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Abstract

We use type I string models with supersymmetry broken by compactification
(à la Scherk-Schwarz) in order to test the weak gravity conjecture in the presence
of runaway potentials in a perturbative string theory setting. For a finite value
of the supersymmetry breaking radius there is a runaway potential, which is the
only possibility if one accepts the non-existence of de Sitter vacua. Although the
weak gravity conjecture is valid in the decompactification limit, for fixed values
of the radius we show that there are short-ranged attractive D1 brane-brane
interactions. We argue however that at one-loop level the effective tension of the
branes decreases and becomes smaller than the effective charge such that there
is a long-ranged repulsive force and the weak gravity conjecture is respected.
Moreover, for very small gs we expect a large number of stable bound states to
be present.
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1 Introduction

Recently several conjectures were put forward constraining the properties of effective
quantum field theories which can be consistently UV-completed by a theory of quantum
gravity. These conjectures are usually based on known properties of string theory as
well as black hole physics and are often dubbed swampland criteria [1]. Maybe the most
prominent of them is the weak gravity conjecture (WGC) [2].1 Closely related is the
swampland distance conjecture [27] and the conjectured absence of non-supersymmetric
AdS vacua [28].2 Lately, another conjecture [35], often called the de Sitter swampland
conjecture, attracted a lot of attention.3 This conjecture constrains the scalar potential
in a way that forbids the existence of (meta)stable de Sitter vacua in string theory.

In its most common formulation the weak gravity conjecture requires that in the
presence of gravity for any gauge interaction there should exist at least one charged
particle of mass m and charge q such that (in suitable units) q ≥ m. This condition can
be motivated by the requirement that all charged black holes in the theory should be
able to decay without leaving a large number of stable remnants. Moreover, it makes
it impossible to take a smooth limit towards vanishing gauge coupling and therefore
ensures that gravity is always the weakest interaction. These statements allow for a
natural generalization for higher-form gauge fields where the charged objects are branes.
From the viewpoint of particle-particle (or brane-brane) interactions, the condition
q ≥ m implies that the electric repulsion between two such particles (or branes) is
dominating over their gravitational attraction. Therefore one could reformulate the
weak gravity conjecture as the requirement for the existence of at least one particle or
brane for each gauge symmetry such that its effective interaction potential is repulsive.
In the absence of scalar fields this statement is equivalent to the original conjecture [17].
It is the objective of this paper to compute such interaction potentials in explicit string
theory models and to test if they are repulsive and if they obey the weak gravity
conjecture.

On the other hand, runaway potentials are abundant in string theory and this
was considered as a serious phenomenological problem in the past [75]. Motivated
by the persistent presence of runaway potentials in string theory, it was also recently
conjectured in [76] that quintessence is maybe the only realistic outcome of a theory
of quantum gravity.4 In this paper we are imposing simultaneously the weak gravity
conjecture and the existence of a runaway (space) direction in which one field continues
to roll. While in the decompactification limit supersymmetry is restored and the weak
gravity conjecture is marginally satisfied, considering the rolling field at a different
value generates brane interactions and thus constraints from the point of view of the
weak gravity conjecture.

1For refinements and recent tests of the weak gravity conjecture see [3–26].
2For further discussions of these conjectures see also [21,22,25,29–32] and [33,34].
3Fundamental constraints on the consistency of de Sitter vacua have been previously pointed out

in [36,37]. After the appearance of possible counter examples [38–43] the original conjecture has been
refined in [44], see also [45]. Other attempts of refinement were suggested in [46–49]. For subsequent
discussions in the context of string theory see [50–74].

4This possibility was entertained earlier in various incarnations. For an earlier attempt, see e.g. [77].
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From a string theory viewpoint, the majority of tests of these conjectures were done
in the context of superstring compactifications. On the other hand, supersymmetry
breaking generates precisely the ingredients needed for non-trivial tests: runaway po-
tentials for moduli fields, effective brane-brane interactions and the generation of scalar
potentials, potentially interpreted as dark energy. The goal of the present work is to
analyze the weak gravity conjecture in type I string theory with broken supersymmetry.
Arguably, the simplest and best understood way of breaking supersymmetry in string
theory is via compactification. This was first proposed at the field-theory (supergrav-
ity) level by Scherk and Schwarz [78], then applied to heterotic strings [79] and then
to open strings [80, 81]. The usual string theory computation of brane-brane interac-
tions [82] can be captured, at large separations r �

√
α′, by a field theory computation

of tree-level exchange of supergravity massless fields between the branes. The setup
present however some stringy features that are not fully captured by a pure field-theory
analysis by keeping only the supergravity modes. Indeed this string theory construc-
tion contains, as we review in the next section, odd-winding closed string states with
a “wrong” GSO projection, which contain the would-be scalar tachyon. These states
do couple to branes and do mediate brane-brane interactions. Even if in the regime
of interest R �

√
α′, with R the radius of the Scherk-Schwarz circle, the would-be

tachyonic scalar is actually very heavy, its exchange is the main contribution to the
brane-brane interactions at long distances that we compute below. Due to this feature,
we are forced to perform the computations at the string theory level, although the
results can be understood to some extent by field-theory arguments.

We use D1 brane interactions as a function of the separation in spacetime as a test
of the WGC. We find that at short distances and at one-loop there are attractive forces
which have a finite limit where the distance goes to zero, whereas at long distances those
attractive forces are exponentially suppressed. Since massive (closed strings) fields do
not mediate long range interactions, our interpretation is that at this order of pertur-
bation theory the branes still have a charge to mass ratio set by the supersymmetric
BPS condition. The limit of zero distance suggests that the corresponding self-energy
can be interpreted as a negative quantum correction to the tension, which will generate
an imbalance between gauge and gravitational forces at higher loops, leading to an
effective repulsion at large distances consistent with the WGC. The one-loop attractive
forces, unsuppressed at small distances, will induce the formation of a finite number of
stable bound states of D1 branes. For very small string coupling, the number of such
states can become very large, consistent with the swampland distance conjecture [27].

The structure of this paper is the following. In Section 2 we review type I string
theory with supersymmetry breaking by compactification. In Section 3 we discuss in
more details the resulting runaway potentials. Section 4 deals with the brane-brane
interactions at one-loop and their attractive nature, which also allows us to define the
quantum corrections to brane tensions. In Section 5 we notice that D1 branes not only
interact among themselves, but they also experience an interaction with the D9/O9
background branes/O-planes. Section 6 contains arguments beyond one-loop, which
are needed in order to clarify the fate of the weak gravity conjecture in this setup. The
paper ends with some brief conclusions and future directions.
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2 Type I strings with Scherk-Schwarz supersymme-

try breaking

Scherk-Schwarz breaking of supersymmetry is the oldest and probably the most popular
way of breaking supersymmetry perturbatively in string theory. Since we are interested
in brane interactions, moduli potentials and the weak gravity conjecture, the necessary
ingredients are present in the type I string and orientifolds [83]. Vacuum energy and
brane-brane interactions are nicely encoded in one-loop string amplitudes: torus and
Klein bottle for the propagation of closed strings, and the cylinder and the Möbius
for open strings. In what follows, all string amplitudes below should be multiplied by
the factor 1/(4π2α′)d/2, where d is the number of noncompact spacetime dimensions.
One will add this factor at the end of our computations, in order not to overcharge
various formulae. Keeping this in mind, for 9 non-compact dimensions times a circle of
radius R on which the Scherk-Schwarz mechanism is implemented, the one-loop torus
amplitude is given by5

T =

∫
F

d2τ

τ
11/2
2

{
(|V8|2 + |S8|2)Λm,2n − (V8S̄8 + S8V̄8)Λm+1/2,2n

+ (|O8|2 + |C8|2)Λm,2n+1 − (O8C̄8 + C8Ō8)Λm+1/2,2n+1

} 1

|η8|2
(τ) .

(1)

where F is the fundamental domain of the modular group SL(2,Z), V8, S8, O8 and C8

are SO(8) characters built out of Jacobi theta functions, τ is the complex parameter of

the torus and Λm,n =
∑

m,n q
α′
4

(m
R

+nR
α′ )2q

α′
4

(m
R
−nR
α′ )2 denotes the one-dimensional lattice

of states with Kaluza-Klein (KK) number m and winding number n, with q = e2πiτ .
Even windings have the familiar action of spacetime fermion number: bosons have the
usual KK masses, whereas fermions have a mass shifted by 1/2R. On the other hand,
odd winding states have a different, “wrong” GSO projection. In particular, this sector
contains a tower of states starting with a scalar (coming from the character |O8|2 above)
with the lightest mass given by

m2
O = − 2

α′
+
R2

α′2
. (2)

For small radii R <
√

2α′ this scalar becomes tachyonic, whereas it is very heavy in
the opposite limit R �

√
2α′. This scalar will be a main actor in the brane-brane

interactions at long distances that we discuss later on. The Klein bottle amplitude
provides the orientifold projection of the closed string sector and is given by

K =
1

2

∫ ∞
0

dτ2

τ
11/2
2

V8 − S8

η8
(2iτ2)

∑
m

e−α
′πτ2

m2

R2 . (3)

Since it is the same as in the superstring case, it does not contribute to the vacuum
energy and symmetrizes, as usual, the NS-NS sector which comprises the graviton gMN

5For notations and conventions, see [84].
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and the dilaton Φ, whereas it antisymmetrizes the RR sector which consists of the two-
from C2. Consistency of the theory (RR tadpole conditions) requires the introduction
of 16 D9 branes wrapping the circle, which can be endowed with arbitrary Wilson
lines [85] Wi = diag(ai/R,−ai/R), which can be interpreted as D8 brane positions
di = 2πaR′ on the circle after a T-duality, where R′ = α′/R is the T-dual radius.
Notice that in the T-dual interpretation the branes at positions di are accompanied by
their images under the orientifold projection at −di. The physically distinct values of
the Wilson lines can be chosen to be 0 ≤ ai ≤ 1/2, where the end-points of the interval
ai = 0 and ai = 1/2 correspond to the location of the O8− planes. Whereas the
T-dual interpretation geometrizes nicely properties of brane spectra and interactions,
we should remember that the radius of the circle is large R �

√
α′ in order to avoid

the tachyon (and obtained dynamically by the time-evolution). Therefore the T-dual
picture in the supersymmetry breaking radius is not really useful from an effective field
theory description, since the T-dual radius is smaller than the string length.

The one-loop open string amplitudes are given by

A =
16∑

i,j=1

∫ ∞
0

dτ2

τ
11/2
2

[V8

η8

(
iτ2

2

)
(Pm+ai−aj + Pm+ai+aj)

A =
16∑

i,j=1

∫ ∞
0

dτ2

τ
11/2
2

[
− S8

η8

(
iτ2

2

)
(Pm+1/2+ai−aj + Pm+1/2+ai+aj)

]
, (4)

M = −
16∑
i=1

∫ ∞
0

dτ2

τ
11/2
2

[
V8

η8

(
iτ2

2
+

1

2

)
Pm+2ai −

S8

η8

(
iτ2

2
+

1

2

)
Pm+1/2+2ai)

]
,

where in this loop channel V8 describes the propagation of (gauge) bosons, whereas S8

that of charged fermions. Moreover, Pm+ai =
∑

n e
−πτ2

α′(m+ai)
2

R2 denotes the KK sum
of open string states shifted in mass by the Wilson lines. The parameter τ = iτ2/2
(τ = iτ2/2 + 1/2) has the interpretation of the complex parameter of the doubly cov-
ering torus for the cylinder (Möbius) amplitude. For generic values of the Wilson lines
(brane positions after T-duality), the open string gauge group is U(1)16, whereas in
their absence it is SO(32). The one-loop open string amplitudes have a dual interpre-
tation in terms of tree-level exchange of closed string states between the D-branes (for
the cylinder) and between the D-branes and O-planes (for the Möbius amplitude). The
corresponding string amplitudes can be obtained by appropriate modular transforma-
tions and are expressed in terms of the length l of the tube describing the tree-level
propagation. Doing so, one obtains

Ã =
2−5R√
α′

16∑
i,j=1

∫ ∞
0

dl

[
V8 − S8

η8
(il)

1 + (−1)n

2
+
O8 − C8

η8
(il)

1− (−1)n

2

]

Ã =
2−5R√
α′

16∑
i,j=1

∫ ∞
0

dl ×
[
e−2πin(ai−aj) + e−2πin(ai+aj)

]
Wn , (5)
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M̃ = − 2R√
α′

16∑
i=1

∫ ∞
0

dl
V8 − (−1)nS8

η8

(
il +

1

2

)
e−4πinaiW2n ,

where Wn =
∑

n e
−πln

2R2

2α′ denote the (closed string) winding states couplings to the
branes-O planes. In (6) V8 (S8) denote the couplings to the NS-NS (RR) closed string
sector, whereas O8 (C8) denote the coupling of the odd-winding closed string states
with the ”wrong” GSO projection. Notice in particular the coupling of the scalar O8

to D9 branes. The corresponding coupling to D1 brane in the next sections will play a
central role in our analysis.

Supersymmetry is restored in the large radius limit R → ∞. We therefore expect
the dynamics to drive the radius to large values. In the region R �

√
α′ the would-

be tachyonic closed string scalar is very massive and should not be kept in a low-
energy effective action. However, due to Jacobi function identities, V8 = S8 and the
contribution of the usual NSNS-RR sectors cancel and the main contribution to D9-D9
brane interactions comes precisely from the exchange of this scalar.

3 Scalar potential and runaway vacua

The goal of this section is to write explicitly the scalar potential for the radius and
the Wilson lines of the D9 branes. The scalar potential in string theory is minus the
partition function, therefore

V (R,Wi) = −
(

1

2
T +K +A+M

)
≡ VT + VK + VA + VM . (6)

In the Scherk-Schwarz compactification, supersymmetry is broken by global boundary
conditions, which implies that the scalar potential is of field-theory origin in the open
part for large radii. It is also of field-theory origin in the closed string part in the
large radius limit. The Klein bottle is still supersymmetric and therefore it does not
contribute to the scalar potential. Supersymmetry is restored in the decompactification
limit R→∞. The potential can be easily estimated in the regime where effective field
theory is valid R�

√
2α′. In this limit, string oscillators in all amplitudes and winding

states in the torus are very heavy and do not contribute. We can therefore replace the
modular functions by their leading contribution, such that

T ' 128

∫ ∞
0

dτ2

τ
11/2
2

∑
m

(
e−α

′πτ2
m2

R2 − e−α
′πτ2

(m+1/2)2

R2

)
,

A ' 8
16∑

i,j=1

∫ ∞
0

dτ2

τ
11/2
2

[
Pm+ai−aj + Pm+ai+aj − Pm+1/2+ai−aj − Pm+1/2+ai+aj

]
,

M = −8
16∑
i=1

∫ ∞
0

dτ2

τ
11/2
2

[
Pm+2ai − Pm+1/2+2ai

]
. (7)

6



It is convenient to perform a Poisson resummation of the Kaluza-Klein sums to turn
them into winding sums, to get

T ' 128
R√
α′

∫ ∞
0

dτ2

τ 6
2

∑
n

[1− (−1)n] e
−πn

2R2

α′τ2 ,

A ' 8
R√
α′

16∑
i,j=1

∫ ∞
0

dτ2

τ 6
2

[1− (−1)n]
[
e−2πi(ai−aj)n + e−2πi(ai+aj)n

]
e
−πn

2R2

α′τ2 ,

M = −8
R√
α′

16∑
i=1

∫ ∞
0

dτ2

τ 6
2

[1− (−1)n] e−4πiaine
−πn

2R2

α′τ2 . (8)

As explained at the beginning of Section 2, all string amplitudes above should be mul-
tiplied by the factor 1/(4π2α′)9/2. By including this factor and after a straightforward
integration, one gets

T =
12

π14

∑
n

1

(2n+ 1)10

1

R9
,

A ' 3

2π14

16∑
i,j=1

∑
n

cos 2πai(2n+ 1) cos 2πaj(2n+ 1)

(2n+ 1)10

1

R9
,

M' − 3

4π14

16∑
i=1

∑
n

cos 4πai(2n+ 1)

(2n+ 1)10

1

R9
, (9)

which generate a runaway potential, also typical for quintessence models. Supersym-
metry breaking generates therefore runaway scalar potentials, a notoriously well-known
fact. Indeed, all known ways of breaking supersymmetry generate, at some order in
the perturbative expansion, a runaway potential which generates a cosmological rolling
of the corresponding field towards the runaway infinity. We will not enter here into a
phenomenological discussion of such potentials and their viability. The example dis-
cussed in this paper is too simple to be viable and is ruled out by time dependence of
coupling constants, in particular. More important for our purposes, the vacuum energy
is not positive unless one adds Wilson lines. A stability analysis including Wilson lines
shows that there are no stable solutions with positive scalar potential in nine dimen-
sions [86]. The reason is that in order to increase the value of vacuum energy some D9
branes should be displaced/separated in the T-dual version. However, as discussed in
the Appendix, D8 branes (after T-duality) attract each other and such configurations
are unstable. In lower dimensions, positive potential with stable brane configurations
is possible [86] without changing significantly the discussion on the weak gravity con-
jecture below. Because of the attractive forces between the T-dual D8 branes, in the
next sections we consider the case where there are no Wilson lines on D9 branes.

The formulae above can be generalized easily after compactification to four dimen-
sions. We consider for simplicity a product of circles of radii RI , I = 1, . . . , 6. In the
following we introduce a vectorial notation for the winding numbers n = (n, n1, . . . , n5)
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and Wilson lines of the brane i, ai = (ai,1, . . . , ai,6). The vacuum energy, in the large
radii limit, becomes6

T =
3× 26V6

π9

∑
n

[1− (−1)n]
1

[n2R2 + n2
1R

2
1 + · · ·n5R2

5]5
,

A ' 3× 23V6

π9

16∑
i,j=1

∑
n

[1− (−1)n]
cos(2πain) cos(2πajn)

[n2R2 + n2
1R

2
1 + · · ·n5R2

5]5
,

M' −3× 22V6

4π9

16∑
i=1

∑
n

[1− (−1)n]
cos(4πain)

[n2R2 + n2
1R

2
1 + · · ·n5R2

5]5
. (10)

where in (10) V6 =
∏

I RI . It is now possible to obtain a positive scalar potential for
the radii with runaway vacua to infinity. For this, one needs to add Wilson lines and
check their stability [86] .

For fixed values of the Wilson lines, the 9D effective potential for the radius in the
Einstein frame is of the form

L =
1

2κ2
9R

2
(∂R)2 − ce

18φ
7

R9
, (11)

where φ is the dilaton field, 1
κ29

is the nine-dimensional Planck mass and − c
R9 is ob-

tained when summing the three contributions in (9), according to (6). After the field
redefinition R = R0e

σ, the radion action becomes

L =
1

2κ2
9

(∂σ)2 − ce
18φ
7
−9σ

R9
0

. (12)

Supersymmetry is then restored in the limit σ → ∞. The computation above did
not take into account the fact that the background spacetime is not static, due to the
generated scalar potential. In particular, the Scherk-Schwarz radius is expected to run
to infinity in order to restore supersymmetry. This is clearly the case if the potential
is positive after compactification, which is possible after adding suitable Wilson lines.
Actually, even for negative values of such a scalar potential, the large radius regime, in
which supersymmetry breaking is small, is generically reached by cosmological evolution
in an expanding universe, as shown in [87].

6We wrote (10) in the large radii limit. If some dimensions are small R ∼
√

2α′, RI �
√
α′, the

expressions (10) change. First of all, the winding masses along the supersymmetry breaking radius in
(10) come from the “wrong” GSO closed-string sector which have a tachyonic mass contribution and
we should really replace n2R2 → n2R2 − 2α′. If the five additional dimensions are small RI �

√
α′,

only the windings along the supersymmetry breaking radius do contribute to the scalar potential and,
whereas for large radii RI the potential scales as 1/R9, for small radii it scales as 1/R4. Since our
conclusions do not change in this case, in order not to complicate too much the discussion below we
consider in most cases the limit of large radii R,RI �

√
α′.
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4 Brane interactions and effective brane tensions

Type I strings contain charged D9, D5 and D1 branes. They are BPS in the superstring
case with their tension equal to the RR charge T = Q, which guarantees no interaction
between them. There is a subtlety for the D1-D9 amplitude which does not vanish, but
it does so after adding the Möbius amplitude D1-O9. With supersymmetry breaking
turned on, branes start to interact. Our goal is to analyze this in some detail and
to understand the change in the effective tension. Consider D1 branes wrapping the
Scherk-Schwarz circle, charged under the RR two-form C2, which behave like particles
after compactification, coupling to a gauge field

∫
S1 C2.

Let us consider two such D1 branes, at a distance r in the transverse coordinates.
The brane-brane potentials are contained in the cylinder amplitude. Its explicit com-
putation is very similar to a Casimir vacuum energy. The interaction is given by

A11 = −1

2
Str

∫
dk

2π

∫ ∞
0

dτ2

τ2

e−πα
′τ2(k2+M2) , (13)

with the mass operator given by

M2 =
1

α′
N +

(m+ ai − aj)2

R2
+

r2

(2πα′)2
, (14)

where N is the number operator for open string oscillators and Wi = ai/R are open
string Wilson lines on the circle. An explicit computation, similar to the one of D9-D9
brane amplitudes leads to the one-loop amplitude

A11 =
1

2π
√
α′

∫ ∞
0

dτ2

τ
3/2
2

e−
τ2r

2

4πα′
[
Pm+ai−aj + Pm+ai+aj − Pm+1/2+ai−aj − Pm+1/2+ai+aj

]
× θ4

2

2η12

(
iτ2

2

)
.

(15)
Written in the (closed string) tree-level channel, the amplitude becomes

Ã11 =
R

4πα′

∫ ∞
0

dl

l4
e−

r2

2πα′l [1− (−1)n]
[
e−2πi(ai−aj)n + e−2πi(ai+aj)n

] θ4
4

2η12
(il)e−πl

n2R2

2α′ .

(16)
It is more illuminating to write the tree-level channel exchange potential in a way which
involves an integral over the noncompact momenta of the closed strings exchanged, by
using the identity ∫ ∞

0

dl

l4
e−

r2

2πα′l−
πl
2
α′m2

n =
α′3

8π

∫
d8k

eikr

k2 +m2
n

. (17)

Notice that only massive states contribute to the D1-D1 brane interactions. In the
region of interest r, R�

√
α′ a standard field theory computation does not capture the

string result (16). Indeed, in the region r �
√
α′ the main contribution to the brane-

brane interaction comes from the region of a long thin tube l→∞ and therefore from
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the lightest closed string states. However, since the even winding contribution which
include the supergravity states vanishes due to a cancellation between the NS-NS and
the RR sectors, the main contribution to the interaction comes from odd windings
containing the would-be tachyon scalar in the closed string spectrum (in character
language, O8). The D1-D1 brane interactions as seen from the tree-level closed-string
(“gravitational”) exchange are given by

V11 = −Rα
′2

2π2

∑
n

∫
d8k eikr

[
(1− 1)

cos[4πnai] cos[4πnaj]

k2 + 4n2R2

α′2

+
1

8

cos[2π(2n+ 1)ai] cos[2π(2n+ 1)aj]

k2 + (2n+1)2R2

α′2 − 2
α′

]
. (18)

The contribution of the zero-mode vanishes at one-loop, according to our computation,
which implies that at one-loop the interaction of D1 branes is still governed by the the
BPS tree-level tension and charge T1 = Q1. Indeed, since the one-loop contribution
is exclusively mediated by massive states, it is short ranged and therefore cannot be
interpreted as coming from an imbalance between the tension and charge of the branes.
Actually, since the would-be tachyonic scalar for large radius R�

√
α′ is much heavier

than the supergravity modes and also heavier than string states, one should only keep
the terms with n = 0 and n = −1 in the formula above for consistency.

If one fixes the values of the Wilson lines and only considers the dynamics in the
dimensions perpendicular to the branes, the short-range one-loop D1-D1 brane interac-
tions are attractive (negative potential) for coincident position of branes on the circle
(zero relative Wilson line ai = aj) and are repulsive (positive potential) if the branes are
separated, for example if one sits at ai = 0 and the second brane sits at the other end
of the interval aj = 1/2. However, once the dynamics of the Wilson lines is taken into
account, one sees that the potential is such that the only stable point is the attractive
one ai = aj.

An important output of the computation above is the D1 brane self-energy, obtained
by considering a single D1 brane of Wilson line a and setting the spacetime distance
r = 0. If the result would be divergent, more care would be needed for its interpretation.
However, since the result is completely finite and is a contribution localized on the D1
brane worldvolume, it can safely interpreted as a self-energy quantum correction to
the brane tension, that we compute here. The interaction is dominated in this case by
the integration region l = 0, which is the UV region of the closed string exchange (IR
region of one-loop open strings). In this case one gets the approximate result

Ã11 =
8R

πα′

∫ ∞
0

dl
∑
n

cos2[2π(2n+ 1))ai]e
−πl (2n+1)2R2

2α′ =
16

π2R

∑
n

cos2[2π(2n+ 1))ai]

(2n+ 1)2
.

(19)
This amplitude contains brane-brane and brane-image brane interactions. By extract-
ing the brane-brane self-energy, one obtains a correction to the brane tension. One
obtains then the one-loop corrected tension of the D1 brane wrapping the circle, which

10



can be written either as a corrected D1 brane tension or as the mass M0 of the wrapped
brane on the circle

T1,eff = T1 −
2

π3R2

∑
n

1

(2n+ 1)2
= T1 −

1

2πR2
, M0 = 2πRT1,eff , (20)

where T1 =
√
π√

2κ10
(4π2α′) is the standard type I D1 brane tension. Notice that this one-

loop corrected tension is lower than the tree-level one, due to supersymmetry breaking.
Indeed, since T1 ∼ O(g−1

s ), the correction is of order O(gs) with respect to the original
value. The tension becomes zero for the special value R2 ∼ gsα

′, which is actually
in the regime where type I tachyon condenses and the theory is not anymore under
control.

Notice that in a realistic compactification only four spacetime dimensions are non-
compact. In this case, the brane-brane potential for r �

√
α′ becomes

V11 = − Rα′2

8π2V5

∑
p

∫
d3k eikr

cos[2πai] cos[2πaj]

k2 +m2
p + R2

α′2 − 2
α′

, (21)

where
∑

p is the sum over all Kaluza-Klein masses in the five additional internal di-
mensions.

The result is particularly simple if the five additional dimensions are very small,
i.e. RI � R, r, in which case one can neglect the corresponding massive modes con-
tributions. In this limit (and using R �

√
α′), the total potential energy is well

approximated at large distances r �
√
α′ by

V11 ∼ −
Rα′2

4V5

cos[2πai] cos[2πaj]
e−r

√
R2

α′2
− 2
α′

r
. (22)

As discussed previously, despite the naive first thought that the potential (22) is nega-
tive for close values of the Wilson lines of the two branes and positive if the branes are
well separated on the circle, the only minimum stable configuration is when they are
coincident.

An important point for the later discussion is that the negative self-energy of D1
branes and the decrease in the effective brane tension also implies that it is energetically
favorable to form bound states of D1 branes. Indeed, let us denote by V0 < 0 the self-
energy of one D1 brane. Then one can compare the energy of two configurations.
The first is the energy EN,1 of N coincident D1 branes and a single D1 brane at a
large distance r �

√
α′ from them, whereas the second is the energy EN+1,0 of N + 1

coincident D1 branes. They are given by

EN,1 = −(N + 1)T1 + (N2 + 1)V0 +O
(
e−

rR
α′
)
,

EN+1,0 = −(N + 1)T1 + (N + 1)2V0 . (23)

It is then clear that EN+1,0 < EN,1 and therefore that the D1 branes tend to form
bound states which eventually can lead to the formation of black holes.
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Finally, until now we considered D1 branes wrapping the supersymmetry breaking
circle. If on the other hand the D1 branes are perpendicular to the direction of the
radius R used for supersymmetry breaking, they do not experience supersymmetry
breaking. They will retain therefore the BPS nature at the one-loop level and their
interactions will be supersymmetric.

5 D1 interactions with the background D9-O9

One natural question is the influence of the background D9-O9 on the potential for
the Wilson lines of D1 branes. In the type I superstring there is no net interaction
between D1 branes and the background D9 branes and O9 planes.7 More precisely,
the brane-brane interaction D1- D9 is cancelled by the interaction with the orientifold
D1-O9, a consequence of the tadpole cancelation condition and of the BPS properties
of type I branes.

In the case of supersymmetry breaking by compactification, this cancellation does
not occur anymore and D1 branes feel a net interaction with the background, This
generates a potential for the Wilson lines of D1 branes on the circle. In what follows,
due to the discussion in Section 3 on the D9 Wilson lines and their attractive nature,
we take all T-dual D8 branes to be coincident, i.e. we introduce no corresponding
Wilson lines for the D9 branes. Their addition could change the minima of the D1
positions from this interaction with the background, without changing qualitatively our
discussion in the next section concerning brane-brane interactions. As a consequence,
as one will check here, D1 brane interactions with the background D9/O9 tend to
stabilize the D1 positions ai at the origin of the (Scherk-Schwarz) circle. The D1-D9
and D1-O9 amplitudes are then given by [88]

A19 =
32

2π
√
α′

∫ ∞
0

dτ2

τ
3/2
2

[
(O0S8 + V0C8)Pm+ai − (S0V8 + C0O8)Pm+ai+1/2

]( η

θ4

)4

,

M1 =
1

4π
√
α′

∫ ∞
0

dτ2

τ
3/2
2

[
(Ô0V̂8 − V̂0Ô8)Pm+2ai − (Ŝ0Ŝ8 − Ĉ0Ĉ8)Pm+2ai+1/2

](2η̂

θ̂2

)4

.

(24)

In these amplitudes O0, V0, S0, C0 describe the one-loop propagation of open strings
scalar, vector and spinors respectively in the two dimensional worldvolume of D1 branes
in the light cone formulation, whereas O8, V8, S8, C8 describes the quantum numbers
and degeneracy due to the eight Neumann-Dirichlet coordinates. The corresponding
amplitudes in the tree-level / gravitational channel are given by

Ã19 =
32R

64πα′

∫ ∞
0

dl
[
(V0O8 − 00V8 + S0S8 − C0C8)e−4πinaiW2n

Ã19 =
32R

64πα′

∫ ∞
0

dl + (O0O8 − V0V8 − S0C8 + C0S8)e−2πi(2n+1)aiW2n+1

](2η

θ2

)4

,

7E.D. thanks Jihad Mourad for a very helpful discussion on this issue.
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M̃1 =
R

2πα′

∫ ∞
0

dl
[
(Ô0V̂8 − V̂0Ô8)− (−1)n(Ŝ0Ŝ8 − Ĉ0Ĉ8)

]
e−4πinaiW2n

(
2η̂

θ̂2

)4

. (25)

In the tree-level channel, V0, O0 denote propagation of NS-NS closed string fields,
whereas S0, C0 denote propagation of RR fields. Notice that there is no net effective
interaction in the RR sector exchange, due to a cancellation between the two terms.
This is consistent with the fact that there is no physical RR field to be exchanged
between the D1 and D9/O9 sector. The fact that the two amplitudes do not cancel
anymore in the presence of supersymmetry breaking is transparent from the fact that
there are odd winding states of the would-be tachyonic (for small radius R <

√
2α′)

field O0O8 in the D1-D9 interaction, which are not present in the D1-O9 interaction.
By summing the two contributions and using identities of Jacobi functions, one finds

Ã19 + M̃1 =
R

2πα′

∫ ∞
0

dl O0O8

(
2η

θ2

)4

e−2πi(2n+1)aiW2n+1 . (26)

In the limit of interest R �
√
α′, one obtains the leading contribution by taking the

limit l → 0 in the string oscillator contributions. By doing so, one finds the final form
of the potential from the 19 sector

V19 = −(Ã19 + M̃1) = − 8

π2R

∑
n

cos[2π(2n+ 1)ai]

(2n+ 1)2
. (27)

The minimum of the potential is at ai = 0. The result (27) is valid for large five addi-
tional dimensions RI �

√
α′ and can be understood as a Casimir field-theory vacuum

energy contribution on compact space dimensions. If the five additional dimensions are
small RI �

√
α′, (27) changes and become parametrically of order (α′)5/V5R

6. This
can also be understood by T-dualizing the small dimensions, after which one gets D6
branes wrapping the supersymmetry breaking circle plus five additional large dimen-
sions. The resulting potential energy is of order V ′5/R

6, where V ′5 � α′5/2 is the T-dual
volume. This potential is purely field theoretically and can also be understood as a
Casimir energy calculation.

This interaction with the background D9 branes/O9-planes seems therefore to favor
D1 branes with vanishing Wilson lines. It is unclear and rather implausible to us that
this potential energy, localized on the D1 brane but Wilson line/position dependent,
should be interpreted as an additional correction to the D1 brane tension. In any case,
since it is of the same sign and magnitude as the self energy of the D1 brane, including
it or not would not modify the qualitative features of what we discuss next.

6 Interactions beyond one-loop and the weak grav-

ity conjecture

We consider as in Section 4 two D1 branes separated by a distance r in the three-
dimensional noncompact space. Our goal is to estimate their interaction as a function
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of the distance r. We know that at short distances the interaction is attractive and D1
branes tend to accumulate and form bound states. There is no reason to believe that in a
perturbative string setup this result would be upset to higher-orders in the perturbative
expansion. At large distances however, the one-loop attraction is exponentially damped
since the main contribution comes from massive closed-string states. At large distances
therefore, potential higher-loop contributions generating massless gravitational (closed
string) exchanges would induce infinite-range interactions, which change considerably
(and dominate over) the one-loop contribution. This effect can be understood in terms
of modifications of the tension and charge of D1 branes, as well as the generation of
a dilaton mass, that we now try to include in the interaction potential. All of these
modifications are generated by supersymmetry breaking.

Let us write the D1-D1 brane interactions in a slightly more general way as a con-
tribution from the zero modes V

(0)
11 and contributions from massive states V

(n)
11 . The

contribution of the zero-mode V
(0)

11 vanishes at one-loop, according to our computa-
tion in Section 4. However, since the one-loop contribution comes exclusively from
massive states, it is short ranged and therefore any higher-order/loop correction lead-
ing to a zero-mode exchange changes dramatically the interaction at large distances.
We consequently parametrize the zero-mode higher-loop contributions by introducing
three parameters: T1,eff and Q1,eff are the quantum corrected brane tension and charge,
whereas m0 denotes the mass of the dilaton generated by quantum corrections. With
these changes in mind, at large distances r �

√
α′ where the main contribution comes

from the lightest closed string states exchanged between the branes, we arrive at the
following expression for the D1-D1 brane interaction

V11 = V
(0)

11 + V
(n)

11 , where

V
(0)

11 =
Rα′2

2π2

∫
d8k eikr

[
Q2

1,eff/Q
2
1

k2
−
T 2

1,eff/T
2
1

4

(
1

k2 +m2
0

+
3

k2

) ]
,

V
(n)

11 = −Rα
′2

8π2

∫
d8k eikr

cos[2πai] cos[2πaj]

k2 + R2

α′2 − 2
α′

. (28)

The zero-mode contribution can also be written in terms of the supergravity 10d Planck
mass κ10 as usually done in the literature8 [82]

V
(0)

11 = 16κ2
10πR

∫
d8k

(2π)8
eikr

[
Q2

1,eff

k2
−
T 2

1,eff

4

(
1

k2 +m2
0

+
3

k2

) ]
. (29)

In (28), the corrected tension of the wrapped D1 brane T1,eff is defined in (20) and the
relative factor of 1/4 (3/4) denotes the contribution of the dilaton (graviton). The one-

loop corrected charge Q1,eff will be discussed below. The massive contributions V
(n)

11

contain the one-loop computation performed in Section 4. Notice that in a realistic
compactification only four spacetime dimensions are noncompact. In this case, the

8The extra factor of 4 with respect to the usual formula is due to the fact that branes and their
images contribute.
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brane-brane potential becomes

V
(0)

11 =
∑
p

16κ2
10πR

(2π)8V5

∫
d3k eikr

[
Q2

1,eff

k2 +m2
p

−
T 2

1,eff

4

(
1

k2 +m2
p +m2

0

+
3

k2 +m2
p

)]
,

V
(n)

11 = − Rα′2

8π2V5

∑
p

∫
d3k eikr

cos[2πai] cos[2πaj]

k2 +m2
p + R2

α′2 − 2
α′

, (30)

where
∑

p is the sum over all Kaluza-Klein masses in the five additional internal di-
mensions. As we discussed in the previous sections, in the T-dual version D0 branes
energetically prefer to be in the same position and coincident with the D8 branes.
Therefore in what follows we can set their position to zero, i.e. we fix ai = 0. Dis-
tributing D8 branes on the circle, which would change quantitatively the formulae
in this section, raises stability issues and complicates the analysis, without changing
qualitatively the discussion and the conclusions below.

The result is particularly simple if the five additional dimensions are much smaller
than R and r, in which case one can neglect the contributions from the corresponding
massive modes. In this limit, it is more transparent to express the total potential energy
in terms of the four-dimensional Planck mass MP , for which the graviton exchange
provides the Newton potential in terms of the mass M0 = 2πRT1,eff and the charge
Q0 = 2πRQ1,eff of the wrapped D1 brane. In this way, one gets the approximate
potential

V11 ∼
1

M2
P

 4
3
Q2

0 −M2
0 − 1

3
M2

0 e
−m0r

r
− Q2

0

3

e−r
√

R2

α′2
− 2
α′

r

 . (31)

This expression is valid for distances r �
√
α′, whereas for shorter distances one expects

the one-loop potential to be a good approximation, which has a constant limit when
r → 0.

The correction V0 to the D1 brane tension is negative being generated by the massive
contributions V

(n)
11 between the same brane (r = 0). The correction to the charge would,

on the other hand, come from a genus 3/2 computation, which was not yet performed
to our knowledge. However, a quantum correction to the RR charge of the brane would
be of the form

∫
C2e

φ, where φ is the dilaton. Such a coupling would violate the gauge
symmetry of the RR gauge field C2, which seems implausible in perturbation theory.
Corrections to the RR field kinetic terms are possible though, and this would generate
a renormalization of the RR charge.9 A similar correction to the dilaton kinetic term
should also contribute to the renormalization of the tension. However, such corrections
would arise from one loop calculations and would be associated to O(g2

s) corrections.
We thus do not expect them to dominate the one-loop contribution to the tension,
which is O(gs), and therefore

T 2
1,eff < Q2

1,eff ⇐⇒ M2
0 < Q2

0 . (32)

9We thank J. Mourad for suggesting this possibility. We also thank I. Antoniadis, G. Bossard, H.
Partouche, A. Sagnotti for discussions on this issue.
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As a consequence, at short distances the potential is attractive whereas it is repulsive
at large distances. If on the contrary the bound (32) was violated in the case of a
massless dilaton, i.e. if m0 = 0 (or if M2

0 > 4
3
Q2

0 for m0 > 0), the potential would
remain attractive also at large distances. Our perturbative arguments dismiss such a
possibility and we conclude that the weak gravity conjecture holds in our setup, and
the massless modes exchange which it constrains determines the brane-brane dynamics
at large distances.

Even if (32) holds, the one-loop potential (16) between D1 branes is attractive and
unsuppressed at small distances, which entertains the possibility that stable bound
states, which may be black holes, exist in this theory. Consequently, black holes stability
arguments, which are sometimes used in discussions about the WGC, are different in
the small and large distance regions. To address this question, one needs to study the
regime interpolating between large distances, where higher-order effects dominate and
presumably verify the WGC as argued above, and small distances where the one-loop
potential induces an attraction. Knowing the r = 0 value of the potential given in (19)
and its asymptotic behaviour (31), we understand that it reaches a maximal value and
has the shape depicted in figure 1.

D1D1potential.png

Figure 1: The D1-D1 potential as a function of the distance in the transverse space
(the potentials and distances are expressed in units of α′, we fixed R = 8, gs = 0.2,
V5 ∼ 1.55 and introduced no Wilson lines for the D1 branes)

To estimate the location r0 of the maximum, we can use (31) if r0 is in its validity
regime. When m0 = 0, we obtain

r0 = − 1√
R2

α′2 − 2
α′

[
1 +W

(
8
T 2

1,eff − T 2
1

eT 2
1

)]
≈ α′

R
log

(
R2

gsα′

)
, (33)

where W is the Lambert W function.10 This expression, obtained from (31), can be
trusted if r0 �

√
α′, which can be rewritten as a constraint on the string coupling

gs �
R3

α′3/2
e
− R√

α′ . (34)

In this case, black holes of size smaller than r0 would be stable remnants. Such black
holes could be formed from the D1 bound states about which we argued in (23) that
their formation is energetically favorable. However, we expect from black hole construc-
tions in string theory that there should only be a finite number of such remnants: from
the bound state argument in (23) one can guess that if the number of D1 constituents
is large and the bound state size becomes or order r0 or larger, repulsive forces will

10The Lambert W function or product logarithm is defined by W (xex) = x. It has two real branches,
here only the lower branch with W ≤ −1 is relevant.
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prevent more D1 branes to bind and therefore larger charge/mass remnants to form.
Calculating this finite number of bound states is beyond the scope of this paper, but
we could try to estimate it by comparing r0 with the scale at which we expect the
D1-branes solutions of supergravity to break down,11 rS ∼ N1gsα′3

V5
, where N1 is the

number of stacked D1-branes. Using (33), we can derive the following estimate,

Ncrit ≡ N1
r0

rS
≈ 1

gs

V5

α′5/2
α′1/2

R
log

(
R2

gsα′

)
, (35)

where all D1-branes configurations with N1 < Ncrit correspond to situations where the
attractive force is felt even in the regime where supergravity applies. In particular, this
number becomes small in the decompactifcation limit R�

√
α′.

Furthermore, (35) also shows that the smaller gs, the more stable bound states can
exist. If m0 6= 0, r0 becomes smaller than (33) and the appearance of such states
is slightly suppressed in the limit gs → 0, but the behaviour remains qualitatively
the same. Such a scaling of Ncrit with gs seems to be consistent with the swampland
distance conjecture. This conjecture predicts not only the appearance of an infinite
tower of massive states as one moves an infinite distance in scalar field space, but also
that these states become exponentially light [27]. To test this claim in our setup we
compare the masses of the D1-brane bound states with the four-dimensional Planck
mass. Therefore, we should to take the limit gs → 0 in such a way such that

M2
P ∼

V5

α′5/2
R

α′1/2
1

α′g2
s

(36)

stays constant. This means we consider

gs, R→ 0 such that
R

g2
s

= const. (37)

Under this limit we still have Ncrit → ∞ and the bound state masses scale approxi-
mately as

M0

MP

∼
(
α′5/2

V5

R

α′1/2

)1/2

→ 0 , (38)

in agreement with the swampland distance conjecture.
On the other hand, when the string coupling increases, r0 decreases and it will

eventually not be consistent to use (31) and (33). Finally, when the supersymmetry
breaking (Scherk-Schwarz) radius goes to infinity, as it would be if no further stabiliza-
tion is added to the dynamics induced by (11) and (12), the one-loop potential vanishes
since supersymmetry is recovered, no attraction nor repulsion remains, and the WGC,
as well as the stability of black holes, is marginally retrieved.

Taking into account the shape of the brane-brane potential, one should clearly also
consider the tunneling from large distance r to small ones when discussing the stability

11This scale is the one for which the harmonic function h(r) = 1 + RS

r , which defines the D1-brane
solution, starts to deviate significantly from one.
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of brane configurations. Since we don’t have a complete analytic formula, we are unable
for the time being to estimate the corresponding tunneling probability. The conditions
we derived are therefore necessary but apriori not sufficient to firmly establish the
existence of bound states.

7 Conclusions and perspectives

String theory models with broken supersymmetry usually generate runaway potentials.
Such potentials are of exponential type if one canonically normalizes the rolling field and
could lead in special cases to quintessence models of dark energy. On the other hand,
the breaking of supersymmetry generates at the same time interactions between branes,
which only disappear in the runaway limit. While this in itself respects the weak gravity
conjecture at infinity, insisting on the rolling field cosmology could generate violations
of it at one-loop, coming from a short-distance attraction generated by massive modes.
Naively one would therefore conclude that in a perturbative and controllable string
setting, rolling field dynamics is incompatible with repulsive brane interactions. It is
hence necessary to determine the behavior of the brane-interaction at long distances.
Since the long-range interaction at one-loop is vanishing due to a cancellation between
the massless NS-NS (dilaton and graviton) and the RR exchanges, we believe however
that higher-loop corrections are important to settle this issue. We gave qualitative
arguments that at higher-loop a repulsive interaction generated by the exchange of
massless states should appear. At large spatial distances, defined by the parameters
(gs, R), this repulsive interaction dominates over the one-loop (short range) attraction.

The main result of this paper is that in this model, after taking one-loop corrections
into account, the effective tension T1,eff and charge Q1,eff of D1 branes satisfy the weak
gravity bound Q1,eff > T1,eff . This is equivalent to a repulsive interaction at long
distances as here the aforementioned attractive force is exponentially suppressed. In
the lower dimensional effective theory these D1 branes, wrapped around the Scherk-
Schwarz circle, behave as particles charged under a U(1)-gauge symmetry with Qeff >
Meff . Overall, this leads to a picture in which the weak gravity conjecture seems to be
respected. To complete our test it would be interesting to compute if supersymmetry
breaking induces corrections to the black hole extremality bound as well.

The stability of bound states and black holes is interesting in our setup. The
one-loop short-range attraction favors the formation of D1 bound states which can
potentially lead to stable black hole remnants. If the string coupling is very small,
the attractive region of brane-brane potentials extends up to scales where the effective

gravitational theory applies: if gs . R3

α′3/2 e
− R√

α′ (with R the radius of the supersymme-
try breaking dimension), a finite number of branes well described by supergravity are
sensitive to the attractive potential. This number roughly scales like 1

gs
, and indicates

that in the small gs limit an increasing quantity of stable bound states is expected to
arise. This behavior agrees with the swampland distance conjecture.

There are a number of open interesting questions that are worth further exploration.
It would be interesting to identify string models with broken supersymmetry where the
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generated moduli potentials and runaway vacua can lead to viable quintessence-like
models of dark energy. There are various difficulties for progress into this direction,
from generating a small acceleration of the present universe, which is highly nontrivial
to achieve in string theory constructions [89], to the constraints coming from time-
dependence of fundamental constants and fifth force experiments. From a more the-
oretical string theory perspective, it would be interesting to perform higher-loop (for
instance, genus 3/2) computations in order to test our result on the quantum corrected
brane tension and the absence of renormalization of the brane charges at lowest order.
Whereas supersymmetry breaking should generate, as usual, tadpoles which signal lim-
itations in quantum computations at higher loops, higher-order computations of brane
tensions and charges could be performed by separating two D1 branes in (our) noncom-
pact space, in which case there should be no such problems. It would also be important
to investigate stable type I models in lower dimensions with D9 Wilson lines and pos-
itive scalar potential in the class of models constructed in [86] and to investigate the
D1 interaction potentials in detail. It would also be very interesting to explore quan-
tum corrections to brane tensions and RR charges in other string models with broken
supersymmetry, such as the models with brane supersymmetry breaking [90].

Finally, we believe it is important to test the other various recent swampland con-
jectures [1, 2, 27, 28, 35, 44] in explicit perturbative string theory models with broken
supersymmetry. Some work along these lines is in progress [91].
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A D9 brane interactions

The D9 brane potentials and interactions are contained in the cylinder vacuum ampli-
tudes. Its explicit computation is very similar to a Casimir vacuum energy and was
discussed from the viewpoint of moduli potentials in Sections 2 and 3. Consider two
D9 branes wrapping the circle, with Wilson lines Wi = ai/R. After a T-duality, they
become D8 branes localized on the circle, of positions di = 2πaiR

′, where R′ is the
T-dual radius. In the large radius limit R�

√
α′, their interaction is given by

VA ' −
3

4π14

∑
n

cos 2π(ai − aj)(2n+ 1)

(2n+ 1)10

1

R9
, (39)

The force experienced by the two branes can be computed from

Fij = −∂VA
∂aij

= − 3

2π13

∑
n

sin 2π(ai − aj)(2n+ 1)

(2n+ 1)9

1

R9
. (40)
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This force is attractive, for any value of the radius and any separation 0 ≤ ai −
aj ≤ 1/2 between the brane positions / Wilson lines. D9 branes are however space-
filling objects and therefore cannot be given a separation in spacetime. That is the
reason we considered D1 branes to test the WGC. Indeed, D1 branes wrapped on the
supersymmetry breaking circle behave as particles in four-dimensions and can be used
to test the gravity as the weakest force hypothesis.
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