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Bio-inspired computing using artificial spiking neural networks promises performances outperforming
currently available computational approaches. Yet, the number of applications of such networks remains
limited due to the absence of generic training procedures for complex pattern recognition, which require
the design of dedicated architectures for each situation. We developed a spike-timing-dependent plasticity
(STDP) spiking neural network (SSN) to address spike-sorting, a central pattern recognition problem
in neuroscience. This network is designed to process an extracellular neural signal in an online and
unsupervised fashion. The signal stream is continuously fed to the network and processed through several
layers to output spike trains matching the truth after a short learning period requiring only few data.
The network features an attention mechanism to handle the scarcity of action potential occurrences in
the signal, and a threshold adaptation mechanism to handle patterns with different sizes. This method
outperforms two existing spike-sorting algorithms at low signal-to-noise ratio (SNR) and can be adapted
to process several channels simultaneously in the case of tetrode recordings. Such attention-based STDP
network applied to spike-sorting opens perspectives to embed neuromorphic processing of neural data in
future brain implants.

Keywords: Spike-timing-dependent synaptic plasticity; spiking neural network; spike-sorting; unsuper-
vised learning; attention mechanism.

1. Introduction

Pattern recognition is a fundamental task performed
very efficiently by the brain. Artificial intelligence is
making quick progress in reproducing these perfor-
mances with artificial neural networks. In particular,
deep neural networks have been successful both for
static and sequential patterns recognition in many
applications such as image recognition, analysis of

video streams or natural language processing. How-
ever, these types of neural networks require extensive
training on large datasets and heavy computations.
A promising alternative are spiking neural networks
(SNNs), also known as the third generation of arti-
ficial neural networks,1 which have in theory more
computational efficiency.2 Some class of SNNs such
as spiking neural P systems have been shown to
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be Turing universal.3 Whereas formal neurons out-
put a real value modeling a firing rate, spiking
neuron models have a temporal dynamics and out-
put spike trains, thus keeping the spike timing infor-
mation. Importantly, they offer an opportunity to
be implemented in very-low-power analog neuro-
morphic hardware that currently undergoes impor-
tant developments, in particular with memristive
devices that are able to mimic synaptic plasticity,
such as spike-timing-dependent plasticity (STDP),
at a highly miniaturized scale.4–11 STDP rules are
local learning rules that change the synapse weight
depending on the time difference between pre- and
post-synaptic spikes. It has been shown that incor-
porating such rule in SNNs allows to perform unsu-
pervised learning,12,13 and this strategy has been
successfully applied for visual or auditory pattern
recognition.14–17 Yet, for now, the range of applica-
tions of spiking neural networks in pattern recogni-
tion remains limited, most studies being focused on
biological modeling.18–22 Whereas second-generation
networks, and some specific spiking neural net-
work,23–25 can be trained using backpropagation,
there is no well-established way to train a spik-
ing neural network implementing an STDP rule.
New architectures thus remain to be proposed to
address a wider range of applications of these
networks.

Here, we present an STDP spiking neural net-
work to perform spike-sorting, a central problem in
neuroscience. Spike-sorting consists in determining
from a common extracellular signal how many cells
emit action potentials and, for each cell, when these
events take place. Action potentials occur sparsely at
discrete time points, and appear in the signal as tem-
poral waveforms whose shapes typically differ from
one neuron to another according to the geometry and
position of the cells with respect to the recording
electrode. Thus, spike-sorting can be seen as an unsu-
pervised pattern recognition task, where the goal is
to detect and classify different temporal waveforms,
occurring sparsely in a noisy signal. Currently avail-
able spike-sorting approaches typically use three sep-
arate steps.

• The first step is the detection of action potentials,
usually done by thresholding the extracellular sig-
nal directly or after suitable filtering, for example
using an energy operator26 or templates.27

• The second step is the extraction of fea-
tures from the action potential waveforms,
such as amplitudes,27 wavelet coefficients28 or
reduced representations obtained with dimension-
ality reduction algorithms such as PCA.29–31

• Finally, the last and most computation-demanding
step consists in clustering these features. Many
clustering algorithms have been proposed, such
as expectation-maximization,29,30 k-means,32 c-
means,33 mean-shift31,34 or superparamagnetic
clustering.28 Noticeably, Ref. 35 used an STDP
network for this clustering step.

Although some spike-sorting algorithms have been
designed to process neural data online,26,35,36 most
methods remain offline or require an offline prepro-
cessing step, precluding their use in online appli-
cations such as brain–computer interfaces (BCIs).
Moreover, the current availability of very dense
arrays of microelectrodes37–42 creates the need for
efficient ways to handle the important data flow
generated by these devices and in particular to
automate spike-sorting processing.30,31,34,36,43 Ide-
ally, implantable neural interfaces would strongly
benefit from fully automatic spike-sorting algo-
rithms compatible with very-low-power hardware
implementation for future embedding at the elec-
trode site. However, no such algorithm is available
yet.

In this context, we propose to use a spiking neu-
ral network as a radically new way to handle the
problem of spike-sorting. We present an STDP net-
work architecture designed for this specific problem.
The network processes continuously the stream of
data recorded by a microelectrode and directly out-
puts trains of artificial spikes that correspond, after
a short learning period, to the sorted activity of the
recorded cells. Thus, the entire processing in done
by a single network in a fully unsupervised manner,
without explicit implementation of the conventional
three-step procedure and without requiring a read-
out post-processing step. Beyond the classical STDP
learning rule, the network combines an attention
mechanism, delayed synapses and threshold adap-
tation to handle simultaneously the problems of
detecting and classifying time-varying patterns with
different sizes. This approach was tested on both
simulated and real data and compared to two avail-
able spike-sorting software, Osort26 and Wave clus,28
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showing better performance at low signal-to-noise
ratio (SNR).

2. Materials and Methods

2.1. Network model

We considered an artificial spiking neural network
composed of three layers (input, intermediate and
output) and one “attention” neuron, all connected
by feedforward synapses implementing specific plas-
ticity rules (Fig. 1). This network, composed of “sen-
sory” and Leaky Integrate-and-Fire (LIF) neurons, is
bio-inspired rather than realistic. In particular, the
characteristic times are much shorter than realistic
ones, which allows processing the information con-
tained in the action potential shapes and makes the
approach compatible with real-time spike-sorting at
the millisecond time scale. After learning, the out-
put spikes of the network correspond to the detected
and sorted action potentials present in the input sig-
nal. To avoid any confusion in the following, the
term “spikes” hereafter denotes action potentials
emitted by neurons of the artificial neural network,
while “action potentials” denotes those of real neu-
rons embedded in the input signal analyzed by the
network.

2.1.1. Input layer

The first layer, called the input layer, encodes the
incoming neural signal within a sliding time window
preceding the current time point into artificial spikes
that are passed on to the next layers. Neurons of this
input layer act as “sensory” neurons.

The input neurons are organized into a grid with
Nc columns corresponding to different processing
delays of the input signal, starting from zero and
regularly spaced by ∆tc [see Fig. 2(a)]. Within each

Fig. 1. Overview of the network structure.

Fig. 2. (Color online) Input layer structure: (a) Input
layer activation at a specific time step (blue arrow). (b)
Spike train emitted by one specific input neuron, high-
lighted in bold red in (a).

column, each neuron is sensitive to a given range
of signal values and fires at regular time steps ∆ts
when the signal falls within this sensitivity range [see
Fig. 2(b)]. Thus, at each of these time steps, each
input neuron performs a simple computation that
consists in comparing the input signal value to the
extrema of its sensitivity range and fires accordingly.
The size of this range, ∆Vs, is the same for each neu-
ron, and is set proportional to the noise level. The
sensitivity ranges of neurons from one column are
regularly overlapping so that, for each possible sig-
nal value, Noverlap neurons of this column fire. Within
one column, the step between two consecutive sensi-
tivity ranges is determined by the size of the sensi-
tivity range ∆Vs and the overlapping factor Noverlap,
and the total number of neurons is determined by
the total signal value range to cover. The input layer
processes the input signal at regular time steps, ∆ts.
This time step is chosen sufficiently short so that the
time jitter due to sampling does not impact the per-
formance of the network. As this time step is shorter
than the original signal sampling time step, the signal
is linearly interpolated for steps falling between sam-
ples. Assuming that the timing properties are consis-
tent between different neural recordings, the sensitiv-
ity range size is the only parameter of the network
that needs to be adjusted depending on the signal
properties. The values of the input layer parameters
are given in Table 1.
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Table 1. Input layer parameters.

Parameter Description Value

∆Vs Sensitivity range size 3.5σnoise

Noverlap Number of neurons active 10
at the same time within
one column

∆ts Delay interval between two 0.0125 ms
activations of the input layer

∆tc Time interval between two 0.05 ms
columns

Nc Number of columns 10

As a result, the input layer converts continuously
the input signal into an artificial spike train encoding
at each time step the shape of the signal within a
sliding window. The role of the rest of the network is
to detect different patterns into this input spike train
that reflect the shape of action potentials stemming
from different cells.

2.1.2. Attention neuron

The role of the “attention” neuron is to detect every
action potential occurrence embedded in the input
signal. Each time an action potential is present in
the input signal, the attention neuron fires a sequence
of spikes from the beginning to the end of the action
potential. This spiking activity in turn modulates the
intermediate and output layers, thus acting as an
attention mechanism gating the learning mechanisms
occurring in these two subsequent layers.

The attention neuron receives all spikes emitted
by the input layer through excitatory synapses that
implement a short-term plasticity (STP) rule, gov-
erned by the following equation:

dw

dt
=

1
τstp

(1 − w) −
∑

s

w ∗ fd ∗ δ(t − ts), (1)

where w is the synaptic weight, τstp a time con-
stant, fd a depression factor and ts the pre-synaptic
spike times. This STP rule weakens the weights
of synapses for which pre-synaptic spikes occur at
high frequency.44 As a result, the weights of the
synapses corresponding to pre-synaptic input neu-
rons encoding signal amplitudes within the range of
noise (and thus often activated) are weakened, while
synapses corresponding to pre-synaptic input neu-
rons encoding signal amplitudes outside this range
remain strong. The time constant τstp is set long
compared to the duration of an action potential,

so that the synaptic weights do not change signifi-
cantly during an action potential. The depression
factor fd is set so that the asymptotic weight of a
synapse stemming from an input neuron firing at
each time step is significantly lower (×0.13 in our
network implementation) than that stemming from
an input neuron never firing. Thanks to these STP
synapses, the excitation received by the attention
neuron is much more important for infrequent sig-
nal amplitudes than for signal values close to zero
(Fig. 3, top and middle).

The attention neuron is an LIF neuron, whose
membrane potential V is governed by the following
equation:

dV

dt
= − 1

τm
∗ V (t) +

∑
i

∑
s

wi(ti,s)δ(t − ti,s), (2)

where V stands for the neuron potential, τm for
the membrane time constant, i indexes the incom-
ing synapses with synaptic weight wi, s indexes the
received spikes from each synapse i with arrival time
ti,s and δ is the Dirac delta function. The membrane
time constant of the attention neuron is chosen rel-
atively short, in order to detect an action poten-
tial as early as possible. Combined with the STP
rule, this LIF dynamic leads to an increased mem-
brane potential when an action potential occurs in
the input signal (Fig. 3, bottom). The attention neu-
ron threshold value is then set empirically to obtain a

Fig. 3. Short-term plasticity effect on the attention neu-
ron. Top: Example of input signal. Middle: Correspond-
ing EPSP induced on the attention neuron by each input
neuron of one input layer column. Bottom: Time evo-
lution of the attention neuron potential and its firing
times given its threshold (dashed line) and self-excitation
(arrow).
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compromise between false negative and false positive
detection errors. The neuron has no refractory period
and no reset potential is applied. Instead, after firing,
the potential is increased through a self-excitatory
synapse, which constitutes a hysteresis mechanism.
The self-excitatory synapse ensures that, even if the
action potential waveform crosses zero, thus lower-
ing temporarily the attention neuron potential, the
detection spike train is continuous from the begin-
ning to the end of the action potential. The values of
the attention neuron parameters are given in Table 2.

2.1.3. Intermediate layer

The role of each intermediate layer neuron is to learn
to recognize specific fragments of action potential
waveforms present in the input signal so that the

layer emits different firing sequences for different
action potential waveforms. The activity of interme-
diate layer neurons is gated by the attention neuron
through fixed-weight excitatory synapses, ensuring
that these neurons fire when the attention neuron
fires and remain silent otherwise. Thus, for each
action potential occurrence in the signal, the inter-
mediate layer fires a sequence of spikes characterizing
the action potential shape, as it is different for dif-
ferent action potential waveforms and stable across
occurrences of the same waveform [Fig. 4(a)]. These
xdifferent sequences are then processed by the out-
put layer, to sort the action potentials.

Neurons of the intermediate layer are LIF neu-
rons following a similar equation as the attention
neuron [Eq. (2)]. They receive all spikes emitted by

Table 2. Attention neuron parameters.

Parameters Description Value

τm Membrane time constant 0.5 ∗ ∆tc = 0.025 ms
τrefrac Refractory period 0
Th Neurons threshold 0.43 ∗ Noverlap ∗ Nc/(1 − exp(−∆ts/τm)) = 108.1
wself Weight of the self-excitatory synapse 0.3 ∗ (1/exp(−∆ts/τm) − 1) ∗ Th = 10.5
τstp Short-term plasticity time constant 10 ∗ ∆tc ∗ Nc = 5ms
fd Short-term plasticity depression factor 1 − exp(−6.5 ∗ ∆ts/τstp) = 0.0161

Fig. 4. The intermediate layer learns waveform fragments: (a) Spike sequence emitted by the intermediate layer for each
action potential occurrence. Top row: Signal shapes for all action potential occurrences in the last 100 s of simulation.
Middle row: Spike trains of the intermediate layer synchronized with 50 different action potential occurrences. Bottom row:
Distributions of intermediate spike latencies relative to each action potential occurrence (the histograms are cumulated).
The different colors stand for different intermediate neurons. (b) STDP rule applied on the synapses stemming from
the input layer. (c) Weight evolution of the synapses projecting on one specific intermediate neuron. (d) Learnt shapes
correspond to fragments of waveforms occurring in the signal. The first column shows the learnt weights for six different
intermediate neurons. The three other columns show the signal shape at each action potential occurrence, the black lines
show the part of the signal encoded by the input layer at the moment when the intermediate neuron fires. (e) Weights
learnt by each of the 60 intermediate neurons after a 200-s simulation.
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the input layer through excitatory synapses whose
weights vary according to an STDP rule. The mem-
brane time constant τm of the intermediate neurons
is of the same order of magnitude as ∆ts, so they are
sensitive to the shape of the signal at current time,
which they have to recognize. As part of a winner-
take-all (WTA) mechanism, each time an intermedi-
ate neuron fires, all intermediate neurons reset their
potentials to zero. This ensures that only one neu-
ron fires at a time. Intermediate neurons thus fire
one after the other, separated by a time interval that
depends on the received excitation and the thresh-
old, and is here adjusted to be approximately equal
to ∆tc.

The STDP rule is based on a coincidence time
window defined by the value τstdp+ [Fig. 4(b)]. A
pre-synaptic spike is considered to coincide with a
post-synaptic spike if it arrives at most τstdp+ before
the post-synaptic spike. For each post-synaptic spike
occurrence, the synapse weight is decreased by
∆wpost, and additionally, if a pre-synaptic spike
coincides with the post-synaptic spike, the synapse
weight is increased by ∆wpair (resulting in a total
change of ∆wpost+∆wpair). Consequently, the synap-
tic weight globally increases toward one if the ratio of
pre- and post-synaptic spike coincidences over post-
synaptic spike occurrences is superior to the ratio
|∆wpost/∆wpair|, and decreases to zero otherwise.

The synapses weights are initialized randomly
according to a uniform distribution. The mean
weight is chosen so that the neurons potential is
just high enough to reach the threshold when the
attention neuron also fires. Thus, at the beginning
of the signal processing, when an unknown action
potential waveform is presented, one intermediate
neuron arbitrarily fires first and inhibits the others.
This neuron updates its synaptic weights whereas
synapses projecting to the other intermediate neu-
rons remain unchanged. The STDP time window
being equal to ∆tc, the potentiated synapses reflect
the shape of the signal at this specific time with
the same time resolution as the input layer. Con-
sequently, when a similar waveform fragment occurs
again, this neuron is more likely to fire and thus rein-
force the specificity of its response to this particular
waveform pattern [Figs. 4(c) and 4(d)]. Once learn-
ing has been achieved, several intermediate neurons
become specifically responsive to different waveform
fragments [Figs. 4(d) and 4(e)]. The intermediate
layer is constituted of 60 neurons, which we found
enough to learn the different possible input patterns.
This was confirmed by the fact that some intermedi-
ate neurons did not learn any pattern [Fig. 4(e)]. It is
possible to increase this number if a great variety of
waveforms is expected in the signal. The values of the
intermediate layer parameters are given in Table 3.

Table 3. Intermediate layer parameters.

Parameter Description Value

Nneur Number of neurons 60
τm Membrane time constant 2 ∗ ∆ts = 0.025 ms
τrefrac Refractory period ∆tc = 0.05 ms
Vreset Reset potential 0
Vinhib Post-inhibition potential 0
wAN Weight of the synapses coming from the attention neuron 0.6 ∗ Nc ∗ Noverlap = 60
Th Neurons threshold (wAN + 0.7 ∗ Nc ∗ Noverlap)

∗ (1 − exp(−∆tc/τm))/(1 − exp(−∆ts/τm))
= 252.7

winit− Minimal value for the feedforward synapses weight 0.4
initialization

winit+ Maximal value for the feedforward synapses weight 1
initialization

τstdp+ Positive STDP rule time window ∆tc + 0.5 ∗ ∆ts = 0.0563 ms
τstdp− Negative STDP rule time window 0
∆wpair Weight change for a pre-synaptic spike coinciding with a 0.005

post-synaptic spike
∆wpost Weight change for each post-synaptic spike −0.55 ∗ ∆wpair
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2.1.4. Output layer

The purpose of the output layer is to finalize the
spike-sorting process, by learning to recognize spike
sequences produced by the intermediate layer that
correspond to combinations of waveform fragments.
If the input signal contains action potentials of N

different cells, a successful spike-sorting results in
exactly N active neurons of the output layer, each
firing once for each occurrence of an action poten-
tial of a given cell in the input signal. An important
problem to overcome is the ability to learn patterns
of different sizes and to differentiate between pat-
terns that may overlap or include one into another.
Overlapping patterns can occur for example if two
action potential waveforms have the same beginning
but different endings.

The output layer is designed here to overcome these
problems using four features in addition to the STDP
rule and the WTA mechanism.

• First, each pair of intermediate and output neu-
rons are connected through multiple synapses with
different transmission delays, as in Refs. 45–47.
This gives information to the output layer about
the spike times of the intermediate layer [Fig. 5(a)].

• Second, the output layer is inhibited by the
attention neuron. This inhibition is applied on the
feedforward synapses from the intermediate layer,
after the transmission delay (mimicking a biolog-
ical pre-synaptic inhibition), so that intermediate
spikes arriving at the output layer are prevented
from being transmitted to the output neuron if

Fig. 5. (Color online) The output layer learns to recognize different intermediate layer patterns. (a) Connection between
intermediate and output neurons, through several synapses with different transmission delays. (b) Spike train received
by the output layer, depending on the intermediate layer and attention neuron spike train. The different colors stand for
different intermediate neurons. (c) Intrinsic plasticity principle. (d) STDP rule applied on the synapses stemming from
the intermediate layer. (e) Evolutions of weights (in grayscale) and thresholds (blue bars) of one output neuron. The
weights are organized according to their delays and their pre-synaptic intermediate neuron. Shown weights are the sum
of the inhibitory and excitatory synapse weights divided by the neuron’s threshold. (f) Synaptic weights and thresholds
learned by each of the 10 output neurons. Top row: Final synaptic weights and thresholds at the end of a 200-s simulation,
represented similarly as in (e). Bottom row: Distributions of final synaptic weights for each output neuron, without
threshold normalization.
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the attention neuron is firing at the same time
[Fig. 5(b)]. These spikes are thus not taken into
account for the plasticity rules. This forces the
output neurons to wait until the end of a pat-
tern before firing and thus to take into account
the entire pattern to adjust the weights of incom-
ing synapses.

• Third, each neuron of the output layer receives
the spikes of each neuron of the intermediate layer
through both excitatory and inhibitory synapses
implementing an STDP rule, allowing the overall
weight to take negative or positive values. As a
result, a neuron that has learnt a pattern gets
excited by spikes belonging to this pattern and
inhibited by spikes not belonging to the pattern.
Thus, its potential is maximal when the pattern is
exactly reproduced, without missing or additional
intermediate neuron spikes.

• Fourth, the output neurons implement an intrin-
sic plasticity (IP) rule [Fig. 5(c)], which enables
them to adapt their threshold to the learnt pat-
tern size. This ensures that an output neuron that
has learnt to recognize a long pattern has a suf-
ficiently high threshold preventing it to fire if the
incoming pattern is incomplete, whereas a neuron
that has learnt a short pattern has a low threshold
and is still able to detect it. The introduction of
this IP rule on the output neurons in conjunction
with the use of excitatory and inhibitory synapses
is key to solve the problem of recognition of over-
lapping patterns or patterns that included one into
another.

The output neurons, thresholds are initialized at a
high value, and the feedforward synapses weights are
initialized randomly, according to a uniform distribu-
tion, with an average positive weight. Before learn-
ing, when an output neuron receives a spike pat-
tern from the intermediate layer, it fires late due to
its high threshold. Once a neuron fires, its thresh-
old begins to evolve according to the intrinsic plas-
ticity rule [Fig. 5(c)]. Every time an output neu-
ron emits a post-synaptic spike, its threshold Th is
decreased by ∆Thpost = F∆Th

post ∗ Th. For each
pre-synaptic spike received within a coincidence win-
dow around the post-synaptic spike [−τIP + τIP−],
the threshold is increased by ∆Thpair multiplied by
the synaptic weight. Additionally, the threshold is
bounded between a minimum value and a maximum

value (see Table 4). It can be shown that the equi-
librium threshold value is proportional by a factor
F∆Th

post/∆Thpair to the average weighted sum of
the pre-synaptic spikes received within the coinci-
dence window around a post-synaptic spike. As a
consequence, the learning neuron’s threshold, which
is initialized at its maximum value, progressively
decreases and the neuron fires earlier than the neu-
rons that have not learnt any pattern [Fig. 5(e)].

The synaptic weights evolve in parallel to the
threshold according to an STDP rule [Fig. 5(d)].
The rule used is similar to the one used for the
intermediate layer, with a different coincidence time
window and different weight change values. The coin-
cidence time window is defined by both τstdp+, for
pre-synaptic spikes occurring before a post-synaptic
spike, and τstdp−, for pre-synaptic spikes occurring
after a post-synaptic spike. τstdp+ is chosen quite
long to facilitate learning at the beginning, when
the neuron fires late due to its high threshold. The
inhibitory and excitatory feedforward synapses fol-
low an STDP rule with the same coincidence time
window, but with a different |∆wpost/∆wpair| ratio,
so that after learning, the summed weight converges
to either 1, 0 or −1 depending on the ratio of the
number of pre- and post-synaptic spike coincidences
over the number of post-synaptic spike occurrences.
Once an output neuron has learnt a pattern [see neu-
rons 3, 7 and 9 in the example of Fig. 5(f)], most of
its incoming synapses have converged to the mini-
mum negative weight value. Only the synapses cor-
responding to the intermediate neurons and delays
constituting the pattern converge to the maximum
positive weight, and the few remaining synapses not
relevant for discriminating the pattern converge to
a null weight [Fig. 5(f)]. By contrast, the incoming
synaptic weights of neurons that did not learn any
pattern remain distributed near the zero value.

The output layer is constituted of 10 LIF neu-
rons. The number of neurons is chosen higher than
the maximum number of expected action potential
waveforms in the signal. These neurons have their
potentials reset after firing or after a lateral WTA
inhibition. The reset potential and the lateral inhibi-
tion potential are proportional to the neuron thresh-
old, which vary according to the IP rule. The values
of the output layer parameters are given in Table 4.

Overall, the proposed architecture of the net-
work allows the output neurons to learn to recognize
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Table 4. Output layer parameters.

Parameter Description Value

Nneur Number of neurons 10
τm Membrane time constant 3ms
τrefrac Refractory period 3ms
Freset Reset potential factor. The reset potential is Vreset = Freset ∗ Th −10
Finhib Lateral inhibition potential factor. The lateral inhibition potential is −10

Vinhib = Finhib ∗ Th
Ndelays Number of synaptic delays 50
∆td Time interval between synaptic delays ∆tc = 0.05 ms
wpos

init− Minimal value for the excitatory feedforward synapses weight initialization 0

wpos
init+ Maximal value for the excitatory feedforward synapses weight initialization 1

wneg
init− Minimal value for the inhibitory feedforward synapses weight initialization 0

wneg
init+ Minimal value for the inhibitory feedforward synapses weight initialization 0

τstdp+ Positive STDP rule time window 3ms
τstdp− Negative STDP rule time window 4 ∗ ∆tc = 0.2 ms
∆wpos

pair Excitatory synapses weight change for the pre-synaptic spike coinciding with 0.05

a post-synaptic spike
∆wpos

post Excitatory synapses weight change for each post-synaptic spike −0.7 ∗ ∆∆wpos
pair

∆wneg
pair Inhibitory synapses weight change for the pre-synaptic spike coinciding with −0.05

a post-synaptic spike
∆wneg

post Inhibitory synapses weight change for each post-synaptic spike −0.1 ∗ ∆∆wneg
pair

Thmin Lower bound of the neuron threshold 8
Thmax Upper bound of the neuron threshold, also used as initialization value −0.35 ∗ Ndelays ∗ Thmin

= 140
τIp+ Positive IP rule time window 6 ∗ ∆tc = 0.3 ms
τIp− Negative IP rule time window 4 ∗ ∆tc = 0.2 ms

F∆Th
post Proportional threshold decreases for each post-synaptic spike 0.01

∆Thpair Threshold increases for each pre-synaptic spike coinciding with 0.6 ∗ F∆Th
post

a post-synaptic spike

different patterns generated in the intermediate layer
and to emit one spike for each occurrence of an action
potential waveform in the input neural signal. Thus,
each active output neuron directly predicts the activ-
ity of one real cell (Fig. 6).

2.2. Simulated data

The spike-sorting methods were first tested on sim-
ulated data generated using a method adapted
from the literature.48 Simulated signals are the
superposition of correlated noise and action poten-
tials occurring at known timestamps thus providing
a known ground truth. The simulated sampling fre-
quency is 20 kHz. The waveform of each truth neuron
action potential is defined according to the following
template equation:

V (t) = A cos
(

2π
t − tph

τ1

)
exp

(
−
(

2.3548t

τ2

)2
)

.

(3)

The parameters of this equation are given in
Table 5 for the three neurons that were simulated.
The coefficient A is computed so that the maximum
value of the template matches the parameter Amax.
The time occurrences of these waveforms are defined
according to a Poisson process, each with a mean
firing rate of 3.3Hz (unless otherwise stated), with
a simulation time step of 0.05ms corresponding to
a 20-kHz sampling frequency. Additionally, a 3-ms
refractory period is applied for each neuron. The
noise added to the signal is a correlated noise gen-
erated by a dynamical Ornstein–Uhlenbeck process,
with a 0.1-ms time constant and a simulation step of
0.002ms. Simulated signals were generated with dif-
ferent noise levels to achieve different signal-to-noise
ratios defined as 〈|Amax|〉/σnoise, where 〈|Amax|〉 is
the mean of the peak amplitudes of the three action
potentials and σnoise is the standard deviation of the
noise. Seven different noise levels were defined (from
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(a)

(b)

Fig. 6. (Color online) Examples of spike-sorting achieved by the artificial network on simulated and real data. (a)
Performance on simulated data. Left: comparison of the output spike trains generated by the 10 output neurons with the
truth spike trains generated by the three simulated neurons, on a 10-s segment of input signal. Matching spike trains have
been highlighted in red. Right: evolutions of the performance of the network over the 200-s simulation. (b) Same as (a)
for a real recording (dataset d553101). Here the truth is only known for one cell thus only the performance relative to
this cell can be computed.

Table 5. Waveform template parameters.

Amax τ1(ms) τ2(ms) tph(ms)

Waveform 1 5 1 0.5 −0.25
Waveform 2 5 1 0.5 0.25
Waveform 3 10 1 0.5 −0.19

0.5 to 2) and 10 200-s datasets were generated for
each of them.

2.3. Tetrode data

The spike-sorting methods were also evaluated on
real recordings from the hippocampus region CA1 of
anesthetized rats, available from the Buszaki Labora-
tory49,50 (datasets d533101 and d11221.002). Before
sorting, the signals were band-pass-filtered using
a first-order Butterworth filter (300–3000Hz). The
d533101 dataset, having an original 10-kHz sam-
pling frequency, was up-sampled, for convenience,

at 20 kHz using a Whittaker–Shannon interpolation.
However, the signal was always resampled to 80 kHz
at the input layer level (see Table 1).

2.4. Spike-sorting performance
evaluation

To assess the performance of the spike-sorting
method, we computed indices based on an F -score.
For each pair of truth neuron i and output neuron j,
we computed the F -score as

Fij =
2 ∗ Hij

Ti + Oj
, (4)

where Ti is the number of spikes emitted by the ith
truth neuron, Oj is the number of spikes emitted
by the jth output neuron and Hij is the number of
output spikes coinciding with a truth spike within a
3-ms coincidence time window. Note that the F -score
combines the recall and the precision of a prediction.
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We also computed a global F -score across all
truth neurons and all output neurons as

F =
2 ∗ H

T + O
, (5)

where T is the total number of truth spikes, O the
total number of output spikes and H the total num-
ber of hits. To compute H , it is necessary to choose
a correspondence between output neurons and truth
neurons. Then H is the number of output spikes coin-
ciding with a corresponding truth spike within a 3-ms
coincidence time window. The pairing between out-
put neurons and truth neurons was chosen to maxi-
mize H .

We also computed the recall as the number of cor-
rectly detected action potentials over the number of
true action potentials, the precision as the number of
correctly detected action potentials over the number
of detected action potentials and a clustering score
as the number of correctly classified action poten-
tials over the number of correctly detected action
potentials.

2.5. Statistical tests

The STDP network was compared to two other spike-
sorting methods, Wave clus28 and Osort,26 on both
the simulated and real data. For the simulated data,
10 200-s datasets were generated for each of the
seven different noise levels, and each of the three
compared methods were run once on each dataset.
For the tetrode data, the STDP method was run
eight times on each channel, Wave clus was run eight
times on each channel, and Osort was run once on
each channel as its result was deterministic. We then
used the tetrode data to evaluate the performance
of the STDP network when adapted to process all
channels simultaneously. In this case, the STDP net-
work was run 40 times both on each channel sepa-
rately and on all channels simultaneously using two
different tetrode network architectures (see Fig. 8).
Results obtained by the two tetrode methods were
then compared to the best result obtained using only
a single channel. As the variances were significantly
different for the different groups (as assessed by a
Bartlett test), a Welch test was used for two by two
comparisons, except for the comparison with Osort
on the tetrode data where a one-sample t-test was
used. A Bonferroni correction was used for each set

of multiple comparisons. All tests were performed
using Matlab R2014a.

3. Results

3.1. Performance of the network on
simulated and real extracellular
data

Figure 6 shows two examples of spike-sorting results
obtained on both artificial data with known ground
truth and real extracellular tetrode recordings associ-
ated with an intracellular recording providing ground
truth for one cell.49,50 Different types of error can
occur when comparing the ground truth spike trains
to the spike trains predicted by the sorting method:
false negative, false positive and wrong classifica-
tions. The performance of the method was assessed
using the F -score, which accounts for all types of
error. Figure 6(a) shows an example of 10 s of simu-
lated data embedding three different action potential
waveforms, each firing at known timestamps accord-
ing to a Poisson distribution with an average rate of
3.3Hz. As shown in this figure, the output spiking
pattern of the STDP network showed three mainly
active output neurons whose spike trains closely
resembled those of the three embedded signal wave-
forms. The network quickly converged to provide
high classification rates as assessed over the last 100 s
by an overall F -score of 85%, with individual scores
of 90%, 89% and 93% for each of the waveforms. Fig-
ure 6(b) shows an example of 10 s of real extracellular
data for which the activity of one neuron was known
from a simultaneous intracellular recording. The out-
put of the STDP network showed three main active
neurons, the activity of one being close to that of the
intracellularly identified cell. For this cell, the sort-
ing F -score of the network was stable for 150 s with
an average value of 89% in the last 100 s.

We further compared our method with two open-
source software able to perform unsupervised spike-
sorting: Osort26 and Wave clus.28 Figure 7(a) shows
the confusion results for the three methods on a
simulated dataset. In this example, the STDP net-
work made only a few false negative errors, while
Wave clus made both false negative and false posi-
tive errors and Osort failed to detect one of the wave-
form and misclassified the two others in the same
cluster, with an important number of false negative
errors [Fig. 7(a)]. We further considered artificial
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(a)

(b)

(c)

(d)

Fig. 7. Comparison of the performance of the STDP network with those of two other algorithms (Osort and Wave clus).
(a) Confusion matrices for the three sorting methods for an SNR = 4.4 simulated dataset. The values are normalized
relatively to 100 ground truth spikes, i.e. 33 occurrences of each waveforms. (b) Mean F -score obtained on simulated data.
(c) Mean F -score obtained on real tetrode recordings. “ns” stands for nonsignificant, ∗ for p < 0.05, ∗∗ for p < 0.01, and
∗∗∗ for p < 0.001 (d) Detailed mean scores on the 10 simulated datasets with an SNR of 4.5.
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data with various SNRs. At very high SNRs, the
STDP method gave slightly lower performance than
Osort and Wave clus, but the F -score differences
remained low (<0.06). At lower SNRs more compa-
rable to those encountered in real cortical record-
ings, the STDP method became more efficient than
the two other methods with strong F -score differ-
ences up to 0.3 for an SNR of 4.4 [Fig. 7(b)]. These
performances were further observed on real neural
signals [Fig. 7(c)]. In this case, the STDP approach
performed similarly or better than Wave clus in all
cases and performed better than Osort at SNR lower
than 4. The superior performance of the STDP
approach at low SNR seems to be due to a better
recall (with a fewer false negatives), and, more rele-
vantly, a better clustering [Fig. 7(d)].

3.2. Stability of the network

A spike-sorting method should generate robust clas-
sification irrespective of the level of activity of the
cells. In particular, classification should be correct
for highly active neurons as well as for poorly active
neurons. We thus tested the STDP-based sorting
method on artificial data where three neurons were
simulated with different firing rates: 1Hz for one cell,
3Hz for another and 9Hz for the third cell [Fig. 8(a)].
The network successfully classified the three differ-
ent neurons with an overall F1-score of 84%. Notice-
ably, the network learned faster the waveform of the
most active cell and more slowly the waveform of
the least active cell. We found that the network
needed about 50 occurrences of a given waveform
to reach a correct and stable classification. The pro-
posed method is thus able to correctly classify dif-
ferent waveforms corresponding to neurons having
different firing rates, as soon as each waveform has
occurred enough times.

A robust spike-sorting method then requires that
a classification remains correct when the firing rates
of the cells fluctuate. Indeed, the activity of a neu-
ron during a behavioral task can be subject to fluc-
tuations depending on the involvement of the cell
into the task. We thus also tested the STDP-based
sorting method on artificial data where three neu-
rons had intermittent firing activity [Fig. 8(b)]. All
cells had a firing rate of 3Hz but one became active
only 50 s after the others and then these two other
cells became silent one after the other before all

(a)

(b)

Fig. 8. (Color online) Robustness of the network to dif-
ferent firing rate scenarios. (a) Performance of the net-
work along time for ground truth neurons with different
firing rates. Blue dashed lines are an exponential fits. (b)
Evolutions of the performance of the network for neurons
with varying firing rates.

became active again. We found that these firing rate
variations did not impair the algorithm performance
[Fig. 8(b)]. In particular, after the network had sta-
bilized learning of two waveforms, it could still learn
a new one. Moreover, when a waveform that the net-
work had learnt became transiently absent in the
signal, it could still classify it immediately and suc-
cessfully as soon as it reappeared, meaning that the
network keeps memory of the waveforms that have
been learnt.

3.3. Extension of the network
to tetrode recording

The recent advances of neural interfacing have bene-
fited from novel micro- and nano-technologies allow-
ing the fabrication of high-density multi-electrode
systems.51–54 Dense arrays of microelectrodes may
provide neural recordings displaying partially over-
lapping information from one electrode site to the
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Fig. 9. Adaptation of the network for the processing of
tetrode data. (a) First network adaptation to tetrodes
(tetrode 1) where one input layer is used independently
for each recording site and the intermediate and output
layers are further shared. (b) Second adaptation (tetrode
2) where one input and one intermediate layers are used
independently for each recording site and only the out-
put layer is further shared. (c) Performance of the two
different tetrode architectures compared with the best
single electrode performance. “ns” stands for nonsignifi-
cant, ∗ for p < 0.05, ∗∗ for p < 0.01 and ∗∗∗ for p < 0.001.

next. In particular, when recording sites are sep-
arated by less than a few tens of microns, action
potentials from a same cell can be recorded on sev-
eral sites and spike-sorting methods can benefit from
combining neighboring electrodes instead of process-
ing recording sites independently.30,34,55,56 In this
context, we thus adapted our method to the case
of tetrode recordings, processing all channels at once
instead of separately. To do so, we considered two
variations of our network architecture. The first one
had four input layers processing in parallel each of

the four input signals and projecting to one common
attention neuron and one common intermediate layer
[Fig. 9(a)]. In this configuration, the attention neu-
ron’s threshold, the intermediate neurons’ threshold
and the weights of the synapses linking the attention
neuron and the intermediate layer were multiplied
by four. The second configuration had four input lay-
ers, four attention neurons and four intermediate lay-
ers working in parallel. The four intermediate layers
and attention neurons project to one common output
layer [Fig. 9(b)]. In this case the network parame-
ters were unchanged. On the two datasets tested, we
found that combining the four signals with the first
configuration gave better classification than using
each electrode separately. The second configuration,
requiring a higher number of neurons and thus more
computations, was only better for the first dataset
having a higher SNR [Fig. 9(c)].

4. Conclusion

We show that a three-layer STDP network with an
attention-based mechanism is successful on a spike-
sorting task. The network needs only few data to
configure in a fully unsupervised manner. More-
over, the parameters of the network did not need
to be adjusted between the different tested datasets.
Indeed, only the noise level of the input data needs
to be known to parameter the network correctly
(see Sec. 2.1.1). In a preliminary study,57 extracellu-
lar action potentials could be successfully sorted in
case of a very high SNR using a single-layer STDP
network but this architecture failed at SNR corre-
sponding to standard cortical recordings. Here, we
propose a multi-layer network architecture incorpo-
rating several plasticity rules, which shows perfor-
mances comparable to existing methods with the
advantage to process the stream of neural signal con-
tinuously. In contrast to conventional spike-sorting
algorithms that use separate steps for action poten-
tial detection, feature extraction and clustering, here
the entire process is considered as a whole. The neu-
ral network directly processes the raw signal to out-
put timestamps of sorted action potentials.

5. Discussion

Bio-inspired computing using artificial spiking neu-
ral networks promises performances outperforming
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currently available computational approaches. Yet,
the number of applications of such networks remains
limited due to the lack of generic training method
for complex pattern recognition. This study shows
encouraging results on the application of STDP
networks to spike-sorting, with classification results
even better than those obtained with Osort and
Wave clus software. This latter finding yet only
applies to the datasets tested in this study and
would require more extensive testing on numerous
situations to be confirmed. This study proposes
a radically new approach to handle spike-sorting
offering perspective in the long term for very-low-
power embedding of this central neural signal pro-
cessing step in brain implants. From the point
of view of unsupervised pattern recognition using
STDP networks, these results also represent signifi-
cant advances with respect to previous achievements
obtained so far. STDP networks have been shown to
be successful for unsupervised learning13 and pattern
recognition from sets of static images such as digits17

or objects or faces,14 with performances improved
by considering deep architectures.58 When consider-
ing dynamical inputs such as sounds or videos, pat-
tern recognition using STDP networks has so far
been restricted to cases where the time of occur-
rence of the pattern fragments across the different
input units did not need to be taken into account.15

Indeed, an LIF neuron combined with STDP can act
as a coincidence detector, which is not adequate to
discriminate between patterns differing by the time
ordering of their fragments across the input units.
Here we solved this problem using a set of delay-
ing synapses, to take into account time ordering.
In our case, two layers with delays were used, but
this mechanism could be extended to more layers,
the length of the recognized time-series going up in
scale at each layer. Another difficulty which had to
be overcome to solve the problem of spike-sorting
is that the pattern processed by the output layer
might vary in size. As different patterns can share
common parts, this can lead in the worst case to pat-
terns including one into another. This situation was
handled by using an intrinsic plasticity rule which
allows the neuron threshold to adapt to the size of the
learnt pattern, combined with synapses that can have
negative as well as positive weights, which ensures
that the maximum excitation is reached when the

presented pattern exactly matches the learnt pat-
tern. It has been shown that STDP network can
recognize spike patterns occurring sparsely in a ran-
dom spike background.12 However, here, we face a
different problem as the background signal fluctu-
ates around zero and thus gets encoded as consis-
tent spike trains that could be learnt by the net-
work. This problem was handled with an attention
mechanism, which takes advantage of the fact that
the relevant patterns occur only sparsely, whereas
background patterns that should be ignored occur
repeatedly. This attention mechanism thus detects
the relevant parts of the signal and then gates the
rest of the network to only learn from these relevant
periods.

This approach has been designed to be com-
patible with a neuromorphic implementation, which
opens perspectives for low-power real-time process-
ing, thanks to the development of neuromorphic
chips. Real-time processing requires fast computa-
tions, especially when hundreds of recording sites
need to be processed simultaneously. Artificial STDP
neural networks have been implemented on FPGAs
to demonstrate embedding neuromorphic comput-
ing.59–62 However, although the real-time transposi-
tion of artificial STDP spike-sorting networks could
be envisioned with GPUs or FPGAs, such strate-
gies would still require high power consumptions not
compatible with future embedding in implantable
devices. Future brain implants embedding spike-
sorting at the electrode level will thus need to rely
on other types of very-low-power implementations.
The approach proposed here was designed specifi-
cally in such perspective. It complies with neuro-
morphic circuits and in particular with scalable non-
volatile resistive memory (memristive) devices that
can mimic artificial synapses with embedded STDP
plasticity and offer the perspective of very-low-
power implementation of spiking neural networks in
analog hardware for pattern recognition.4–10,35,63,64

Indeed, synapses are several orders of magnitude
more numerous than neurons in neural networks.
Thus, low-power computing based on artificial neu-
ral networks should be conceived to be compatible
with low-power synapses. Here, the proposed method
relies on two types of plasticity rules at the synaptic
level, STP and STDP. Both have been modeled into
RRAM synapses, making the method compliant with
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currently developed nanoscale neuromorphic hard-
ware.10,15,65,66 The more power-consuming part of
our network is the synaptic connection between the
input layer and the intermediate layer with 8 ∗ 106

spikes per second generated by the input layer, each
transmitted through 60 synapses. With a raw esti-
mation of about 200pJ of energy consumed for each
weight change,57,67 this leads to a total power of less
than 10µW. This however remains a very rough esti-
mation as, depending on the technology used, the
switching power of a synapse can be decreased under
1 pJ,68,69 which would result in a power consumption
of the network of about 0.5µW, hence 10µW for
200 microelectrodes. This approach thus opens new
perspectives to achieve very-power-efficient spike-
sorting in miniaturized analog neuromorphic circuits,
which should benefit to future fully implantable elec-
tronics and intelligent and standalone autonomous
implants for seamless neural function monitoring and
neurorehabilitation.

The present study may further open new ways to
build large-scale hybrid neural networks. Hybrid net-
works connect real neurons to artificial neurons, ide-
ally in a one-to-one bidirectional scheme. This field
has been pioneered by dynamic clamp experiments
at the single cell level using the patch-clamp tech-
nique.70 Microelectrode arrays now open the way
to build larger hybrid networks connecting multi-
ple living cells to multiple artificial units. Achieving
a complete bidirectional hybridization requires two
types of transformations: converting real neural net-
work activity into artificial neural activity and, con-
versely, converting artificial activity into real activ-
ity. Artificial-to-real conversion has been achieved
using electrical microstimulation at a network level71

but remains unachieved at the level of one-to-one
artificial–real neuron pairs. Here, the spike-sorting
STDP network offers a simple solution for a real-to-
artificial one-to-one conversion of the spike trains of
multiple biological single units into spike trains of an
equivalent number of artificial spiking neurons. Such
direct real-to-artificial conversion should thus ease
the exploitation of neural activity by downstream
neuromorphic architectures that have been proposed
for neural signal decoding in rehabilitation devices.72

Data Availability

The simulated data used in this work is made
available on the Zenodo platform at doi:10.5281/
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