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Abstract  
This paper describes the methodology we have developed to define a sampling strategy 
adapted to operational constraints in order to characterize the dihydrogen flow rate of 2714 

nuclear waste drums produced by radiolysis reaction of organic mixed with -emitters. The 
objective was to perform few but relevant measurements. Thus, a sample of only 38 drums 
has been selected to be measured. Statistical analysis of drum measurement data of 
dihydrogen rate provided an estimation of the mean and the upper bound of the physical 
quantity of interest which gave a good convergence with global measurements from the 
ventilation system of the facility. Thereafter, performing a factorial data analysis has 
demonstrated the representativeness of the measurement data set and the sampling 
strategy assumption validity. Moreover, it provided information that has been used for a 
regression analysis to develop a linear prediction model of dihydrogen flow rate production 
for the waste drum characterization. 
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1. Introduction  

Some categories of radioactive waste drums may produce hydrogen gas because of the 

radiolysis reaction of organic matter like PVC, Polyethylene or cellulose mixed with -
emitters in the waste. The evaluation of the hydrogen flow rate produced by radioactive 
waste drums is required for their disposal in final waste repositories. However, considering 
the time required for the H2 flow rate measurement of only one drum (more than one month) 
and the need to characterize the population of 2714 drums (on the CEA center of 
Cadarache), only a small sample can be measured. Therefore, it is necessary to develop a 
statistical sampling strategy to select a drum set of “reasonable” size that would be 
representative of the whole population.  

This paper describes the methodology used to define a sampling strategy adapted to the 
operational constraints of the facility and to analyze the drum measurement data of H2 rate 
completed by the validation of the sampling strategy hypotheses. The following section 
presents the sampling strategy performed to identify a representative set of drums to 
measure and the analysis of the measurement data to estimate statistical indicators of the 
quantity of interest, the drum H2 flow rate. The third section is dedicated to the validation of 
the sampling strategy hypothesis and finally, a regression analysis has been performed on 
the measurement data in order to develop a predictive model of drum H2 production.  

 

2. Sampling strategy and statistical analysis 

The need to characterize annual H2 production of this drum population corresponds in 
practice to an objective of upper bound estimation. In this context, the Wilks method has 
been selected. 
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2.1. Wilks method 

The Wilks method has been introduced in the nuclear engineering community by the German 
nuclear safety institute (GRS) at the beginning of the 1990s (Hoffer 1993), and then used for 
various safety assessment problems. This method (Wilks 1941) based on order statistics 
allows the user to precisely determine the required sample size in order to estimate, for a 
random variable, a quantile1 of order   with confidence level  . The great interest of this 
method (Wilks 1941; Blatman 2017) is its robustness and that no hypothesis is required. 

We restrict our explanation below to the one-sided case. Suppose we have an i.i.d. 
(independent identically distributed)  -sample            drawn from a random variable  . 

We note           . For   to be an upper bound for at least        of possible values of 
  with given confidence level  , we require 
 

               (Eq. 1). 

The Wilks formula stands that the sample size   must therefore satisfy the following 
inequality: 

          (Eq. 2) 

 

  0.9 0.9 0.9 0.95 0.95 0.95 0.95 0.99 0.99 
  0.5 0.9 0.95 0.4 0.5 0.78 0.95 0.95 0.99 
  7 22 29 10 14 30 59 299 459 

Table 1 : Examples of values given in the first-order case by Wilks formula. 

In Table 1, we present several consistent combinations of the sample size n, the quantile 
order   and the confidence level  . For example, to have an estimation of the median (0.5-
quantile) with a level of confidence of 90%, the Wilks formula requires a sample of size 5 and 
the corresponding Wilks first-order 0.5-quantile should be the maximum of the sample. 

The equation (Eq. 1) is a first order equation because the upper bound is set equal to the 

maximum value of the sample. To extend Wilks formula to higher orders, we consider the  -
sample of the random variable   sorted into the increasing order:                  

      . For all      , we set 

                    (Eq. 3). 

According to the Wilks formula, the previous equation can be recast as 

        
            

        (Eq. 4). 

 
The value      is an upper-bound of the  -quantile with confidence level   if         . 

Increasing the order of Wilks formula helps reduce the variance in the quantile estimator, the 
price being the requirement of a larger   (according to formula         ). This Wilks 
formula can be used in two ways: when the goal is to determine the sample size required to 
estimate a   -quantile with a given confidence level  ; when a sample size is already 

available, then the wilks formula can be used to determine the couple       and the order for 
the estimation of the Wilks quantile. 

2.2. Application to estimate an upper bound of the H2 production 

                                                 
1
    is a  -quantile of the random variable  , if          , which means    is the value for which   

proportion of the population is lower. 



 

Our target is to determine an upper bound of the H2 production for the PEGASE facility 
drums which has been set to a     quantile.  Therefore, with the Wilks method, the required 

sample measurement size to estimate a     quantile for the studied population of drums 
with a level of confidence of     is 38. Nevertheless, as the measurement cost and 
operation constraint are important, it has been decided to use as far as possible available 
measurements of 15 repackaged drums but with the necessity to have a representative 
sample of the whole population. The sample drum selection is performed according to two 
quantitative (Pu quantity and the production date) and two qualitative drum parameters 
(origin and spectrum) considered by expert judgement as the more relevant from the 17 
characterising the studied population of drums. Therefore, we use a method consisting in a 
random selection associated to a relevant parameter representativeness validation with 
statistical tests (Kolmogorov-Smirnov, Ansari-Bradley) for the numerical characteristics and 
the use of multinomial and binomial distribution laws to represent the qualitative 
characteristic occurrence in the whole drum population of PEGASE facility (Pérot 2010). The 
origin parameter/variable is modeled by a multinomial distribution law and the spectrum 
variable is modeled by binomial distribution law. In both case, the law parameters are fitted 
on the data of the whole drum population. Statistical tests are used to evaluate for each 
modality of each qualitative variable, if the proportion of occurrence in the random sample is 
representative of the whole population. If not (for quantitative or qualitative variables), a new 
random sample is selected. 
Thus a sample of 38 drums has are identified including 15 available drum measurements 
and with only 23 drums to measure. The summary statistics estimated with the H2 flow rate 
data are the following (the unity is l/year): mean        , median = 1.43, standard deviation 

       , Min = 0.02, Max = 13.97. Figure 1 presents measurement data dispersion on a 
histogram and a boxplot which seems to be closed to a lognormal distribution in the central 
part. 

We can directly estimate the 95%-quantile from the log-normal theoretical distribution that 
has been fitted,               : 

                      

However, due to the small number of data that served to fit the probabilistic density function, 
little confidence can be accorded to this value, and justifying it to safety authorities could be 
difficult. Moreover, the log-normal distribution is rejected by the Shapiro-Wilks adequacy test 
(the most robust test for small sample size) with the threshold 5%. 

A Wilks unilateral second-order  -quantile with a confidence level  , is deduced from 
equation (Eq. 4) and we obtain the following solution for                :  

    
          

                   

 



 

 
Figure 1 : Boxplot (left), histogram and smoothed-kernel density function (right) of the 38 

hydrogen flow rates. 

The statistical analysis of the sample measurement data provides estimations of mean and 
90%-quantile for H2 flow rate for an equivalent standard drum (corresponding to 4.5 times the 
quantity of interest for a primary drum). This estimation is lower than the target threshold of 
10 l/year/drum and presents a good convergence using a global measurement from the 

ventilation system of the facility (Pérot 2010). The sampling strategy (Pérot N. & al  2018), 
presented in this section is based on the Wilks method to determine the size of the drums to 
measure and the use of statistical tests to validate the representativeness of the 
measurement data according to relevant parameters. The aim of the following part is to 
confirm that the hypothesis used to guide the sampling strategy are valid.    

 

3. Validation of sampling strategy hypothesis and regression analysis 

3.1. Factorial analysis and validation of sampling strategy hypothesis 

The sampling strategy performed to estimate upper bounds of H2 flow rate of the drum 
population is based on a sampling strategy according to 4 parameters considered as 
relevant. The question is to validate this hypotheses provided by expert judgement. For this 
purpose, a factorial analysis for mixed data (FAMD) (Saporta 1990; Pagès 2014) is 
implemented on the 38 data of the measurement sample completed by a hierarchical cluster 
analysis. FAMD method is a combination of a principal component analysis (PCA) for 
quantitative data and a multiple correspondence factorial analysis (MCA) for qualitative data. 

PCA is a statistical method that use an orthogonal transformation to convert a set of 
numerical observations of possibly correlated variables into a set of values of linearly 
uncorrelated variables called principal components. The visualization of the projection of the 
values of the studied variables on the principal components gives information on the 
existence of linear multiple correlations on these variables.  

MCA method is a data analysis technique that can be considered as a counterpart of PCA for 
qualitative (categorical) data. 

Figure 2 presents the correlation circle for the two first components of the principal 
component analysis (PCA) on which the drum quantitative parameters have been projected. 
These two components explain almost 60% of the data variability and the correlation circle 
highlights. In particular, as expected, we can see a strong multiple correlation for Nuclear 
material, Mass of 239Pu, Mass of 239Pu and 241Pu, Mass of 241Pu and Mass of Pu on the 
one hand and another one for Contact dose rate, Dose rate at 1m, Total mas of U and Pu, 
Mass of depleted U on the other. Figure 3 presents the results of the analysis for the 



 

qualitative variable, the modalities have been projected on the two first components and 
shows the proximity of the first modality of the variable origin and the first modality of the 
variable spectrum. 

 

Figure 2: Correlation circle of the CPA on quantitative data for the two first components. 

A hierarchical cluster analysis is performed on the first component; the results presented on 
Figure 4 provide 5 clusters with the characteristics detailed in Table 2. For quantitative 
parameters/variables (resp. qualitative), correlation are the squared correlations (resp. the 
correlation ratios) with the first principal component (the cluster center). We can observe that 
the 4 given relevant initial parameters (from expert judgement) are finally cluster 
representative although Year of production and origin are in the same cluster. Nevertheless, 
two clusters are not taken into account; one should be represented by the parameter Mass of 
depleted U and the cluster containing Mass of Unat and the specific information parameter 
Classification is not significant considering the correlation values of 0.65. As for the other 
quantitative criteria, we have performed statistical tests to validate the representativeness of 
the 38 data selection for the criteria Mass of depleted U. 

An FAMD performed on the entire population of drums provides the same results and 
contribute to validate the representativeness of the data selection.  

 



 

 

Figure 3: Representation of the qualitative variable modalities on the two first components of 
the FADM analysis. 

 

Figure 4: Clusters resulting from the hierarchical clustering analysis performed on the 
sample of 38 measurement data. 

 

 

Table 2: Description of the clusters provided by the hierarchical cluster analysis. 

Parameter Correlation Parameter Correlation Parameter Correlation Parameter Correlation Parameter Correlation

Date of 

production
0.67

Proportion of fissile 

material
0.86 Total Mass U and Pu 0.91 Mass of Pu 0.97 Mass of Unat 0.65

Mass of 235U 0.31 Spectre 0.86 Mass of depleted U 0.83 Mass of 239Pu and 241Pu0.98 Classification 0.65

Origin 0.58 Contact dose rate 0.95 Mass of 239Pu 0.98

Drum weight 0.23 Dose rate at 1m 0.95 Nuclear material 0.98

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5



 

3.2. Regression analysis 

Both qualitative parameters “origin” (3 modalities) and “spectrum” (2 modalities) used for the 
sampling strategy and the clustering analysis provides 5 main clusters (some combination 
are not realistic), and for each of them, it could be developed a prediction model for the H2 
flow rate production. Nevertheless, the size of these clusters is very different in the 
measurement sample. Indeed, there are 22 data for the cluster corresponding to the origin 
“O1” and the spectrum “S1” but there are only 7 data for the cluster corresponding to the 
origin “O2” and the spectrum “S1”. The other clusters are even smaller. For a robust and 
reliable regression analysis, the studied sample has to be of sufficient size.  

A regression analysis is performed on the cluster “O1-S1” (which corresponds to the closest 
modalities highlighted by the FADM analysis in the previous section) with 22 data. A general 
linear model regression with the elastic net regularization method (Zou & al. 20015) is 
performed that combines the L1 and L2 penalties of the Lasso and Ridge methods to reduce 
the number of terms in the regression model and identify the important terms or predictors. 
This method treats the redundant terms and produces estimates with potentially lower 
predictive errors than ordinary least squares. The study used glmnet R package. 

Therefore, performing this regression method, we obtain a linear model with 4 parameters 
(Production date, Mass of depleted U, Mass of 235U and Mass of Pu) which represent the 4 
main clusters provided by the hierarchical cluster analysis: 

   
                                         

 

                                             (Eq. 5) 

The determination coefficient          and the adjusted determination coefficient (which 

take into account the number of data and the number of model terms)    
       are not 

close to 1 and do not help to validate the model. Moreover, the quantile-quantile graph of 
Figure 5 which represents the plot of the theoretical model quantiles against the data 
empirical quantiles does not show a good adequacy of the model (Eq. 5) for a high quantile 
represented by the 37th data that could be an outlier or a misinformed data. In order to 
improve the model of H2 production rate prediction, the regression is performed on the data 
of cluster “O1-S1” without the 37th data. 

 

Figure 5: Quantile-quantile graph of the model (Eq. 5) versus the measurement data for the 
cluster “O1-S1” (global on the left and without the higher quantile on the right). 



 

 

 

We obtain the following linear model: 

   
                                          

 

                                               (Eq. 6) 

The determination coefficient          and the adjusted determination coefficient   
  

     for the model (Eq. 6) are closer to 1 than for the model (Eq. 5) and contribute to 
validate this model. Moreover, the quantile-quantile graph of Figure 6 shows a better 
adequacy for the central quantiles than for the previous model. 

 

Figure 6: Quantile-quantile graph of the model (Eq. 6) versus the measurement data for the 
cluster “O1-S1” without the 37th data (global on the left and without the higher quantile on the 

right). 

This model (Eq. 6) is then used to provide confidence intervals of H2 flow rate production for 
the1462 drums of the studied cluster “O1-S1” in the whole population and the following 
confidence intervals of level 95% and 90% are estimated: 

  
                         for the drum with the higher predicted H2 production rate, 

   
                        for the drum with the higher predicted H2 production rate. 

The estimation of the predicted H2 production rate for this drum is              . 

 

4. Conclusion  

We have presented here a methodology of sampling strategy to select a small sample to be 
measured in order to provide estimations of the mean and the upper bound of a physical 
quantity of interest. The results of the statistical analysis give a good convergence with global 
measurements from the ventilation system of the facility. Thereafter, performing a factorial 
data analysis demonstrates and completes the sampling strategy assumption validity 
(assumptions derived from expert judgement)  and provides information that are used for a 
regression analysis to develop a linear prediction model of dihydrogen flow rate production 
for the waste drum characterization of the studied facility. 

This approach has demonstrated its value, so it is currently performed in order to 
characterize other physical quantities for waste drums on several CEA facilities. 
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