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ABSTRACT

Context. The traditional approximation of rotation (TAR) is a treatment of the dynamical equations of rotating and stably stratified
fluids in which the action of the Coriolis acceleration along the direction of the entropy (and chemicals) stratification is neglected,
while assuming that the fluid motions are mostly horizontal because of their inhibition in the vertical direction by the buoyancy force.
This leads to the neglect of the horizontal projection of the rotation vector in the equations for the dynamics of gravito-inertial waves
(GIWs) that become separable, such as in the non-rotating case, while they are not separable in the case in which the full Coriolis
acceleration is taken into account. This approximation, first introduced in geophysical fluid dynamics for thin atmospheres and oceans,
has been broadly applied in stellar (and planetary) astrophysics to study low-frequency GIWs that have short vertical wavelengths.
The appoximation is now being tested thanks to direct 2D oscillation codes, which constrain its domain of validity. The mathematical
flexibility of this treatment allows us to explore broad parameter spaces and to perform detailed seismic modelling of stars.
Aims. The TAR treatment is built on the assumptions that the star is spherical (i.e. its centrifugal deformation is neglected) and
uniformly rotating while an adiabatic treatment of the dynamics of the waves is adopted. In addition, their induced gravitational
potential fluctuations is neglected. However, it has been recently generalised with including the effects of a differential rotation.
We aim to carry out a new generalisation that takes into account the centrifugal acceleration in the case of deformed stars that are
moderately and uniformly rotating.
Methods. We construct an analytical expansion of the equations for the dynamics of GIWs in a spheroidal coordinates system by
assuming the hierarchies of frequencies and amplitudes of the velocity components adopted within TAR in the spherical case.
Results. We derive the complete set of equations that generalises TAR by taking the centrifugal acceleration into account. As in the
case of a differentially rotating spherical star, the problem becomes 2D but can be treated analytically if we assume the anelastic and
JWKB approximations, which are relevant for low-frequency GIWs. This allows us to derive a generalised Laplace tidal equation
for the horizontal eigenfunctions and asymptotic wave periods, which can be used to probe the structure and dynamics of rotating
deformed stars thanks to asteroseismology. A first numerical exploration of its eigenvalues and horizontal eigenfunctions shows their
variation as a function of the pseudo-radius for different rotation rates and frequencies and the development of avoided crossings.
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1. Introduction

The traditional approximation of rotation (TAR) was first intro-
duced to study the dynamics of the shallow Earth atmosphere
and oceans (e.g. Eckart 1960; Gerkema et al. 2008; Zeitlin
2018). In particular, it is broadly used for the understanding
of the propagation of waves in stably stratified (in entropy and
chemical composition) and rotating atmospheric and oceanic
layers. There, inertia-gravity waves, which are often called
gravito-inertial waves (GIWs) in stellar physics (e.g. Dintrans
et al. 1999), propagate under the combined action of buoyancy
force and Coriolis acceleration. Assuming that the buoyancy
force is stronger than the Coriolis acceleration (i.e. 2Ω � N,
where Ω is the angular velocity and N the Brunt-Vaïsälä fre-
quency) in the direction of stable entropy or chemical strat-
ification, this leads to waves whose horizontal velocities are
higher than their vertical velocities. This allows us to neglect the
terms involving the latitudinal component of the rotation vector
ΩH = Ω sin θ, where θ is the colatitude, in the linearised hydro-
dynamical equations. In this framework, the (Poincaré) wave
equation, which is 2D and non-separable in the general case,
becomes separable (e.g. Gerkema & Shrira 2005). Therefore,

scalar quantities (e.g. the fluctuations of density, pressure, tem-
perature, and entropy of the waves) and the velocity components
can be expressed as products of radial functions; special lati-
tudinal functions, the so-called Hough functions that reduce to
Legendre polynomials in the non-rotating case (Hough 1898;
Longuet-Higgins 1968); and Fourier series in time and azimuth.

In stellar physics, TAR and its flexibility has been exten-
sively used to study low-frequency GIWs, including Rossby
waves, both in single and double stars (e.g. Berthomieu et al.
1978; Lee & Saio 1987, 1989, 1997; Townsend 2003; Mathis
2009). This treatment allows stellar physicists to derive pow-
erful seismic diagnoses for the period spacing between con-
secutive high radial order gravito-inertial modes in uniformly
and differentially rotating spherical stars (Bouabid et al. 2013;
Ouazzani et al. 2017; Van Reeth et al. 2018). With the advent of
space asteroseismology using high precision photometry (Aerts
et al. 2010), the period spacing derived within the TAR frame-
work gives access to properties of chemical stratification and
to the rotation rate near the convective core of rapidly rotating
intermediate-mass γ Doradus stars for more than 60 stars (Van
Reeth et al. 2015a,b, 2016, 2018; Aerts et al. 2017; Christophe
et al. 2018; Li et al. 2019). These quantities constitute key
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ingredients to improve our knowledge of stellar structure, evo-
lution, internal angular momentum transport, and to calibrate
stellar models (e.g. Pedersen et al. 2018; Aerts et al. 2018, 2019;
Ouazzani et al. 2019, and references therein). However, in addi-
tion to assuming that 2Ω � N, other hypotheses are carried out
to apply TAR in stellar interiors (e.g. Lee & Saio 1997; Townsend
2003). First, the rotation is assumed to be uniform. Next, we
assume that the centrifugal distortion of the star can be neglected,
i.e. Ω � ΩK ≡

√
GM/R3, where G, M, and R are the universal

constant of gravity, mass of the star, and stellar radius, respec-
tively, and ΩK is the Keplerian critical angular velocity. The fluc-
tuation of the gravitational potential of the waves is neglected
following Cowling (1941). Finally, the motions of the waves are
assumed to be adiabatic.

Different approaches can be considered to go beyond these
assumptions. We can choose to use 2D oscillation codes (Reese
et al. 2006; Ballot et al. 2010; Ouazzani et al. 2012). However,
they are not available yet to the whole community while their
needed computation time and resources can prevent detailed
seismic modelling at this stage. We can alternatively build a 2D
asymptotic theory for GIWs that go beyond the TAR (Prat et al.
2016, 2018). However, the associated derivation of the needed
asymptotic seismic diagnosis is still in its infancy (Prat et al.
2017) and should be developed. Finally, in the case of strongly
stratified stellar radiation zones for which 2Ω � N, we can try
to improve TAR by using the hierarchy between frequencies and
the corresponding properties of motions. This has been done suc-
cessfully to include the effects of general differential rotation on
low-frequency GIWs (Ogilvie & Lin 2004; Mathis 2009). In this
case, the problem becomes 2D and non-separable as in the gen-
eral case in which the full Coriolis acceleration is taken into
account even in the case of a “shellular” rotation that depends
on the radius alone. However, the problem can be treated ana-
lytically in the case of low-frequency GIWs following Ogilvie
& Lin (2004) and Mathis (2009) who considered rapidly oscil-
lating waves in the vertical direction by assuming the anelas-
tic approximation where acoustic waves are filtered out. These
authors introduced generalised 2D Hough functions that depend
on the latitude and radius, the latter acting only as a parame-
ter. The results of this method have been successfully applied in
Van Reeth et al. (2018) to derive the variation of the asymptotic
period spacing in the case of a weak radial differential rotation
as observed in intermediate-mass stars using asteroseismology
(Kurtz et al. 2014; Saio et al. 2015; Murphy et al. 2016; Aerts
et al. 2017).

In this theoretical work, we consider the case of “moder-
ately” rapidly rotating stars (or planets). Their shape becomes a
slightly deformed spheroid because of the action of the centrifu-
gal acceleration. This case has been studied using 2D oscillation
modes numerical computation in Ouazzani et al. (2017). These
authors demonstrated that the results obtained using TAR and the
related assumptions (i.e. studying uniformly rotating spherical
stars) are in qualitative agreement with the complete treatment
of the Coriolis acceleration when using 1D spherical structure
models (see their Figs. 1 and 3). In addition, they showed that
this latter treatment is also in qualitative agreement with a 2D
treatment that takes the full Coriolis and centrifugal accelera-
tions into account1 (see their Fig. 6), but with some quantitative
differences that should be explained. Indeed, while the period

1 The centrifugal acceleration is taken into account in the 2D oscilla-
tion code ACOR (Ouazzani et al. 2012), while the 2D rotating stellar
model is built by deforming a 1D initial spherical model following the
iterative method proposed in Roxburgh (2006).

spacings of individual modes is different, the global properties
such as the mean value of the period spacing, the number of
modes, the extend and slope of the pattern for each group of
fixed azimuthal order are similar. This could be understood by
invoking that studied low-frequency gravito-inertial modes are
propagating in (and sounding) deep stellar layers, which are
less influenced by the centrifugal acceleration than the surface
(e.g. Ballot et al. 2010). In this framework, it becomes important
to study if the TAR could be generalised to take into account
the effects of the centrifugal acceleration in the case of slightly
deformed moderately rotating stars (this work) before consid-
ering the more extreme cases of stars rotating close to their
break-up velocity. This could have several key applications such
as new seismic diagnosis, the study of the transport of angular
momentum by GIWs (e.g. Lee & Saio 1993; Mathis et al. 2008;
Mathis 2009; Lee et al. 2014), and the evaluation of tidal dissi-
pation (Ogilvie & Lin 2004, 2007; Braviner & Ogilvie 2014) in
deformed stars (and planets).

In this work, we focus on the first goal. First, we introduce
in Sect. 2 the formalism already introduced in the literature to
study oscillation modes in moderately deformed rotating stars
(or planets; e.g. Smeyers & Denis 1971; Saio 1981; Lee 1993;
Lee & Baraffe 1995). We consider the simplest case of a uniform
rotation to disentangle the effects of the deformation from those
of differential rotation. In Sect. 3, we show how to generalise
TAR in this configuration and in Sect. 4 we study the dynam-
ics of corresponding low-frequency GIWs. In Sect. 5, we derive
the periods of GIWs, which can be used to probe the chemical
composition of stars and their internal rotation. In Sect. 6, we
use the new formalism to determine how the solutions of the
Laplace tidal equation are affected by the centrifugal deforma-
tion. Finally, we give in Sect. 7 the conclusions of this theoretical
work and we discuss its perspectives and future applications.

2. Dynamical equations in moderately deformed
stars

We follow the formalism presented by Lee & Baraffe (1995) (see
also Smeyers & Denis 1971; Saio 1981; Lee 1993) to describe
the dynamics of stellar oscillation modes in slightly deformed
stars. We work in a spheroidal system of coordinates (a, θ, ϕ) to
take into account the centrifugal deformation of the star. The
origin of this coordinate system (a = 0) is the centre of the
deformed star, θ is the colatitude with θ = 0 on the rotation
axis, and ϕ is the azimuth. The spheroidal coordinates system
is related to the spherical coordinates (r, θ, ϕ) by a mapping

r = a [1 + ε (a, θ)] , (1)

where ε is a function describing the centrifugal perturbation of
the hydrostatic balance. Appendix A provides its derivation. This
perturbation scales as Ω2, where Ω is the angular velocity of
the star, which is assumed to be uniform. We define the unit-
vector basis attached to the spheroidal coordinates system as
follows:

ẽa = (1 + ε + a∂aε) êr,

ẽθ = ∂θε êr + (1 + ε) êθ,
ẽϕ = (1 + ε) êϕ. (2)

The dynamical equations for waves are derived in these
spheroidal coordinates. As in studies of TAR in spherical stars,
we focus in this work on adiabatic oscillations.
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First, the linearised Navier-Stockes equation is written as

− ω2 [
(1 + 2ε) ξ + a ξa∇0ε + a (ξ · ∇0ε) ẽa

]
+ C

= −∇0Φ̃ −
1
ρ
∇0P̃ +

ρ̃

ρ2

dP
da

ẽa, (3)

where

∇0X ≡ ∂aX ẽa +
1
a
∂θX ẽθ +

1
a sin θ

∂ϕX ẽϕ (4)

and

(ξ · ∇0) X ≡ ξa∂aX +
ξθ
a
∂θX +

ξϕ

a sin θ
∂ϕX. (5)

We introduce the Lagrangian displacement ξ of the oscillation,
gravific potential Φ, pressure P, and density ρ. The scalar quan-
tities (Φ, P, ρ) are expended as the sum of their hydrostatic com-
ponents (Φ, P, ρ) and their wave fluctuations (Φ̃, P̃, ρ̃). Finally,
the Coriolis acceleration operator is given by

C = Cãea + Cθ̃eθ + Cϕ̃eϕ, (6)

where

Ca = − iω2Ω (1 + 2ε + a∂aε) sin θξϕ,
Cθ = − iω2Ω (1 + 2ε + tan θ∂θε) cos θξϕ,
Cϕ = iω2Ω (1 + 2ε + a∂aε) sin θξa

+ iω2Ω (1 + 2ε + tan θ∂θε) cos θξθ. (7)

We adopt the Cowling approximation in which the perturbations
of the gravific potential induced by pulsations (Φ̃) are neglected
(Cowling 1941).

Next, the linearised continuity equation is obtained

ρ̃ +
1
a2 ∂a

(
a2ρ ξa

)
+

1
a sin θ

∂θ (sin θρ ξθ) +
1

a sin θ
∂ϕ

(
ρ ξϕ

)
+ ρ ξ · ∇0 (3ε + a∂aε) = 0. (8)

The linearised energy equation in the adiabatic limit is
derived

ρ̃

ρ
−

1
Γ1

P̃

P
+
ξa

a

d ln ρ
d ln a

−
1
Γ1

d ln P
d ln a

 = 0, (9)

where Γ1 =
(
∂ ln P/∂ ln ρ

)
S

(S being the macroscopic entropy)
is the adiabatic exponent. It allows us to identify the squared
Brunt-Vaïsälä frequency

N2 (a) = −
g
a

d ln ρ
d ln a

−
1
Γ1

d ln P
d ln a

 · (10)

Finally, the wave’s displacement and fluctuations (X̃ ≡

{̃ρ, P̃}) are expanded on Fourier series both in time and in
azimuth

ξ (a, θ, ϕ, t) ≡
∑
ω,m

{
ξ
′

(a, θ) exp
[
i (mϕ + ωt)

]}
, (11)

X̃ (a, θ, ϕ, t) ≡
∑
ω,m

{
X
′

(a, θ) exp
[
i (mϕ + ωt)

]}
, (12)

where ω is the frequency in the co-rotating frame and m the
azimutal degree.

3. The TAR with centrifugal acceleration

We consider each component of the momentum equation to iden-
tify the hierarchy of the different terms and the corresponding
simplifications when using the TAR in deformed stars.

First, the spheroidal radial component can be written as

− N2
(
ω

N

)2 [
(1 + 2 (ε + a∂aε)) ξa + ξθ∂θε

]
− iN2

(
ω

N

) (2Ω

N

)
(1 + 2ε + a∂aε) sin θξϕ = −∂aW̃ − N2ξa

−
1

ρ2 ∂aρP̃, (13)

where W̃ = P̃/ρ and we explain the frequency ratios ω/N and
2Ω/N. When using TAR, we focus on low-frequency waves for
which ω � N. Their propagation can be studied within the
anelastic approximation in which acoustic waves are filtered out.
Equations (13) and (9) can be simplified accordingly by neglect-
ing the terms 1/ρ2∂aρP̃ and 1/Γ1 P̃/P, respectively (more details
are provided in Sects. 2 and 3 in Mathis 2009). In addition,
TAR can be applied only in the case of “strong” stratification for
which 2Ω � N. In this case, the buoyancy force dominates the
radial components of the Coriolis acceleration and of the accel-
eration of the wave. Therefore, the radial momentum equation
can be simplified to

−∂aW
′

− N2ξ′a = 0, (14)

as in the case of spherical stars and for the same reasons.
Next, we examine the latitudinal component of the momen-

tum equation, which we write

− ω2
[
(1 + 2ε) +

(
ξa

ξθ

)
∂θε

]
ξθ

− iω2Ω (1 + 2ε + tan θ ∂θε) cos θξϕ = −
1
a
∂θW̃. (15)

In the case of low-frequency GIWs, the wave displacement is
mostly horizontal, i.e. ξa � {ξθ, ξϕ}, because of the strong stable
stratification. This allows us to neglect the term (ξa/ξθ) ∂θε that
couples horizontal and vertical directions. The previous equation
simplifies onto

−ω2A (a, θ) ξ′θ − iω2ΩB (a, θ) cos θξ′ϕ = −
1
a
∂θW ′, (16)

where

A = 1 + 2ε, (17)
B = A + tan θ ∂θε. (18)

In the case of a uniform rotation ε (a, θ) = ε0 (a) +
ε2 (a) P2 (cos θ) (see Eq. (A.24)). Therefore, ∂θε ∝ cos θ sin θ
and the term tan θ∂θε is regular.

For the same reasons, the azimuthal component of the
momentum equation

− ω2 (1 + 2ε) ξϕ + iω2Ω (1 + 2ε + a∂aε) sin θξa

+ iω2Ω (1 + 2ε + tan θ ∂θε) cos θξθ = −
1

a sin θ
∂ϕW̃

(19)

reduces to

−ω2A (a, θ) ξ′ϕ + iω2ΩB (a, θ) cos θξ′θ = −
imW

′

a sin θ
· (20)
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As in the spherical case, we thus obtain decoupled equations
for the vertical and horizontal components of the displacement.
We can thus solve the system formed by Eqs. (16) and (20) and
express ξ′θ and ξ′ϕ as a function of the normalised pressure W ′ as
follows:

ξ′θ =
1
a

1
ω2

1
D (a, θ)

[
∂θW

′

+ mν
cos θ
sin θ

C (a, θ) W
′
]
, (21)

ξ′ϕ = i
1
a

1
ω2

1
D (a, θ)

[
νC (a, θ) cos θ ∂θW

′

+
m

sin θ
W
′
]
, (22)

with

C =
B

A
= 1 +

tan θ ∂θε
1 + 2ε

, (23)

D = A
(
1 − ν2 cos2 θC2

)
(24)

= (1 + 2ε)

1 − ν2 cos2 θ

(
1 +

tan θ ∂θε
1 + 2ε

)2 , (25)

ν =
2Ω

ω
· (26)

We can identify that the structure of the equations in the
spheroidal case is very similar to those in the usual spherical
case (e.g. Lee & Saio 1997; Townsend 2003). The most impor-
tant difference is that the coefficientsA,B, C, andD are function
of a and θ through ε (a, θ) , while they reduce to functions that
only depend on θ in the spherical case with A = B = C = 1
and D = 1 − ν2 cos2 θ. This situation is similar to the case in
which differential rotation is taken into account (Mathis 2009;
Van Reeth et al. 2018) and we see in the next section that it is
possible to solve the problem by adopting the same method. We
identify, as in the uniformly rotating spherical case, the so-called
spin parameter ν = 2Ω/ω. The regime ν > 1 (ν < 1) corresponds
to sub- (super-) inertial waves in which ω < 2Ω (ω > 2Ω).

Following Lee & Saio (1997) and Mathis (2009), we intro-
duce the reduced latitudinal coordinate x = cos θ; Eqs. (16)
and (20) transform into

ξ′θ (a, x) = Lθνm

[
W
′

(a, x)
]

=
1
a

1
ω2

1
D (a, x)

1
√

1 − x2

[
−

(
1 − x2

)
∂x + mνxC (a, x)

]
W
′

,

(27)
ξ′ϕ (a, x) = L

ϕ
νm

[
W
′

(a, x)
]

= i
1
a

1
ω2

1
D (a, x)

1
√

1 − x2

[
−νxC (a, x)

(
1 − x2

)
∂x + m

]
W
′

.

(28)

4. Dynamics of low-frequency gravito-inertial waves

As in Mathis (2009) and Van Reeth et al. (2018), we focus
from now on low-frequency GIWs. Our goal is to derive the so-
called Poincaré equation for the normalised pressure (W

′

), which
allows us to compute their frequencies and periods and to built
the corresponding seismic diagnosis. Using the anelastic approx-
imation again, the continuity equation becomes ∇ · (ρu) = 0,
where we recall the relation u = ∂t ξ = iω ξ between the velocity
(u) and the Lagrangian displacement (ξ). The continuity equa-
tion (Eq. (8)) simplifies into
1
a2 ∂a

(
a2ρ ξ′a

)
+

1
a sin θ

∂θ
(
sin θρ ξ′θ

)
+

1
a sin θ

∂ϕ
(
ρ ξ′ϕ

)
+ ρ

ξ′a∂aE +
ξ
′

θ

a
∂θE

 = 0, (29)

where

E = 3ε + a∂aε. (30)

Low-frequency GIWs are rapidly oscillating with short wave-
lengths along the (vertical) ẽa direction, which are very small
compared to the characteristic lengths of variation of the back-
ground quantities. This allows us, following Mathis (2009), to
use the Jeffreys-Wentzel-Kramers-Brillouin (JWKB) approxi-
mation (Fröman & Fröman 2005) along the vertical and to
expand the pressure fluctuation and the components of the dis-
placement as

W
′

=
∑

k

wνkm (a, θ)
Aνkm

k1/2
V;νkm

exp
[
i
∫ a

kV;νkmda
] (31)

ξ
′

j =
∑

k

ξ̂ j;νkm (a, θ)
Aνkm

k1/2
V;νkm

exp
[
i
∫ a

kV;νkmda
] , (32)

where j ≡ {r, θ, ϕ}, k is the index of a latitudinal eigenmode
(see Eq. (35)), and Aνkm is the amplitude of the wave. Using
Eqs. (14), (27), and (28), we can obtain the following polari-
sation relations:

ξ̂r;νkm (a, θ) = −i
kV;νkm

N2 wνkm (a, θ) ,

ξ̂θ;νkm (a, θ) = Lθνm [wνkm (a, θ)] ,

ξ̂ϕ;νkm (a, θ) = L
ϕ
νm [wνkm (a, θ)] . (33)

Using the vertical momentum equation Eqs. (14) and (29)
becomes

k2
V;νkm

N2 wνkm +
1

a sin θ
∂θ

(
sin θξ̂θ;νkm

)
+
ξ̂θ;νkm

a
∂θE +

imξ̂ϕ;νkm

a sin θ
= 0,

(34)

where the JWKB approximation allows us to neglect ρ ξ′a∂aE in

front of the dominant term
1
a2 ∂a

(
a2ρ ξ′a

)
.

Using Eqs. (27) and (28) allows us to obtain the equation for
wνkm

Lνm [wνkm] = ∂x


(
1 − x2

)
D

∂x wνkm

 +

(
1 − x2

)
∂xE

D
∂xwνkm

−

[
m2(

1 − x2)D + mν
d
dx

[
xC
D

]
+ mν

xC
D
∂xE

]
wνkm

= −Λνkm (a) wνkm, (35)

where we identify the dispersion relation for low-frequency
GIWs within TAR

k2
V;νkm =

N2 (a)
ω2

km

Λνkm (a)
a2 · (36)

This equation is in fact the Poincaré partial differential equation
for GIWs. The combined use of the TAR and JWKB approxi-
mations, allows us to transform it in a linear second-order ordi-
nary differential equation on x with only a parametric dependence
on a. This result is very similar to those obtained in the case
of differential rotation in Ogilvie & Lin (2004), Mathis (2009),
and Van Reeth et al. (2018). Therefore, Eq. (35) can be seen
as a generalised Laplace tidal equation (and operator) for gen-
eralised Hough functions when taking the centrifugal accelera-
tion into account. In Table 1, we recall the expressions of all the
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Table 1. Centrifugal terms involved in the generalised Laplace tidal equation.

A 1 + 2ε

B 1 + 2ε + tan θ ∂θε = 1 + 2ε −
1 − x2

x
∂xε

C 1 +
tan θ ∂θε
1 + 2ε

= 1 −
1

1 + 2ε
1 − x2

x
∂xε

D (1 + 2ε)

1 − ν2 cos2 θ

(
1 +

tan θ ∂θε
1 + 2ε

)2 = (1 + 2ε)

1 − ν2x2
(
1 −

1
1 + 2ε

1 − x2

x
∂xε

)2
E 3ε + a∂aε

involved coefficients. Their first-order linearisation in ε is derived
in Appendix B.1. Since the eigenvalues and eigenfunctions of the
generalised Laplace tidal equation vary with the pseudo-radius,
we choose to define our latitudinal ordering number k as in Lee
& Saio (1997) by considering the eigenvalues and eigenfunc-
tions at the centre where they are not affected by the centrifu-
gal acceleration since the mapping we choose in this work (see
Eq. (A.26)) is such that ε → 0 for a → 0. We recall that Lee &
Saio (1997) ordered the eigenvalues of the non-deformed Hough
functions as follows: for the eigenvalues that exist for any value of
ν, they attached positive k including zero with Λν=0,km (a = 0) =
(|m| + k) (|m| + k + 1) which corresponds to the l (l + 1) eigenval-
ues of the spherical harmonics (with l = |m| + k), which are the
horizontal eigenfunctions for non-radial pulsations in the non-
rotating case (i.e. ν = 0); for the eigenvalues that only exist when
|ν| > 1, they used negative k in such a way that Λν,−1,m (a = 0) >
Λν,−2,m (a = 0) > · · · . As we see in the next section, avoided
crossings can appear when looking at the variation of the eigen-
values along the pseudo-radius (see Fig. 9). The corresponding k
as defined by Lee & Saio (1997) then changes.

As in the uniformly and differentially rotating spherical
cases, two classes of waves are identified: those for whichD > 0
in the whole spheroidal shell and that propagate at all colatitudes
and those for whichD vanishes in the spheroidal cavity at a criti-
cal colatitude θc such thatD (a, θc) = 0, which depends on a. For
this second class, waves propagate only within an equatorial belt
where θ > θc (a) (some examples of these waves can be found in
Ballot et al. 2010; Prat et al. 2016, 2018, while an approximate
value for θc (a) is derived in Eq. (B.35)). These first and second
classes of waves correspond to the super-inertial (ω > 2Ω) and
sub-inertial waves (ω < 2Ω), respectively, in the case of the uni-
formly rotating spherical case.

This description within the TAR of low-frequency GIWs
propagating in deformed bodies can be applied to the study of
the transport of angular momentum they induce (Mathis 2009),
tidal dissipation in stably stratified stellar and planetary layers
(Ogilvie & Lin 2004, 2007; Braviner & Ogilvie 2014; Fuller
et al. 2016), and the seismology of rapidly rotating stars (e.g.
Van Reeth et al. 2018).

In this framework, it is finally interesting to derive the
asymptotic frequencies of low-frequency GIWs and the corre-
sponding periods as in Van Reeth et al. (2018). Indeed, the latter
allow asteroseismologist to probe the internal rotation of regions
where these waves propagate, for instance the radiative layers
close to the convective core of intermediate-mass stars (Van
Reeth et al. 2016, 2018; Ouazzani et al. 2017).

5. Asymptotic seismic diagnosis

Following the same method that is used in the case of spheri-
cal uniformly and differentially rotating stars, we can derive the

eigenfrequencies of low-frequency GIWs by doing a vertical (i.e.
in this equation along a) quantisation as follows:∫ at2

at1

kV;νnkmda =
1

ωnkm

∫ at2

at1

Λ
1/2
νkm (a) N (a)

a
da = (n + 1/2) π,

(37)

where we introduce n the vertical order, while at1 and at2 are
the inner and outer turning point for which the Brunt-Väisälä
frequency (N) vanishes (Berthomieu et al. 1978; Tassoul 1980;
Bouabid et al. 2013). Using the previously derived dispersion
relation (Eq. (36)), we get the asymptotic expression for the fre-
quencies of low-frequency GIWs

ωnkm =

∫ at2

at1

Λ
1/2
νkm (a) N (a)

a
da

(n + 1/2) π
(38)

and the corresponding period

Pnkm =
2π2 (n + 1/2)∫ at2

at1

Λ
1/2
νkm (a) N (a)

a
da

· (39)

As in the spherical case, we can thus compute the period spac-
ing ∆P = Pnkm − Pn−1km, which allows us to probe the internal
rotation of stars but taking into account the flattening of stars by
the centrifugal acceleration. The slight differences are the use of
spheroidal coordinates and the variation with a of the eigenval-
ues Λνkm of the generalised Laplace tidal operator.

The interest of the equations derived for the deformation of
the star (Eq. (A.26)), the generalised Hough functions (Eq. (35)),
and the eigen-frequencies and periods (Eqs. (38) and (39)) is that
they can be easily integrated for a large number of stars. This
is a great asset when it is necessary to compute complete grids
of stellar models to perform detailed seismic modellings (e.g.
Pedersen et al. 2018, and Fig. 1).

6. Application

In this section, we numerically solve the linearised and gener-
alised Laplace tidal equation at fixed frequency, as presented in
Appendix B.1. We consider a ZAMS 1.5 M� stellar model with a
solar metallicity computed with the MESA 1D stellar evolution
code (Paxton et al. 2018). First, we compute ε from the pertur-
bation of the gravitational potential φ′, following the procedure
described in Appendix A. Equation (A.17) implies that φ′ is pro-
portional to Ω2 and can thus be normalised by R2Ω2, as repre-
sented in Fig. 2. The deformation function ε(a, θ) is illustrated
in Fig. 3 for Ω/ΩK = 0.2. For this rotation rate, its maximum
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Fig. 1. Methodology for seismic modelling of rotating deformed stars
using the TAR. Red and blue boxes are related to the structure of stars
and low-frequency GIWs, respectively.

0.0 0.2 0.4 0.6 0.8 1.0
a/R

0.0

0.2

0.4

0.6

0.8

1.0

a
/R

φ ′/(R 2Ω2)

0.03

0.00

0.03

0.06

0.09

0.12

0.15

0.18

Fig. 2. Normalised pertubation of the gravitational potential
φ′(a, θ)/(R2Ω2).

absolute value is of the order of 2%. In addition, we observe that
ε < 0. This can be easily understood since by definition (see
Eq. (1)) r = a (1 + ε), where r is the usual spherical radius and
a the pseudo-radius with a > r because of the action of the cen-
trifugal acceleration. Since ε scales with the square of the rota-
tion rate, this value is slightly lower than 10% for Ω/ΩK = 0.4.
A priori, the perturbative approach is thus valid for these rotation
rates.

We then solve the generalised Laplace tidal equation for
different pseudo-radii, spin factors, and rotation rates using an
implementation based on Chebyshev polynomials similar to that
by Wang et al. (2016). At the centre (a = 0), this is equivalent
to solving the unperturbed classical Laplace tidal equation. The
corresponding spectrum as a function of the spin factor is shown
for m = −2 in Fig. 4. As expected, this is consistent with Fig. 1 of
Lee & Saio (1997). This spectrum features Rossby-like solutions

0.0 0.2 0.4 0.6 0.8 1.0
a/R

0.0
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/R

ε (Ω/ΩK = 0.2)

0.021

0.018

0.015

0.012

0.009

0.006

0.003

0.000

Fig. 3. Deformation function ε(a, θ) for Ω/ΩK = 0.2.

Fig. 4. Spectrum of the generalised Laplace tidal equation as a function
of the spin factor ν at a = 0 for Ω = 0.2ΩK and m = −2. Blue (respec-
tively, orange) dots correspond to even (respectively, odd) eigenfunc-
tions.

which have mostly negative eigenvalues and are non-existent for
|ν| < 1, and gravity-like solutions which have positive eigenval-
ues. A notable property of the Rossby-like part of the spectrum
for ν > 1 is that every odd solution can be associated with an
even solution that has a very close eigenvalue.

Spectra at different pseudo-radii (illustrated in Fig. 5) show
significant effects of the centrifugal deformation. First, Rossby-
like solutions for ν < −1 are now also grouped by two (one
odd solution and one even solution) with very close eigenval-
ues. Second, two previously grouped Rossby-like solutions for
ν > 1 now have very different behaviours and probably cause
avoided crossings with other Rossby-like solutions. Finally, the
behaviour of gravity-like solutions near ν = 1 becomes less reg-
ular. As the rotation rate increases, the last two effects become
stronger. This can be seen in Fig. 6 for Ω/ΩK = 0.4. In particu-
lar, the two previously mentioned Rossby-like solutions almost
behave as gravity-like solutions for ν > 1.

We focus now on how the modified Hough function wνkm
varies with the pseudo-radius a and horizontal coordinate x. This
dependence is illustrated for m = −2 and ν = 2 in Fig. 7 at two
different rotation rates. Again, the solution at a = 0 is not per-
turbed by the centrifugal acceleration, and is thus the same for

A26, page 6 of 12

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935639&pdf_id=1
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935639&pdf_id=2
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935639&pdf_id=3
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935639&pdf_id=4


S. Mathis and V. Prat: The traditional approximation of rotation, including the centrifugal acceleration for slightly deformed stars

Fig. 5. Same as Fig. 4, but at different pseudo-radii: a = 0.5R (left) and a = R (right).

Fig. 6. Same as Fig. 4, but for Ω = 0.4ΩK and at different pseudo-radii: a = 0.5R (left) and a = R (right).

all rotation rates. As the pseudo-radius increases, Rossby-like
solutions are slightly modified, whereas gravity-like solutions
drastically change. However, both types of solutions seem to
experience an avoided crossing, which is visible through the
change in the number of nodes. This behaviour is qualitatively
the same for the two rotation rates studied in this work. Quanti-
tatively, the dispersion of the eigenfunctions as a function of the
pseudo-radius is larger for larger rotation rates. The same eigen-
functions are plotted in Fig. 8 for m = −2 and ν = 10. Again,
gravity-like solutions clearly experience an avoided crossing, but
this is no longer visible for Rossby-like solutions.

The avoided crossings can be highlighted by plotting the
eigenvalues as a function of the pseudo-radius (see Fig. 9). For
m = −2 and ν = 2, the avoided crossing of Rossby-like solutions
is clearly visible. In contrast, that of gravity-like solutions is not
because it occurs at very small pseudo-radii. For m = −2 and
ν = 10, it occurs at larger pseudo-radii and is thus visible.

We finally compute the integral

I =

∫ at2

at1

Λ
1/2
νkm (a) N (a)

a
da (40)

at a fixed spin factor for different rotation rates to investigate how
mode frequencies could be affected by the centrifugal accelera-
tion. The obtained values are shown in Table 2. The value of

the integral slightly increases with the rotation rate, which has
an effect on the quantisation condition Eq. (37) and thus on the
mode frequencies.

In addition to these frequency shifts, the changes in the wave
structure induced by the centrifugal deformation observed in this
section may also have an impact on the transport of angular
momentum and on the tidal dissipation they induce (e.g. Mathis
2009; Braviner & Ogilvie 2015).

7. Conclusions

In this theoretical article, we generalise the TAR to the case in
which the deformation of a star (or planet) by the centrifugal
acceleration is taken into account. We identify that the mathe-
matical complexity introduced by the centrifugal acceleration is
very similar to that appearing when applying the TAR to dif-
ferentially rotating spherical stars (Ogilvie & Lin 2004; Mathis
2009; Van Reeth et al. 2018). Combining the TAR with the
anelastic and JWKB approximations, we derive a generalised
tidal Laplace equation, which is a second-order linear ordinary
differential equation in x = cos θ (θ being the colatitude) only
with a parametric dependence on a of its coefficients. The prob-
lem thus reduces to a classical Sturm-Liouville problem as in the
case of uniformly rotating spherical stars. It allows us to derive
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Fig. 7. Solutions of the generalised Laplace tidal equation at different pseudo-radii from a = 0 (dark blue) to a = R (yellow) for m = −2, ν = 2 and
Ω/ΩK = 0.2 (left), and Ω/ΩK = 0.4 (right). Dashed lines correspond to gravity-like solutions with k = 0 (and an avoided crossing with the k = 2
mode), whereas solid lines correspond to Rossby-like solutions with k = −4 (and an avoided crossing with the k = −2 mode).
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Fig. 8. Same as Fig. 7, but for ν = 10.

Fig. 9. Spectrum of the generalised Laplace tidal equation as a function of the pseudo-radius at Ω = 0.2ΩK and m = −2 for ν = 2 (left) and ν = 10
(right). Blue (respectively, orange) dots correspond to even (respectively, odd) eigenfunctions.

the asymptotic frequencies of low-frequency GIWs and the cor-
responding periods and period spacings. These can be used as
a seismic probe of stellar interiors and rotation in moderately

rapidly rotating deformed stars. In addition, the derived formal-
ism can be used to study the angular momentum transport and
tidal dissipation induced by low-frequency GIWs in stars and
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Table 2. Values of the integral I (Eq. (40)) as a function of the rotation
rate for the gravity-like eigenfunctions plotted in Fig. 8 (m = −2, k = 0,
ν = 10).

Ω/ΩK 0.1 0.2 0.3 0.4

I (s−1) 0.0864 0.1024 0.1083 0.1133

planets. We carried out a first numerical exploration of the eigen-
values and horizontal eigenfunctions of the generalised Laplace
tidal equation following the methodology presented in Fig. 1.
We find that both gravity- and Rossby-like wave eigenfunctions
are affected by the centrifugal acceleration and vary with the
pseudo-radii with a stronger deformation of the gravity-like solu-
tions when compared to the spherical case. In this context, we
see that both types of solutions are affected by avoided crossing
phenomena. The next step will be to implement our equations
in stellar evolution and oscillation codes (as we did in the dif-
ferentially rotating case in Van Reeth et al. 2018) by comparing
the obtained results with direct computations with 2D oscillation
codes (Reese et al. 2006; Ballot et al. 2010; Ouazzani et al. 2012,
2017) and to examine if the TAR can be generalised to the case
of strongly deformed stars.
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Appendix A: Deformation of a moderately rotating
star

The objective of this appendix is to determine the deformation
of an isobar in the case of a moderately and uniformly rotating
star in which the centrifugal acceleration is a linear perturbation

of the order of (Ω/ΩK)2 ≡
(
Ω/

√
GM/R3

)2
; ΩK is the Keplerian

critical angular velocity, M and R are the stellar mass and radius,
respectively, and G is the universal constant of gravity.

The first step is to calculate the perturbation of the gravita-
tional potential φ on the sphere of radius r. We expand φ on the
orthogonal basis formed by the Legendre polynomials

φ(r, θ) = φ0(r) + φ1(r, θ) = φ0(r) +
∑

l

φl(r)Pl(cos θ), (A.1)

where φ0 = −GMr(r)/r is the gravitational potential of the non-
rotating star (Mr being the mass inside the sphere of radius r)
and φ1 its perturbation induced by the centrifugal acceleration.
We follow the method of linearisation of the hydrostatic balance
developed in Sweet (1950), Zahn (1966, 1992), and Mathis &
Zahn (2004), and expand the pressure and the density around the
sphere in the same way that φ

P(r, θ) = P0(r) + P1(r, θ) = P0(r) +
∑

l

Pl(r)Pl(cos θ), (A.2)

ρ(r, θ) = ρ0(r) + ρ1(r, θ) = ρ0(r) +
∑

l

ρl(r)Pl(cos θ). (A.3)

Then, we take the hydrostatic equation

∇P
ρ

= −∇φ + FC, where FC =
1
2

Ω2
∇(r2 sin2 θ) (A.4)

is the centrifugal acceleration, which derives from a potential

FC = −∇U, where U = −
1
2

Ω2r2 sin2 θ (A.5)

in the case considered of a uniform rotation. The hydrostatic bal-
ance thus becomes

∇P = −ρ∇ (φ + U) , (A.6)

which we expand to the first order as

∇P1 = −ρ0∇ (φ1 + U) − ρ1∇φ0. (A.7)

Taking the curl of Eq. (A.6), we also have

∇ρ × ∇ (φ + U) = 0. (A.8)

The equipotential for (φ + U), the isodensity and isobar thus
coincide. As a consequence P can be written as a function of
(φ + U) as

P = F (φ + U) . (A.9)

When linearised to the first-order, we get

P1 =
dF
dφ0

(φ1 + U) = −ρ0 (φ1 + U) (A.10)

since dF /dφ0 = dP0/dφ0 = −ρ0. This leads to

∇P1 = −ρ0∇ (φ1 + U) − ∇ρ0 (φ1 + U) , (A.11)

which provides us the perturbation of density

ρ1 =
1

g0 (r)
dρ0

dr
(φ1 + U) , (A.12)

where g0 = GMr(r)/r2. Next, we insert the modal expansion of
ρ1 and those of the centrifugal potential, i.e.

U =
∑

l

Ul (r) Pl (cos θ) , where l = {0, 2} (A.13)

and

U0 = −
1
3

Ω2r2 (A.14)

U2 =
1
3

Ω2r2. (A.15)

This yields the modal amplitude of the density fluctuation over
the sphere

ρl(r) =
1
g0

dρ0

dr
(φl + Ul) . (A.16)

We insert this expression in the perturbed Poisson equation
∇2φl = 4πGρl and we retrieve the Sweet (1950) and Zahn (1966)
result

1
r

d2

dr2 (rφl) −
l(l + 1)

r2 φl −
4πG
g0

dρ0

dr
φl =

4πG
g0

dρ0

dr
Ul, (A.17)

where l = {0, 2}. The applied boundary conditions are written as

φl = 0 at r = 0 and
d
dr
φl −

(l + 1)
r

φl = 0 at r = R,

(A.18)
R being the surface radius of the star (or the planet).

Taking the latitudinal component of the hydrostatic balance
(Eq. (A.10)) finally provides us the radial functions of the pres-
sure fluctuation expansion

Pl = −ρ0 (φl + Ul) . (A.19)

We introduce the radial coordinate of the isobar

aP(r, θ) = r +
∑

l

ξl(r)Pl(cos θ). (A.20)

Taking the Taylor expansion of P to first order, we have

P

r +
∑

l

ξl(r)Pl(cos θ), θ

 = P0(r) +
∑

l

Pl(r)Pl(cos θ)

+

(
dP0

dr

)∑
l

ξl(r)Pl(cos θ).

(A.21)

By definition the pressure is constant on the isobar. We conclude
that

ξl(r) = −
Pl

dP0/dr
= −

(φl + Ul)
g0

, (A.22)

where we used Eq. (A.19) and the zeroth-order hydrostatic bal-
ance dP0/dr = −ρ0g0.
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We finally introduce the pseudo-radial coordinate a defined
in Eq. (1), i.e.

r = a [1 + ε (a, θ)] , (A.23)

where ε is also expanded on Legendre polynomials as

ε (a, θ) =
∑

l

εl (a) Pl (cos θ) . (A.24)

In contrast to Lee (1993), we do not use the Chandrasekhar-
Milne expansion (e.g. Chandrasekhar 1933; Tassoul 1978) to
compute a because it leads to infinite ε at the centre. Instead,
we use a simple mapping such that r is equal to the deformed
stellar radius rs(θ) when a = R and that r ' a near the centre.
The simplest mapping verifying these conditions is

r = a +

( rs

R
− 1

) a2

R
· (A.25)

At first order, this leads to

εl =
ξl(R)a

R2 = −
φl(R) + Ul(R)

g0(R)
a

R2 , where l = {0, 2} . (A.26)

Appendix B: Perturbative analytical solutions

B.1. Propagative waves with fixed frequencies

We consider any propagative waves with non-quantised frequen-
cies (ω) and thus spin parameter (ν = 2Ω/ω). This is for instance
the case of tidally excited waves (e.g. Ogilvie & Lin 2004, 2007;
Braviner & Ogilvie 2014), where the tidal frequency is fixed by
the difference between the angular velocities of the primary and
the orbit of the companion, and progressive waves (e.g. Alvan
et al. 2015).

As described above in Appendix A, the structure of a mod-
erately rotating body where the centifugal acceleration can be
treated as a linear perturbation is the linear combination of the
non-rotating structure and a perturbation (ε) of the order of(
Ω/

√
GM/R3

)2
. Therefore, we can make a corresponding linear

expansion in ε of the generalised Laplace tidal operator (Lνkm)
derived in Eq. (35) and of its eigenvalue (Λνkm) using the linear
perturbation theory as in quantum mechanics (Cohen-Tannoudji
et al. 1986). We obtain

Lνm = L(0)
νm +L(1)

νm, (B.1)

where

L(0)
νm =

d
dx

(
1 − x2

1 − ν2x2

d
dx

)
−

1
1 − ν2x2

(
m2

1 − x2 + mν
1 + ν2x2

1 − ν2x2

)
(B.2)

with

L
(0)
νm [Θνkm (x)] = −Λ

(0)
νkmΘνkm (x) (B.3)

is the usual Laplace tidal operator in the spherical case with its
Hough eigenfunctions (Θνkm) and eigenvalues (Λ(0)

νkm), andL(1)
νm is

its first-order centrifugal correction

L
(1)
νm = ∂x [C1 (a, x) ∂x] + C2 (a, x) ∂x + C3 (a, x) (B.4)

with

C1 (a, x) =
−2

(
1 − x2

)
(
1 − ν2x2)2

[(
1 − ν2x2

)
ε + x

(
1 − x2

)
ν2∂xε

]
,

C2 (a, x) =

(
1 − x2

)
(
1 − ν2x2) (

3∂xε + a∂a,xε
)
, (B.5)

and

C3 (a, x) =
2m2

[(
1 − ν2 x2

)
ε + xν2

(
1 − x2

)
∂xε

]
(
1 − x2) (1 − ν2 x2)2

+
mν(

1 − ν2 x2)3

[
2
(
1 − ν4 x4

)
ε + 2ν2 x

(
3 + x2

[(
1 + x2

)
ν2 − 5

])
∂xε

+
(
1 − x2

) (
1 − ν4 x4

)
∂x,xε

]
−

mνx
(
3∂xε + a∂a,xε

)
1 − ν2 x2 · (B.6)

These coefficients are obtained using the first-order expansion of
C andD given in Table 1 that become

C = 1 −
1 − x2

x
∂xε (B.7)

D =
(
1 − ν2x2

) 1 + 2ε +
2ν2x

(
1 − x2

)
∂xε

1 − ν2x2

 , (B.8)

whileA, B, and E are unchanged.
The corresponding eigenvalues and eigenfunctions are

derived

Λνkm (a) = Λ
(0)
νkm + Λ

(1)
νkm (a) , (B.9)

wνkm (a, x) = Θνkm (x) + w(1)
νkm (a, x) , (B.10)

with their respective centrifugal perturbations

Λ
(1)
νkm (a) =

∫ 1
−1 Θνkm (x)L(1)

νm [Θνkm (x)] dx∫ 1
−1 [Θνkm (x)]2 dx

, (B.11)

w(1)
νkm (a, x) =

∑
k′,k

∫ 1
−1 Θνkm (x)L(1)

νm [Θνk′m (x)] dx

Λ
(0)
νkm − Λ

(0)
νk′m

Θνk′m (x) .

(B.12)

Using the polarisation relations (Eq. (33)), the same expansion is
done for the JWKB amplitudes of the Lagrangian displacement
as follows:

ξ̂ j;νkm (a, x) = ξ̂ (0)
j;νkm (a, x) + ξ̂ (1)

j;νkm (a, x) , (B.13)

where j ≡ {r, θ, ϕ}.
We get in the vertical direction

ξ̂ (0)
r;νkm = −i

k(0)
V;νkm

N2 Θνkm, (B.14)

ξ̂ (1)
r;νkm = −

i
N2

(
k(0)

V;νkmw(1)
νkm + k(1)

V;νkmΘνkm

)
, (B.15)

where

k(0)
V;νkm =

N (a)
ωkm

√
Λ

(0)
νkm

a
, (B.16)

k(1)
V;νkm =

1
2

N (a)
ωkm

√
Λ

(0)
νkm

a
Λ

(1)
νkm (a)

Λ
(0)
νkm

· (B.17)

We obtain for the latitudinal and azimuthal directions

ξ̂ (0)
θ;νkm = Lθ;(0)

νm Θνkm, (B.18)

ξ̂ (1)
θ;νkm = Lθ;(0)

νm w(1)
νkm +Lθ;(1)

νm Θνkm, (B.19)
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and

ξ̂ (0)
ϕ;νkm = L

ϕ;(0)
νm Θνkm, (B.20)

ξ̂ (1)
ϕ;νkm = L

ϕ;(0)
νm w(1)

νkm +L
ϕ;(1)
νm Θνkm, (B.21)

where

Lθ;(0)
νm =

1
a

1
ω2

1
√

1 − x2

[
−

(
1 − x2

)
C(0)

4 ∂x + mνxC(0)
5

]
, (B.22)

Lθ;(1)
νm =

1
a

1
ω2

1
√

1 − x2

[
−

(
1 − x2

)
C(1)

4 ∂x + mνxC(1)
5

]
, (B.23)

L
ϕ;(0)
νm =

i
a

1
ω2

1
√

1 − x2

[
−νx

(
1 − x2

)
C(0)

5 ∂x + mC(0)
4

]
, (B.24)

L
ϕ;(1)
νm =

i
a

1
ω2

1
√

1 − x2

[
−νx

(
1 − x2

)
C(1)

5 ∂x + mC(1)
4

]
, (B.25)

with

C(0)
4 = C(0)

5 =
1

1 − ν2x2 , (B.26)

C(1)
4 =

−2
[(

1 − ν2x2
)
ε + x

(
1 − x2

)
ν2∂xε

]
(
1 − ν2x2)2 , (B.27)

C(1)
5 = −

2x
(
1 − ν2x2

)
ε +

(
1 − x2

) (
1 + ν2x2

)
∂xε

x
(
1 − ν2x2)2 · (B.28)

This analytical solution using first-order perturbative method can
be of great interest to study propagative low-frequency GIWs
in moderately rotating stars (their excitation, their propagation,
their damping, and the potential angular momentum transport
they induce; e.g. Mathis 2009). It can also be used to compute
tidal dissipation in slightly deformed stably stratified stellar and
planetary layers (Braviner & Ogilvie 2014) such as in the case
of Saturn (Fuller et al. 2016).

Finally, the first-order linear perturbation theory at fixed
given frequency can be used to compute the modification of the
critical colatitude θc for which

D(a, θc) = 0. (B.29)

Using the linearisation of C given in Eq. (B.8), this becomes

1 − ν2 cos2 θc[1 + tan θc∂θε(a, θc)]2 = 0. (B.30)

Posing θc = θ(0)
c + θ(1)

c , where θ(0)
c = arccos(1/ν) is the classical

critical colatitude (e.g. Lee & Saio 1997) and θ(1)
c scales with ε,

we obtain at the first order in ε

1 − ν2 cos2 θ(0)
c

{
1 + 2 tan θ(0)

c

[
∂θε

(
a, θ(0)

c

)
− θ(1)

c

]}
= 0, (B.31)

which leads to

θ(1)
c = ∂θε

(
a, θ(0)

c

)
. (B.32)

In the case of uniform rotation

ε(a, θ) = ε0(a) + ε2(a)P2(cos θ) (B.33)

and thus

∂θε
(
a, θ(0)

c

)
' −3ε2(a) sin θ(0)

c cos θ(0)
c . (B.34)

Using the expression for θ(0)
c as a function of ν, the critical colat-

itude finally reads

θc ' arccos(1/ν) −
3ε2

ν

√
1 −

1
ν2 · (B.35)

If we make the rough assumption that ε2 ≈ U2/ (ag0) ≈
Ω2a2/3(GMa/a) (using Eq. (A.26) with neglecting φ2), it leads
to a slight broadening of the equatorial belt where sub-inertial
GIWs are propagating towards the surface.

B.2. Oscillation eigenmodes

Studying oscillation eigenmodes induces the use of the quanti-
sation as derived in Sect. 5. As discussed in the previous section,
it would be relevant to expand the eigenfrequencies and the cor-
responding spin parameters as a combination of their values in
the spherical case and a centrifugal correction as follows:

ωνkm = ω(0)
νkm + ω(1)

νkm, (B.36)

νkm = 2Ω/ωνkm = ν(0)
km + ν(1)

km, (B.37)

where ν(0)
km = 2Ω/ω(0)

νkm and ν(1)
km = −

(
2Ω/ω(0)

νkm

) (
ω(1)
νkm/ω

(0)
νkm

)
.

Such an expansion should then be introduced in the expres-
sion of the vertical wave number (kV;νkm; Eq. (36)) and of L(1)

νm
(Eq. (B.4)), which would lead to complex implicit equations to
solve. Therefore, we advocate to solve directly the generalised
Laplace tidal equation (Eqs. (35) and (38)) when studying the
case of oscillation eigenmodes.
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