2 if MRV .readMax “ K then MRV .writeMaxpvq { write proposal if empty }
3 Out.addSetpidq { exit the doorway }
4 outSet :“ Out.readSet
5 inSet :“ In.readSet
6 if inSet “ outSet then return MRV .readMax { no process in doorway }
7 else return K

Figure 6 Safe-agreement implementation using L-ADTs for process with identifier id.

Our implementation of safe agreement (Figure 6) uses two (add-only) sets denoted In34

and Out (Section 6) and a max-register MRV .35

The propose operation consists of two phases. In the first phase (lines 1-3) that we call36

the doorway protocol, the process add its identifier to In. Then the process reads MRV . If37

K is read, then the process writes its proposal to the max-register, and adds its identifier to38

the Out set.39

In the second phase (lines 4-7), the process first reads Out and then—In. If the two sets40

match, then the process reads the max-register again and return the read value. Otherwise,41

the special value K is returned.42

Intuitively, the processes use the doorway protocol to ensure that only the first set of43

concurrently participating processes may write a value in the max-register. The second phase44

of the algorithm checks if there still can be processes poised to write to the max-register,45

and return the value of the max-register only if it is not the case.46

§ Theorem 10. Algorithm in Figure 6 implements safe agreement.7

Proof. The Validity property is trivially satisfied, as any non-K returned value must have8

been read in the max-register (line 6). As a process can read the max-register only after it9

has written its input in it (line 2), every such value must be an input value of some process.10

To prove Agreement, consider, by contradiction, an execution in which two processes,11

p and q, return different non-K values . Let p be the first process to read MRV in line 6.12

Thus, the max-register MRV has been written after it has been read (in line 6) by p and13

before it has been read (in line 6) by q. Let s be the process that performed the first such14

write.15

Notice that before writing its input in MRV , s must have read K in it (line 2). Moreover,16

it must have executed line 2 before p has finished its doorway: otherwise s would find in17

MRV the value written by p or an earlier written value. Thus, s has already added itself to18

the set In when p reads it in line 5. Furthermore, s is still in its doorway at the moment19

when p reads MRV in line 6. In particular, s has not yet added itself to the set Out at that20

moment.21

Thus, when p reaches line 6 its local variables inSet and outSet are not equal. Hence, p22

cannot return in line 6—a contradiction.23

To prove Non-triviality, assume that all participating processes return and let p be the24

last process to write to the Out set. By that moment, all participating processes appear25

both in In and Out. Thus, p must return the value read in MRV (line 6), which is non-K,26

as p has ensured before that (line 2). đ27

P. Kuznetsov, T. Rieutord and S. Tucci XX:19

8 Related Work28

Lattice agreement. Attiya et al. [8] introduced the (one-shot) lattice agreement abstrac-29

tion and, in the shared-memory context, described a wait-free reduction of lattice agreement30

to atomic snapshot. Falerio et al. [15] introduced the long-lived version of lattice agreement31

(adopted in this paper) and described an asynchronous message-passing implementation of32

lattice agreement assuming a majority of correct processes, with Opnq time complexity (in33

terms of message delays) in a system of n processes. Our RLA implementation in Section 534

builds upon this algorithm.35

CRDT. Conflict-free replicated data types (CRDT) were introduced by Shapiro et al. [28]36

for eventually synchronous replicated services. The types are defined using the language of37

join semi-lattices and assume that type operations are partitioned in updates and queries.38

Falerio et al. [15] describe a “universal” construction of a linearizable CRDT from lattice39

agreement. Skrzypczak et al. [29] argue that avoiding consensus in such constructions may40

bring performance gains. In this paper, we considered a more general class of types (L-ADT)41

that are “state-commutative” but not necessarily “update-query” and leveraged the recently42

introduced criterion of interval-linearizability [12] for reconfigurable implementations of L-43

ADTs using RLA.44

Reconfiguration. Passive reconfiguration [7, 9] assumes that replicas enter and leave the45

system under an explicit churn model: if the churn assumptions are violated, consistency46

is not guaranteed. In the active reconfiguration model, processes explicitly propose config-47

uration updates, e.g., sets of new process members. Early proposal, such as RAMBO [20]48

focused on read-write storage services and used consensus to ensure that the clients agree49

on the evolution of configurations.50

Asynchronous reconfiguration. Dynastore [2] was the first solution emulating a recon-51

figurable atomic read/write register without consensus: clients can asynchronously propose52

incremental additions or removals to the system configuration. Since proposals commute,53

concurrent proposals are collected together without the need of deciding on a total order.54

Assuming n proposals, a Dynastore client might, in the worst case, go through 2n´1 candiate55

configurations before converging to a final one. Assuming a run with a total number of56

configurations m, complexity is Opminpmn, 2nqq.57

SmartMerge [23] allows for reconfiguring not only the system membership but also its58

quorum system, excluding possible undesirable configurations. SmartMerge brings an in-59

teresting idea of using an external reconfiguration service based on lattice agreement [15],60

which allows us to reduce the number of traversed configurations to Opnq. However, this so-61

lution assumes that this “reconfiguration lattice” is always available and non-reconfigurable62

(as we showed in this paper, lattice agreement is a powerful tool that can itself be used to63

implement a large variety of objects).64

Gafni and Malkhi [18] proposed the parsimonious speculative snapshot task based on the65

commit-adopt abstraction [17]. Reconfiguration, built on top of the proposed abstraction,66

has complexity Opn2q: n for the traversal and n for the complexity of the parsimonious67

speculative snapshot implementation. Spiegelman, Keidar and Malkhi [30] improved this68

work by proposing a solution with time complexity Opnq by obtaining an amortized (per69

process) time complexity Op1q for speculative snapshots operations.70

XX:20 Reconfigurable Lattice Agreement and Applications

9 Concluding Remarks71

To conclude, let us briefly discuss the complexity of our solution to the reconfiguration72

problem and overview how our solution could be further extended.73

Round-trip complexity. The main complexity metric considered in the literature is the74

maximal number of communication round-trips needeed to complete a reconfiguration when75

n operations are concurrently proposed. In our solution, each time a round of requests76

is completed, a new input state was discovered to modify Tp or objp, hence we have at77

most n round-trips. Note that a round of requests might be interupted by receiving a78

greater committed state, at most n times as committed states are totally ordered joins of79

input states. The only other optimal solution with a linear round-trip complexity is from80

Spiegelman et al. [30]. In their solution the maximal number of round-trips is at least 4n,81

that is twice than us. This has to do with the use of a shared memory simulation preventing82

to read and a write at the same time and preventing from sending requests to distinct83

configurations in parallel.84

It is true that querying multiple configurations at the same time might increase the85

round-trip delay as we need to wait for more responses. Still, we believe that when the86

number of requests scales with a constant factor, this impact is negligeable.87

Message complexity. The second metric that is studied in the literature is the number88

and size of the exchanges messages. In our protocol as in other solutions, messages are of89

linear size either for the distinct proposed configurations or the use of collect operations on90

the simulated memories.91

The number of exchanged messages by our protocol may however greatly vary with the92

configuration object that is implemented. With at most k members per configuration, each93

client may send at most k ˚ 2n messages per round as there is an exponential number of94

potential configuration to query. But this upper bound may be reached only if joins of95

proposed configurations do not share any replica. However, defining such configuration96

objects does not make much sense. In our example replicas may be added or removed, the97

one used in particular in most proposed solutions, clients may send at most k`∆˚n requests98

per round, where ∆ the maximal number of replica added per proposal. In this case, the99

number of requests is comparable with k, the number of messages send to query a single100

configuration as done for solution based on a shared memory simulation.101

An interesting question is whether we can construct a composite complexity metric that102

combines the number of messages a process sends and the time it takes to complete a propose103

operation. Indeed, one may try to find a trade-off between accessing few configurations104

sequentially versus accessing many configurations in parallel.105

Optimizations. If the cost of querying many configurations in parallel outweigh the cost106

of contacting fewer configurations sequentially, one can proceed to a reconfigurable lattice107

agreement based on the methodology from [30]. Intuitively, it would consists in solving a108

generalized lattice agreement on the current configuration before switching the used configu-109

ration while using a carefully designed tracking mechanism of potentially used configurations.110

A lighter modification to the RLA protocol may consists in leveraging timing constraints111

to wait for responses during a delay sufficient to obtain most responses, while waiting for112

responses from quorums only when no new information is received and an operation may113

return. Such modification may yield a great efficiency gain in practice as clients should be114

less constrained by slow responses while increasing the number of distinct inputs expected115

to discover per round.116

Improvements can also be made for implemented objects when its lattice is well struc-117

P. Kuznetsov, T. Rieutord and S. Tucci XX:21

tured. A pertinent example is the fully ordered lattice states of max registers. For them,118

processes can directly return the state stored in LearnLB in line 11. Indeed, not returning119

a committed states might only violate the consistency property. But if states are totally120

ordered, then the consistency property is necessarily verified. Such a modification would121

yield to operations in a single round-trip when no reconfiguration occurs. Hence, it might122

be interesting to further investigate how the lattice structure might be leveraged in general.123

References124

1 Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots of125

shared memory. J. ACM, 40(4):873–890, 1993.126

2 M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer. Dynamic atomic storage without127

consensus. J. ACM, 58(2):7:1–7:32, 2011.128

3 E. Alchieri, A. Bessani, F. Greve, and J. da Silva Fraga. Efficient and modular consensus-129

free reconfiguration for fault-tolerant storage. In 21st International Conference on Princi-130

ples of Distributed Systems, OPODIS 2017, Lisbon, Portugal, December 18-20, 2017, pages131

26:1–26:17, 2017.132

4 J. Aspnes, H. Attiya, and K. Censor. Max registers, counters, and monotone circuits. In133

ACM Symposium on Principles of Distributed Computing, PODC, pages 36–45, 2009.134

5 J. Aspnes and F. Ellen. Tight bounds for adopt-commit objects. Theory of Computing135

Systems, 55(3):451–474, Oct 2014.136

6 H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message passing systems.137

J. ACM, 42(2):124–142, Jan. 1995.138

7 H. Attiya, H. C. Chung, F. Ellen, S. Kumar, and J. L. Welch. Emulating a shared register139

in a system that never stops changing. IEEE Trans. Parallel Distrib. Syst., 30(3):544–559,140

2019.141

8 H. Attiya, M. Herlihy, and O. Rachman. Atomic snapshots using lattice agreement. Dis-142

tributed Computing, 8(3):121–132, 1995.143

9 R. Baldoni, S. Bonomi, A. Kermarrec, and M. Raynal. Implementing a register in a dynamic144

distributed system. In ICDCS, pages 639–647, 2009.145

10 P. Berman and A. A. Bharali. Quick atomic broadcast. pages 189–203. 93.146

11 C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to reliable and secure distributed147

programming. Springer Science & Business Media, 2011.148

12 A. Castañeda, S. Rajsbaum, and M. Raynal. Unifying concurrent objects and distributed149

tasks: Interval-linearizability. J. ACM, 65(6):45:1–45:42, 2018.150

13 M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive recovery. ACM151

Transactions on Computer Systems (TOCS), 20(4):398–461, Nov. 2002.152

14 G. V. Chockler, R. Guerraoui, I. Keidar, and M. Vukolic. Reliable distributed storage.153

IEEE Computer, 42(4):60–67, 2009.154

15 J. Faleiro, S. Rajamani, K. Rajan, G. Ramalingam, and K. Vaswani. Generalized lattice155

agreement. In PODC, pages 125–134, 2012.156

16 M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus157

with one faulty process. J. ACM, 32(2):374–382, Apr. 1985.158

17 E. Gafni. Round-by-round fault detectors (extended abstract): Unifying synchrony and159

asynchrony. In PODC, 1998.160

18 E. Gafni and D. Malkhi. Elastic configuration maintenance via a parsimonious speculating161

snapshot solution. In DISC, pages 140–153, 2015.162

19 D. K. Gifford. Weighted voting for replicated data. In SOSP, pages 150–162, 1979.163

20 S. Gilbert, N. A. Lynch, and A. A. Shvartsman. Rambo: a robust, reconfigurable atomic164

memory service for dynamic networks. Distributed Computing, 23(4):225–272, 2010.165

XX:22 Reconfigurable Lattice Agreement and Applications

21 M. Herlihy. Wait-free synchronization. ACM Trans. Prog. Lang. Syst., 13(1):123–149, 1991.166

22 M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.167

ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.168

23 L. Jehl, R. Vitenberg, and H. Meling. Smartmerge: A new approach to reconfiguration for169

atomic storage. In DISC, pages 154–169, 2015.170

24 L. Lamport. The Part-Time parliament. ACM Transactions on Computer Systems,171

16(2):133–169, May 1998.172

25 L. Lamport, D. Malkhi, and L. Zhou. Reconfiguring a state machine. SIGACT News,173

41(1):63–73, 2010.174

26 M. Perrin. Concurrency and consistency. In Distributed Systems. Elsevier, 2017.175

27 F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A176

tutorial. ACM Computing Surveys, 22(4):299–319, Dec. 1990.177

28 M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski. Conflict-free replicated data178

types. In SSS, pages 386–400, 2011.179

29 J. Skrzypczak, F. Schintke, and T. Schütt. Linearizable state machine replication of state-180

based crdts without logs. CoRR, abs/1905.08733, 2019.181

30 A. Spiegelman, I. Keidar, and D. Malkhi. Dynamic reconfiguration: Abstraction and182

optimal asynchronous solution. In DISC, pages 40:1–40:15, 2017.183

	Introduction
	Definitions
	Lattice Abstract Data Type
	Reconfigurable lattice agreement: definition
	Reconfigurable lattice agreement: implementation
	Reconfigurable objects
	Defining and implementing reconfigurable L-ADTs
	L-ADT examples

	Applications
	Related Work
	Concluding Remarks

